
Assembly Language J. Vaughan

Page 1 of 2

Lecture Notes on Assembly Language - J. Vaughan
11. Program Structure: Executable Code
The data definition sections are followed by executable code. This can be classified in
three subsections: macros, subroutines and the main program.
Subroutines are sections of code that perform specific functions on data provided by
the main program (or by another subroutine) as part of a subroutine call and store the
results in such a way that the calling program can access them.

Macros are structured in a similar way to subroutines but, instead of being called, they
are expanded in the line of the calling code and therefore they do not terminate with a
RETURN instruction. Macro expansion can be considered as a preliminary phase in
program translation during which the number of instructions in the program is
increased at points where macro calls occur.

12. Instructions and data

The beginning of the executable code section is marked by

 SECTION .text

There are two schools of thought on where to begin the main program: One takes the
view that the main program contains the principal narrative and that the detail can be
filled in later. In this approach, any subroutines are placed after the end of the main
program. This results in forward references to not-yet-defined labels, which is not
really a problem in a 2-pass assembler. The second approach is to place the
subroutines before the main program, so that the addresses of subroutine calls are
defined before the calls are encountered in the code. This is also the approach of
structured programming, and was enforced by teaching languages such as Pascal. The
nasm assembler does not enforce any particular design philosophy. However, like
most assemblers, it recognises that the first instruction in the object file may not be
the intended initial instruction. Therefore, a mechanism is provided for notifying the
linker of the position of the first instruction, or entry point:

 global main

main:

Most instructions operate on data. As a result, there are many ways of identifying
where the data is located. These ways are referred to as addressing modes.
Instructions can use different modes for addressing source and destination data.

The main modes are: implied, register, immediate, direct, register indirect and
memory indirect. Indexing and based addressing are types of register indirection.

Implied addressing
The location of the operand is implied by the nature of the instruction, e.g.
complement bits of the accumulator.

Register addressing
The operand source or destination is a register. Since there are several of these,
several bits of the instruction must be allocated to distinguishing between them. At
assembly language level, this translates as having particular names for individual
registers, e.g.

 mov eax, ebx

Assembly Language J. Vaughan

Page 2 of 2

Immediate addressing
The data is located in memory within the instruction that operates on it. The most
common example of this occurs when moving a constant into a register, for example
in a loop count:

numchar equ 26

 mov ecx, numchar

Direct addressing
The data is located in a memory location. The address of this location is located
within the instruction that operates on the data, for example,

num1 db 1

 mov al, [num1]

In the interests of program legibility, it might be better to write the latter instruction as

 mov al, byte[num1]

in order to make it clear that it is the byte (rather than the word, doubleword, etc.)
having address num1 that is being moved, although this can be deduced from the size
of the destination register.

Register indirect addressing
The data to be operated on by the instruction is in memory. The address of the
memory location is contained in a register, and the register is referenced in the
instruction. This approach is useful, particularly in array processing, as it allows rapid
modification of the operand address by changing register contents. For example:

numarray db 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

numlen equ $-numarray

 mov ecx, numlen

 mov ebx, 0

add1 mov al, byte[numarray+ebx]

 inc al

 mov byte[numarray+ebx], al

 loop add1

The IA-32 architecture permits the combination of two registers and a constant in the
manufacture of an operand address, a scheme traditionally named base + index +
displacement.

Memory indirect addressing
The data to be operated on by the instruction is in memory. The address of the
memory location is contained in a different memory location, and this latter memory
location is addressed in the instruction. This addressing mode is not used for operand
addressing in IA-32, but a limited form of it is available for indirect jumping.

