
Assembly Language                                                                        J. Vaughan 

Page 1 of 3 

Lecture Notes on Assembly Language - J. Vaughan 

7. Instruction Layout 
The usual way of writing an assembly language instruction is to lay it out on a single 
line according to the following fields: 

label: opcode operands ;comments 

Depending on the assembler, the colon following the label may not be required. The 
idea of fields dates back to the days of punched cards, when the fields were fixed in 
length (number of characters). Modern assemblers do not depend on fixed-length 
fields. Nevertheless, a fixed field approach, giving a columnar layout, helps to make 
an assembly language program more readable. The exception to this is when a series 
of lines containing only comments are placed at the beginning of a block of code in 
order to explain its operation. Each line then begins with a semicolon. Some 
assemblers also require that any blank lines be "commented out" with a semicolon. 

8. Program Translation 
An assembly language program is a text file that can be read by a program translator 
called an assembler. The assembler produces an object file containing machine code, 
as well as other information. The assembly language program contains instructions to 
the assembler, called directives or pseudo-instructions, as well as instructions for the 
target CPU. One entity that does not affect the object file is a comment. Comments 
are included in the source code for the sake of readibility. A comment in nasm is 
anything following a semicolon that occurs on the same line as the semicolon. 

Any symbol occurring in the label field of a data definition directive or an instruction 
is given a value and stored by the assembler in a table called the symbol table. The 
value of a label on an equate directive is the value of the operand of the equate 
directive. The value of a label on a data definition directive or an instruction is the 
current value of the location counter at the time the label is inserted in the symbol 
table. 

 

9. Program Structure: Preamble 
A program should begin with an extensive comment section explaining such things as 
the name of the program, its dates of creation and last revision, the names of its 
creator and reviser, the commands required to assemble, link and run it, the inputs 
required and how these are provided, and the outputs produced and where these are 
stored and/or displayed. For example: 

; 
; hello.asm a first program for nasm for Linux, Intel, gcc 
; 
; created: 12 January 2007 Revised: - 
; creator: P. Jones Reviser: - 
; 
; assemble: nasm -f elf -l hello.lst hello.asm 
; link: gcc -o hello hello.o 



Assembly Language                                                                        J. Vaughan 

Page 2 of 3 

; run: hello 
; 
; input: none 
; output: "Hello World" appears on stdout, followed by a newline. 
; 

10. Program Structure: Data Definition 

Following the introductory comments, the program is divided into sections defining 
data and executable instructions. The nasm assembler uses the section directive for 
this purpose. 

The first section is that dealing with data definition. There are four general types of 
data: constants for which storage is not reserved in the data definition section, 
constants for which storage is reserved (such as strings), initialised variables and 
uninitialised variables. Constants for which memory is not reserved in the data section 
tend to be defined as a correspondence between some value and an appropriately 
meaningful symbol, for example in the following equate directive that allows the 
ASCII values for line feed, space and colon to be represented by their customary 
symbolic names: 

LF equ 0xa 

SPACE equ 20h 

COLON equ 3ah 

As the assembler translates the program, it constructs a memory image, comprising 
addresses and contents of blocks of memory locations where the program is to be 
stored during execution. In order to keep track of the address of the next available 
location in the memory image, the assembler maintains a variable called the location 
counter. The value of this variable can be referenced from within an nasm assembly 
language program by the dollar symbol, $. Note that this variable only exists for the 
duration of the program translation process. It is completely different from the 
similarly-named processor register called the Program Counter, or PC. The most 
common use of a program reference to the location counter is for easy calculation of 
string length, as in the following example: 

msg1: db "REGISTER CONTENTS: ", 0ah 
msg1len equ $-msg1 

 

Since storage is not immediately reserved for such constants in the memory image, 
they do not need to be preceded by a section directive. 

When storage is reserved in the memory image, a section-defining directive is usually 
necessary. In nasm, there are two sections that fulfil this function: the .bss and the 
.data sections. 

The .data section contains definitions for constants needing reserved storage and for 
variables that need to contain initial values. The directives in this section are those 
that reserve and initialise memory as follows: 

Reserve and initialise a byte or series of bytes db 

Reserve and initialise a word or series of words dw 



Assembly Language                                                                        J. Vaughan 

Page 3 of 3 

Reserve and initialise a doubleword or series of doublewords dd 

Reserve and initialise a quadword or series of quadwords dq 

Reserve and initialise ten bytes or series of ten bytes dt 

 

Examples 
 SECTION .data 

BLKSIZE equ 64 
msg: db "Hello World", 10 
eaxlab: db " eax: " 
var1 dw 65000 
var2 dd 135678 
hexnum: db "0123456789ABCDEF" 
patrn db 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 
patrn1: times (BLKSIZE/4) db 0xa5 
 
The .bss section is used to declare variables whose size is defined but whose value is 
not defined at the time of program translation. The directives used in this section are 
as follows: 

Reserve a byte or series of bytes resb 

Reserve a word or series of words resw 

Reserve a doubleword or series of doublewords resd 

Reserve a quadword or series of quadwords resq 

Reserve ten bytes or series of ten bytes rest 
 

Examples 
 SECTION .bss 
eaxsave: resb 4 
ebxsave: resw 2 
ecxsave resd 1 
hexdump: resb BLKSIZE*3 + 7*BLKSIZE/16 
 
 


