
Assembly Language J. Vaughan

Page 1 of 3

Lecture Notes on Assembly Language - J. Vaughan

1. Introduction
Assembly Language is a generic term for low-level programming languages in which
the instructions, expressed in an alphabetic mnemonic form, have a 1-to-1
correspondence with equivalent register-level machine codes. Assembly languages
have an architectural dependency: there is at least one assembly language for each
processor. These notes assume an underlying Von Neumann architecture, in which
instructions are stored in a memory unit which is separate to the Central Processing
Unit (CPU). The CPU's principal mode of operation is one in which an Instruction
Cycle is repeated. The cycle consists of fetching an instruction from the memory unit
and executing it within the CPU. The Instruction Cycle is generally regarded as being
composed of two phases, called the Fetch Phase and the Execute Phase.

The Fetch Phase may be described as follows:

IR <— (m<(PC)>)

This is a rough Register Transfer Language notation in which IR is the Instruction
Register, PC is the Program Counter, the left arrow stands for "gets" or "is assigned",
the parentheses () mean "the contents of" and the less than and greater than signs <>
stand for "the address of".

Therefore, the above notation may be read as;

"The Instruction Register is assigned the contents of the memory location whose
address is given by the contents of the Program Counter."

 A group of instructions, intended to perform some function when executed in
combination, is referred to as a program.

2. Why do Assembly Language?
• Greater visibility of computer components: registers, ALU, memory, input-

output subsystem, interrupt subsystem.

• Close to hardware, so the programmer can take advantage of his/her awareness
of the physical layout of the computer and controlled system.

• Very suitable for small-scale, no-frills programming, e.g. in embedded
systems.

• The programmer can optimise code for speed of execution or size (amount of
memory used).

3. Machine Code
An instruction in machine code is composed of a pattern of bits. This pattern is held in
the Instruction Register (IR) and interpreted and sequenced by the Instruction
Decoder. Note that the decoder may itself be programmed at a lower level, but this is
not of interest to assembly language programmers.

The length (in bytes) of an instruction can be fixed or variable.

Most processors use a variable-length instruction format, but fixed-length instructions
may still be encountered.

Assembly Language J. Vaughan

Page 2 of 3

4. Assembly Language
A 1-to-1 correspondence between assembly language instructions and Machine Code.
The instructions are written as patterns of letters that suggest the operation that the
instruction will perform. Each pattern helps the programmer to remember the general
function of the instruction, so they are quite often referred to as mnemonics, meaning
memory aids.

5. Instruction types
The entire range of instructions available is called the Instruction Set.

The programmer sees registers (by name) and memory (usually by byte address).

The programmer sees the ALU indirectly by virtue of the arithmetic and logical
operations that are available in the instruction set.

The programmer is aware of other issues, such as the way in which the stack is
implemented and the different ways in which a memory address can be formed.

The instructions can be grouped according to general function.

There are usually 1-byte instructions to do nothing (NOP) or to halt the instruction
cycle (HLT).

The Data Movement group contains instructions that move data from 1 register to
another or between registers and memory. These are used to set up the inputs to the
ALU while ensuring that other necessary data is preserved.

The Test and Branch instructions are used to implement control structures such as if
statements and loops. The Intel processor approach is to set condition flags as a result
of an ALU operation. An older approach was to set a condition flag based on the
contents of a register.

The Arithmetic and Logic group contains instructions that specify ALU operations,
such as addition, subtraction, multiplication, division, shifting and rotating.

Other instruction are often bunched together in a miscellaneous collection called the
Stack, I/O and Machine Control Group.

Stack instructions are those that manipulate the stack or the Stack Pointer explicitly.
They include PUSH and POP, but CALL and RET are usually included with the Test
and Branch group.

The input-output subsystem can have a separate I/O address space (INTEL) or may be
memory-mapped (Motorola). Even in the former case, memory-mapped I/O can be
provided, but this is unusual. You can recognise the presence of a separate I/O address
space by the presence of specific I/O instructions such as IN and OUT.

The Machine Control subgroup contains instructions that can influence processor
operation by setting or clearing control flags. Examples are STD, CLD (set and clear
the Direction Flag), STI/EI, CLI/DI (enable and disable interrupts). The NOP and
HLT instructions are usually included in this subgroup.

Note: CLD causes edi and esi to be incremented on a string move, while STD causes
them to be decremented. STI and CLI affect the Interrupt Enable (IF) flag. When
set/cleared, this flag enables/disables maskable external interrupts.

Assembly Language J. Vaughan

Page 3 of 3

6. Instruction Format
At Assembly Language level, "instruction format" means that the instruction opcode
(i.e. the mnemonic) is followed by the operands on which the instruction acts. If there
are two operands, and one of them is the destination for the result of the operation,
then the format of "Intel syntax" assemblers such as MASM and nasm is

 opcode destination, source

There are other assemblers, such as as or gas, which use "AT&T syntax", which is

 opcode source, destination

6a. Register Architecture
We will be working with Intel x86 assembly language. We will assume a 386
configuration of 8 x 32-bit registers:

eax, ebx, ecx, edx are general-purpose registers.

esi and edi are source index and destination index registers.

esp and ebp are the Stack Pointer and Base Pointer respectively.

Bits 0 – 15 of eax can be treated as 16-bit register ax.

Bits 0 – 15 of ebx can be treated as 16-bit register bx.

Bits 0 – 15 of ecx can be treated as 16-bit register cx.

Bits 0 – 15 of edx can be treated as 16-bit register dx.

Bits 0 – 7 and 8-15 of ax can be treated as 8-bit registers al and ah respectively.

Bits 0 – 7 and 8-15 of bx can be treated as 8-bit registers bl and bh respectively.

Bits 0 – 7 and 8-15 of cx can be treated as 8-bit registers cl and ch respectively.

Bits 0 – 7 and 8-15 of dx can be treated as 8-bit registers dl and dh respectively.

One of the reasons for divisibility of eax, abx, acx and edx is for backward
compatibility through the 8086 16-bit processor to the 8080 8-bit processor.

Originally, a, b, c and d were held to stand for accumulator, base, count and data
registers, due to some special functions of these registers.

