MIPS Architecture and Assembly Language Overview
Adapted from: http://edge.mcs.dre.g.el.edu/GICL/people/sevy/architecture/MIPSRef(SPIM).html

[Register Description] [I/O Description]

Data Types and Literals

Data types:

Instructions are all 32 bits

byte(8 bits), halfword (2 bytes), word (4 bytes)
a character requires 1 byte of storage

an integer requires 1 word (4 bytes) of storage

Literals:

e numbers entered as is. e.g. 4
e characters enclosed in single quotes. e.g. 'b'
e strings enclosed in double quotes. e.g. "A string"

Registers

e 32 general-purpose registers
e register preceded by $ in assembly language instruction
two formats for addressing:
o using register number e.g. $0 through $31
o using equivalent names e.g. $t1, $sp
e special registers Lo and Hi used to store result of multiplication and division
o not directly addressable; contents accessed with special instruction mfhi ("move from Hi")
and mflo ("move from Lo")
e stack grows from high memory to low memory

This is from Figure 9.9 in the Goodman&Miller text

Register || Alternative

Number Name Description
| 0 H Zero che value O
| 1 H $at H(ussembler temporary) reserved by the assembler
| 2-3 H $v0 - $vl H(values) from expression evaluation and function results
47 $20 - $a3 (arguments) First four parameters for subroutine.

Not preserved across procedure calls

(temporaries) Caller saved if needed. Subroutines can use w/out
8-15 $t0 - $t7 saving.
Not preserved across procedure calls

(saved values) - Callee saved.
16-23 $s0 - $s7 A subroutine using one of these must save original and restore it before exiting.
Preserved across procedure calls

(temporaries) Caller saved if needed. Subroutines can use w/out
24-25 $t8 - $t9 |[Saving.

These are in addition to $t0 - $t7 above.
Not preserved across procedure calls.

26-27 $kO0 - $k1 |[reserved for use by the interrupt/trap handler
global pointer.
28 $gp Points to the middle of the 64K block of memory in the static data
segment.
29 $sp stack pointer

Points to last location on the stack.

saved value / frame pointer

30 $8/5tp Preserved across procedure calls

31 $ra return address

See also Britton section 1.9, Sweetman section 2.21, Larus Appendix section A.6

Program Structure
e just plain text file with data declarations, program code (name of file should end in
suffix .s to be used with SPIM simulator)
e data declaration section followed by program code section

Data Declarations

e placed in section of program identified with assembler directive .data
e declares variable names used in program; storage allocated in main memory (RAM)

Code

e placed in section of text identified with assembler directive .text

http://logos.cs.uic.edu/366/notes/MIPS%20Quick%20Tutorial.htm#RegisterDescription
http://logos.cs.uic.edu/366/notes/MIPS%20Quick%20Tutorial.htm#IOSystemCalls

e contains program code (instructions)
e starting point for code e.g.ecution given label main:
e ending point of main code should use exit system call (see below under System Calls)

Comments

e anything following # on a line
This stuff would be considered a comment
e Template for a MIPS assembly language program:

Comment giving name of program and description of function
Template.s
Bare-bones outline of MIPS assembly language program

.data # variable declarations follow this line
#
.text # instructions follow this line
main: # indicates start of code (first instruction to execute)
...

End of program, leave a blank line afterwards to make SPIM happy

Data Declarations

format for declarations:
name: storage_type value(s)
o create storage for variable of specified type with given name and specified value
o value(s) usually gives initial value(s); for storage type .space, gives number of spaces to be

allocated

Note: labels always followed by colon (:)

example
varl: .word 3 # create a single integer variable with initial value 3
arrayl: .byte 'a','b' # create a 2-element character array with elements initialized
to a and b
array2: .space 40 # allocate 40 consecutive bytes, with storage uninitialized
could be used as a 40-element character array, or a
l0-element integer array; a comment should indicate which!

Load / Store Instructions

e RAM access only allowed with load and store instructions
o all other instructions use register operands

load:
1w register destination, RAM source

#copy word (4 bytes) at source RAM location to destination
register.

1b register_destination, RAM source

#copy byte at source RAM location to low-order byte of
destination register,
and sign-e.g.tend to higher-order bytes

store word:
sw register_source, RAM destination
#store word in source register into RAM destination
sb register_source, RAM_destination

#store byte (low-order) in source register into RAM
destination

load immediate:
1i register_destination, value

#load immediate value into destination register

example:
.data
varl: .word 23 # declare storage for varl; initial value is 23
.text
__start:
1w $t0, varl # load contents of RAM location into register $t0: $t0 = varl
1i $tl, 5 # S$tl =5 ("load immediate")
swW $tl, varl # store contents of register $tl into RAM: varl = $tl

done

Indirect and Based Addressing

e Used only with load and store instructions

load address:

la $to0

, varl

e copy RAM address of varl (presumably a label defined in the program) into register

$t0

indirect addressing:

1w $t2

($t0)

’

e load word at RAM address contained in $t0 into $t2

sw S$t2

($t0)

’

e store word in register $t2 into RAM at address contained in $t0

based or indexed addressing:

stacks; easy to access elements at offset from stack pointer or frame pointer

declare 12 bytes of storage to hold array of 3 integers

load base address of array into register $t0
stl 5 ("load immediate")
first array element set to 5; indirect addressing
stl 13
second array element set to 13
$tl -7
third array element set to -7

HH oW H R HH

1w $t2, 4($t0)
e load word at RAM address ($t0+4) into register $t2
e "4" gives offset from address in register $t0
sw $t2, -12($t0)
e store word in register $t2 into RAM at address ($t0 - 12)
e negative offsets are fine
Note: based addressing is especially useful for:
e arrays; access elements as offset from base address
L]
example
.data
arrayl: .space 12
.text
__start: la $t0, arrayl
1i $tl, 5
sw $tl, ($t0)
1i $t1, 13
sw $tl, 4($t0)
1i $t1, -7
sw $tl, 8($t0)
done

Arithmetic Instructions

e most use 3 operands

e all operands are registers; no RAM or indirect addressing

e operand size is word (4
add
sub
addi
addu
subu
mult
div
mfhi

mflo

move

Control Structures

Branches

bytes)

$t0,$t1,$t2
$t2,$t3,5t4
$t2,$t3, 5
$t1,$t6,$t7
$t1,5t6,5t7

$t3,5t4
$t5,$t6

$t0
$tl

HHFHRHFHRHE O HHHFHR

$t2,$t3 # $t2 st

$t0 = $tl + $t2; add as signed (2's complement) integers
$t2 = $t3 D $t4

$t2 = $t3 + 5; "add immediate" (no sub immediate)

$tl = $t6 + S$t7; add as unsigned integers

Stl = $t6 + $t7; subtract as unsigned integers

multiply 32-bit quantities in $t3 and $t4, and store 64-bit

result in special registers Lo and Hi: (Hi,Lo) = $t3 * $t4
Lo = $t5 / $t6 (integer quotient)

Hi = $t5 mod $té6 (remainder)

move quantity in special register Hi to $t0: $t0 = Hi
move quantity in special register Lo to $tl: $tl = Lo
used to get at result of product or quotient

3

e comparison for conditional branches is built into instruction

b

beq
blt
ble
bgt

target

$t0,$tl,target
$t0,$tl,target
$t0,$tl,target
$t0,$tl,target

unconditional branch to program label target
branch to target if $t0 = $tl
branch to target if $t0 < $tl
branch to target if $t0 <= $tl
branch to target if $t0 > $tl

bge $t0,$tl,target # branch to target if $t0 >= $tl
bne $t0,$tl,target # branch to target if $t0 <> $tl

target # unconditional jump to program label target
jr $t3 # Jjump to address contained in $t3 ("jump register")

Subroutine Calls
subroutine call: "jump and link" instruction
jal sub_label # "jump and link"

e copy program counter (return address) to register $ra (return address register)
e jump to program statement at sub_label

subroutine return: "jump register" instruction
jr $ra # "jump register"
e jump to return address in $ra (stored by jal instruction)

Note: return address stored in register $ra; if subroutine will call other subroutines, or is
recursive, return address should be copied from $ra onto stack to preserve it, since jal always
places return address in this register and hence will overwrite previous value

System Calls and I/0 (SPIM Simulator)

e used to read or print values or strings from input/output window, and indicate program end
e use syscall operating system routine call

o first supply appropriate values in registers $v0 and $a0-$al

o result value (if any) returned in register $v0

The following table lists the possible syscall services.

Service iﬁ?}::) Arguments Results
print_int I |$a0 = integer to be printed | ‘
print_float I 2 |$f 12 = float to be printed | ‘
print_doub]el 3 |$f 12 = double to be printed | ‘
print_string I 4 |$a0 = address of string in memory | ‘
read_int I 5 I |integer returned in $vO ‘
read_float I 6 I |ﬂoat returned in $vO ‘
read_double I 7 I |d0uble returned in $v0 ‘
$a0 = memory address of string input
read_string 8 buffer
$al = length of string buffer (n)
sbrk I 9 |$a0 = amount |address in $v0 ‘
exit I 10 I | ‘

o The print_string service expects the address to start a null-terminated character string. The
directive .asciiz creates a null-terminated character string.
o The read_int, read_float and read_double services read an entire line of input up to and
including the newline character.
o The read_string service has the same semantices as the UNIX library routine fgets.
= [t reads up to n-1 characters into a buffer and terminates the string with a null
character.
» If fewer than n-1 characters are in the current line, it reads up to and including the
newline and terminates the string with a null character.
o The sbrk service returns the address to a block of memory containing n additional bytes.
This would be used for dynamic memory allocation.
o The exit service stops a program from running.

e.g. Print out integer value contained in register $t2
1i $vo, 1 # load appropriate system call code into register $vO0;
code for printing integer is 1
move $a0, $t2 # move integer to be printed into $al: $al0 = $t2
syscall # call operating system to perform operation

e.g. Read integer value, store in RAM location with label int_value (presumably declared in data section)

1i $v0o, 5 # load appropriate system call code into register $v0;
code for reading integer is 5
syscall # call operating system to perform operation
sw $v0, int_value # value read from keyboard returned in register $v0;
store this in desired location
e.g. Print out string (useful for prompts)
.data
stringl .asciiz "Print this.\n" # declaration for string variable,
.asciiz directive makes string null terminated
.text

main: 1i $vo, 4 # load appropriate system call code into register $vO0;

code for printing string is 4

la $a0, stringl # load address of string to be printed into $a0

syscall # call operating system to perform print operation
e.dg. To indicate end of program, use exit system call; thus last lines of program should be:

1i svo, 10 # system call code for exit = 10

syscall # call operating sys

