
MIPS Architecture and Assembly Language Overview
Adapted from: http://edge.mcs.dre.g.el.edu/GICL/people/sevy/architecture/MIPSRef(SPIM).html

[Register Description] [I/O Description]

Data Types and Literals

Data types:

Instructions are all 32 bits
byte(8 bits), halfword (2 bytes), word (4 bytes)
a character requires 1 byte of storage
an integer requires 1 word (4 bytes) of storage

Literals:

numbers entered as is. e.g. 4
characters enclosed in single quotes. e.g. 'b'
strings enclosed in double quotes. e.g. "A string"

Registers

32 general-purpose registers
register preceded by $ in assembly language instruction
two formats for addressing:

using register number e.g. $0 through $31
using equivalent names e.g. $t1, $sp

special registers Lo and Hi used to store result of multiplication and division
not directly addressable; contents accessed with special instruction mfhi ("move from Hi")
and mflo ("move from Lo")

stack grows from high memory to low memory

This is from Figure 9.9 in the Goodman&Miller text
Register
Number

Alternative
Name Description

0 zero the value 0
1 $at (assembler temporary) reserved by the assembler

2-3 $v0 - $v1 (values) from expression evaluation and function results

4-7 $a0 - $a3 (arguments) First four parameters for subroutine.
Not preserved across procedure calls

8-15 $t0 - $t7
(temporaries) Caller saved if needed. Subroutines can use w/out
saving.
Not preserved across procedure calls

16-23 $s0 - $s7
(saved values) - Callee saved.
A subroutine using one of these must save original and restore it before exiting.
Preserved across procedure calls

24-25 $t8 - $t9
(temporaries) Caller saved if needed. Subroutines can use w/out
saving.
These are in addition to $t0 - $t7 above.
Not preserved across procedure calls.

26-27 $k0 - $k1 reserved for use by the interrupt/trap handler

28 $gp
global pointer.
Points to the middle of the 64K block of memory in the static data
segment.

29 $sp stack pointer
Points to last location on the stack.

30 $s8/$fp saved value / frame pointer
Preserved across procedure calls

31 $ra return address

See also Britton section 1.9, Sweetman section 2.21, Larus Appendix section A.6

Program Structure
just plain text file with data declarations, program code (name of file should end in
suffix .s to be used with SPIM simulator)
data declaration section followed by program code section

Data Declarations

placed in section of program identified with assembler directive .data
declares variable names used in program; storage allocated in main memory (RAM)

Code

placed in section of text identified with assembler directive .text

http://logos.cs.uic.edu/366/notes/MIPS%20Quick%20Tutorial.htm#RegisterDescription
http://logos.cs.uic.edu/366/notes/MIPS%20Quick%20Tutorial.htm#IOSystemCalls

contains program code (instructions)
starting point for code e.g.ecution given label main:
ending point of main code should use exit system call (see below under System Calls)

Comments

anything following # on a line
This stuff would be considered a comment
Template for a MIPS assembly language program:

Comment giving name of program and description of function
Template.s
Bare-bones outline of MIPS assembly language program

 .data # variable declarations follow this line
 # ...

 .text # instructions follow this line

main: # indicates start of code (first instruction to execute)
 # ...

End of program, leave a blank line afterwards to make SPIM happy

Data Declarations
format for declarations:

name: storage_type value(s)

create storage for variable of specified type with given name and specified value
value(s) usually gives initial value(s); for storage type .space, gives number of spaces to be
allocated

Note: labels always followed by colon (:)

example

var1: .word 3 # create a single integer variable with initial value 3
array1: .byte 'a','b' # create a 2-element character array with elements initialized
 # to a and b
array2: .space 40 # allocate 40 consecutive bytes, with storage uninitialized
 # could be used as a 40-element character array, or a
 # 10-element integer array; a comment should indicate which!

Load / Store Instructions

RAM access only allowed with load and store instructions
all other instructions use register operands

load:

 lw register_destination, RAM_source

#copy word (4 bytes) at source RAM location to destination
register.

 lb register_destination, RAM_source

#copy byte at source RAM location to low-order byte of
destination register,
and sign-e.g.tend to higher-order bytes

store word:

 sw register_source, RAM_destination

#store word in source register into RAM destination

 sb register_source, RAM_destination

#store byte (low-order) in source register into RAM
destination

load immediate:

 li register_destination, value

#load immediate value into destination register

example:
 .data
var1: .word 23 # declare storage for var1; initial value is 23

 .text
__start:
 lw $t0, var1 # load contents of RAM location into register $t0: $t0 = var1
 li $t1, 5 # $t1 = 5 ("load immediate")
 sw $t1, var1 # store contents of register $t1 into RAM: var1 = $t1
 done

Indirect and Based Addressing

Used only with load and store instructions

load address:

 la $t0, var1

copy RAM address of var1 (presumably a label defined in the program) into register
$t0

indirect addressing:

 lw $t2, ($t0)

load word at RAM address contained in $t0 into $t2

 sw $t2, ($t0)

store word in register $t2 into RAM at address contained in $t0

based or indexed addressing:

 lw $t2, 4($t0)

load word at RAM address ($t0+4) into register $t2
"4" gives offset from address in register $t0

 sw $t2, -12($t0)

store word in register $t2 into RAM at address ($t0 - 12)
negative offsets are fine

Note: based addressing is especially useful for:

arrays; access elements as offset from base address
stacks; easy to access elements at offset from stack pointer or frame pointer

example

 .data
array1: .space 12 # declare 12 bytes of storage to hold array of 3 integers
 .text
__start: la $t0, array1 # load base address of array into register $t0
 li $t1, 5 # $t1 = 5 ("load immediate")
 sw $t1, ($t0) # first array element set to 5; indirect addressing
 li $t1, 13 # $t1 = 13
 sw $t1, 4($t0) # second array element set to 13
 li $t1, -7 # $t1 = -7
 sw $t1, 8($t0) # third array element set to -7
 done

Arithmetic Instructions

most use 3 operands
all operands are registers; no RAM or indirect addressing
operand size is word (4 bytes)

 add $t0,$t1,$t2 # $t0 = $t1 + $t2; add as signed (2's complement) integers
 sub $t2,$t3,$t4 # $t2 = $t3 Ð $t4
 addi $t2,$t3, 5 # $t2 = $t3 + 5; "add immediate" (no sub immediate)
 addu $t1,$t6,$t7 # $t1 = $t6 + $t7; add as unsigned integers
 subu $t1,$t6,$t7 # $t1 = $t6 + $t7; subtract as unsigned integers

 mult $t3,$t4 # multiply 32-bit quantities in $t3 and $t4, and store 64-bit
 # result in special registers Lo and Hi: (Hi,Lo) = $t3 * $t4
 div $t5,$t6 # Lo = $t5 / $t6 (integer quotient)
 # Hi = $t5 mod $t6 (remainder)
 mfhi $t0 # move quantity in special register Hi to $t0: $t0 = Hi
 mflo $t1 # move quantity in special register Lo to $t1: $t1 = Lo
 # used to get at result of product or quotient

 move $t2,$t3 # $t2 = $t3

Control Structures

Branches

comparison for conditional branches is built into instruction

 b target # unconditional branch to program label target
 beq $t0,$t1,target # branch to target if $t0 = $t1
 blt $t0,$t1,target # branch to target if $t0 < $t1
 ble $t0,$t1,target # branch to target if $t0 <= $t1
 bgt $t0,$t1,target # branch to target if $t0 > $t1

 bge $t0,$t1,target # branch to target if $t0 >= $t1
 bne $t0,$t1,target # branch to target if $t0 <> $t1

Jumps

 j target # unconditional jump to program label target
 jr $t3 # jump to address contained in $t3 ("jump register")

Subroutine Calls

subroutine call: "jump and link" instruction

 jal sub_label # "jump and link"

copy program counter (return address) to register $ra (return address register)
jump to program statement at sub_label

subroutine return: "jump register" instruction

 jr $ra # "jump register"

jump to return address in $ra (stored by jal instruction)

Note: return address stored in register $ra; if subroutine will call other subroutines, or is
recursive, return address should be copied from $ra onto stack to preserve it, since jal always
places return address in this register and hence will overwrite previous value

System Calls and I/O (SPIM Simulator)

used to read or print values or strings from input/output window, and indicate program end
use syscall operating system routine call
first supply appropriate values in registers $v0 and $a0-$a1
result value (if any) returned in register $v0

The following table lists the possible syscall services.

Service Code
in $v0 Arguments Results

print_int 1 $a0 = integer to be printed
print_float 2 $f12 = float to be printed
print_double 3 $f12 = double to be printed
print_string 4 $a0 = address of string in memory
read_int 5 integer returned in $v0
read_float 6 float returned in $v0
read_double 7 double returned in $v0

read_string 8
$a0 = memory address of string input
buffer
$a1 = length of string buffer (n)

sbrk 9 $a0 = amount address in $v0
exit 10

The print_string service expects the address to start a null-terminated character string. The
directive .asciiz creates a null-terminated character string.
The read_int, read_float and read_double services read an entire line of input up to and
including the newline character.
The read_string service has the same semantices as the UNIX library routine fgets.

It reads up to n-1 characters into a buffer and terminates the string with a null
character.
If fewer than n-1 characters are in the current line, it reads up to and including the
newline and terminates the string with a null character.

The sbrk service returns the address to a block of memory containing n additional bytes.
This would be used for dynamic memory allocation.
The exit service stops a program from running.

e.g. Print out integer value contained in register $t2

 li $v0, 1 # load appropriate system call code into register $v0;
 # code for printing integer is 1
 move $a0, $t2 # move integer to be printed into $a0: $a0 = $t2
 syscall # call operating system to perform operation

e.g. Read integer value, store in RAM location with label int_value (presumably declared in data section)

 li $v0, 5 # load appropriate system call code into register $v0;
 # code for reading integer is 5
 syscall # call operating system to perform operation
 sw $v0, int_value # value read from keyboard returned in register $v0;
 # store this in desired location

e.g. Print out string (useful for prompts)

 .data
string1 .asciiz "Print this.\n" # declaration for string variable,
 # .asciiz directive makes string null terminated

 .text
main: li $v0, 4 # load appropriate system call code into register $v0;

 # code for printing string is 4
 la $a0, string1 # load address of string to be printed into $a0
 syscall # call operating system to perform print operation

e.g. To indicate end of program, use exit system call; thus last lines of program should be:

 li $v0, 10 # system call code for exit = 10
 syscall # call operating sys

