
CONFIGURING STORAGE-AREA NETWORKS
FOR MANDATORY SECURITY

Benjamin Aziz, Simon N. Foley, John Herbert, Garret Swart
Computer Science Department

University College Cork

Cork, Ireland

{b.aziz,s.foley,j.herbert,g.swart}@cs.ucc.ie

Abstract Storage-area networks are a popular and efficient way of building large
storage systems both in an enterprise environment and for multi-domain
storage service providers. In both environments the network and the
storage has to be configured to ensure that the data is maintained se-
curely and can be delivered efficiently. In this paper we describe a model
of mandatory security for multi-domain storage services that is flexible
enough to reflect the data requirements, tractable for the administrator,
and implementable as part of an automatic configuration system. We
describe the model abstractly, its implementation as part of a prototype
SAN configuration system written in OPL, and illustrate its operation
on a set of sample configurations.

Keywords: Storage-Area Networks, Mandatory Security, Access Control, Configu-
ration Management, Constraint Satisfaction, Aggregation

1. Introduction

Storage-Area Networks (SANs) constitute an important element in
modern IT infrastructures due to their efficient management of the un-
derlying storage capabilities in environments shared by several servers,
applications, users or even organisations. The purpose of any SAN ser-
vice is to provide virtual disk services, called datasets, to its clients,
typically file systems or database servers. Each dataset acts like a phys-
ical disk to the client applications. However, unlike a physical disk,
which has a fixed set of properties that were set when the disk was de-
signed, a dataset has a set of requirements that are specified when the
dataset is created and may be changed over the life of the dataset. These
properties may include current capacity, availability of the dataset ser-
vice in the face of component failures, reliability of the data stored on

1



2

the dataset in the face of media failures, and any real time performance
requirements. These requirements may be in excess of what can be pro-
vided by any physical device, but it is up to the SAN to configure itself
to meet the requirements.

Like any other multi-user system, a SAN also has security require-
ments. These can include data privacy; protecting data from unautho-
rized readers, data integrity; protecting data from unauthorized updates,
and additional privacy of the data traffic. In an enterprise configuration,
this is often done by a combination of security kernels in the SAN devices
themselves, as well as firewalls that restrict access of the SAN service
to those client machines authorised to use the service. In such an envi-
ronment, both the firewall and the SAN’s own internal security system
must be breached before unauthorized access can take place.

The kind of attack we are concerned with in this paper is an attack by
an authorized user of the SAN. This is more likely to take place in a large
enterprise SAN environment shared by a wide range of organizations, or
in a service provider that is providing storage services to many different
customers. In such an environment, the administrator cannot use the
firewall to prevent the attack because it is initiated from a valid user
of the SAN that must be allowed to use the service. The administrator
must rely on the SAN’s internal system only to determine which datasets
can be accessed, and which ones cannot.

Using a single SAN system for storing multiple datasets that are to
be accessed by many different authorized clients means that the imple-
mentation of the SAN’s system has to be trusted to provide the correct
semantics. This reliance on a single layer of software to provide data
separation is a potential soft spot in the security of the system. One
solution to this security problem, which we adopt in this paper, is to
specify carefully the data separation requirements on the SAN. Once
such requirements are specified, this will lead to a search for an accept-
able SAN configuration that will maintain a low risk level associated
with losing the privacy or integrity of the data being stored on the SAN.

In this paper, we propose a model of mandatory security for SANs.
The primary contribution in this paper is the development of a frame-
work that can be used to calculate the best multilevel secure configura-
tion of a SAN. The ‘best’ configuration is based on tradeoffs that can be
made on the basis of the potential risk of compromise of the components
that are available to make up the SAN. Finding the best configuration
is reduced to a constraint satisfaction problem within the framework.

We do not consider how underlying security services for SANs might
be implemented [15], rather, we take a modelling approach and provide
an abstract definition of what is meant by security in a SAN. We are



Configuring Storage-Area Networks for Mandatory Security 3

concerned with threats from insiders, and in particular, the primary
contribution in this paper is the development of a framework that can
be used to determine a secure configuration of a SAN. In addition, the
selection of a configuration is guided to be within some acceptable level
of risk that is defined by the security administrator.

The remainder of the paper is structured as follows. § 2 reviews related
work and a model of SANs is developed in §3. § 5 develops a model for
a secure SAN configuration based on the security model described in §4.
We outline an OPL §6 implementation of the algorithm used in searching
for acceptable SAN configurations. Finally, in §7, we conclude the work
and give directions for future work.

2. Related Work

In this paper we build on research from several different areas: security
modelling, storage configuration, and constraint programming. Storage
configuration has received much commercial attention in recent years
and various systems for optimizing construction of SAN systems have
been built and deployed. Industry working groups have been developing
standards for interoperability in management and configuration and in
describing storage requirements and device capabilities (see [5; 11; 13]).
Automated configuration of storage systems has been explored by HP by
[24; 1]. Simultaneous satisfaction of performance, capacity, cost and re-
liability requirements in RAID system configuration has been described
by one of the authors [22].

We use techniques from constraint programming to state and to solve
this configuration problem. Configuration problems have been attacked
using constraint programming for several years [19; 7] and people have
solved these problems both by using generic tools and developing spe-
cialized tools. We use OPL [12], because its simple logic based style
makes it easy to experiment with different security models and then to
speed up the solution using domain specific information. It is likely that
using more specialized configuration based solvers will be more efficient
at solving large instances of this type of problem.

The goal of this paper is to develop a model of a secure SAN that en-
sures that datasets are properly separated, allocated and managed across
the SAN. There is a resemblance between this problem and the Chinese
Wall security policy [4]: different datasets must be allocated across a
SAN in such a way that their storage and access using the underlying
SAN components does not give rise to conflicts. We use a label-based
model [6; 9] to represent this type of security in SANs. While con-
ceptually simple, lattice/label-based models can be used to characterize



4

mechanisms that support a wide range of mandatory security require-
ments, including multilevel security [2; 23; 9], Chinese Walls [8; 17; 21],
separation of duty [9], well-formed transactions [9; 16], and Role Based
Access Controls.

Existing research that considers the automatic configuration of sys-
tems to meet security goals includes [14; 18]. In [18], Millen adapts
Meadows lattice-based Chinese Wall mechanism [17] to determine opti-
mal configurations that can survive component failures. [14] considers
the configuration of multilevel secure systems to support multilevel se-
cure workflows.

3. Storage-Area Networks

The structure of a SAN is illustrated in Figure 1. This structure is
described in the following paragraphs.

Logical Volume

Dataset

Application

Controller

Switch

Server

partOf

storedOn

runsOn

Disk

writes reads

serves

(int)

(int)

(int)

(int)

(int)

(int)

(int)

assur

assur

assur

assur

assur

int: security label interval

Items in roman font represet
policy input to configuration

values to be generated during
configuration process.

assur: assurance level

Items in italic font represents

Figure 1. The Structure of a SAN.

Disks. These are the physical storage units that may include tapes,
hard disks, optical and solid state devices. We write the set of all disks
as DISK = {disk, disk′, . . .}.

Disks Controllers. In general, disks may either be a direct part of
the SAN, or more typically, they are packaged as part of a storage array
that is controlled with one or more controllers. Each controller has a
direct access to the array and, in general, the controller will retain a few



Configuring Storage-Area Networks for Mandatory Security 5

spare disks inside the array for use in the event of a failure. We refer to
the set of disk controllers as CONTROLLER = {cntr, cntr ′, . . .}.

Logical Volumes. A controller usually builds one or more large
virtual disks, which we call logical volumes, out of the physical storage
units that it is connected to using RAID techniques [20]. For availability
reasons, logical volumes are not typically tied to a single controller and
the failure of the primary controller will trigger its back-up to start and
serve the logical volumes.

We define the set of logical volumes as LV = {lv, lv ′, . . .}. Further-
more, we define the following two functions, which relate logical volumes
to disks and controllers, respectively:

partOf : DISK → LV

serves : CONTROLLER → ℘(LV )

Hence, partOf (disk) = lv denotes that disk is part of the logical vol-
ume lv, and serves(cntr) = {lv1, . . . , lvn} denotes that logical volumes
lv1, . . . , lvn are served by controller cntr.

Datasets. A dataset is a collection of related data files that are ac-
cessed by applications as a unit. Controllers implement the datasets
by constructing RAID-based logical volumes with the appropriate prop-
erties out of a set of identical physical disks and partitioning them to
datasets of the appropriate size. Examples of datasets include the set
of web files comprising a website, the set of files holding a database
and a user’s email files. We write the set of datasets as DATASET =
{data, data′, . . .}.

The following function relates datasets to logical volumes:

storedOn : DATASET → LV

such that storedOn(data) = lv signifies the fact that the dataset, data,
is stored on the logical unit, lv.

Applications, Streams, and Servers. Applications, which con-
stitute a set, APP = {app, app′, . . .}, are active entities that read and
write information stored in one or more datasets. In effect, datasets are
regarded as virtual disks that are accessed by applications using streams.
A stream is regarded as a triple:

(app, op, data) ∈ STREAM

where an application, app, accesses some dataset, data, using operation,
op ⊆ {R,W}, which is a subset of the Read and W rite capabilities.



6

At any one time, an application runs on a particular application
server , which in turn, it may be running more than one application.
We write the set of application servers as SERVER = {srv, srv ′, . . .},
and we define the following function, relating applications to their ap-
plication servers:

runsOn : APP → SERVER

such that runsOn(app) = srv expresses the fact that application, app,
is currently running on the application server, srv.

Switches. SAN switches, much like switches in a LAN, are used to
connect the components of a SAN (i.e. its controllers, other switches
and application servers) and to connect a SAN to a set of LANs. For a
SAN application to be able to access a SAN, the application must either
be connected to the LAN which is connected to the SAN, or it must be
directly connected to the SAN via a network controller specific to the
SAN fabric being used.

Assuming that DEVICE = CONTROLLER ∪ SWITCH ∪ SERVER
is the set of devices of a SAN, ranged over by dev, dev ′, . . ., then we can
define the following function:

connects : SWITCH → ℘(DEVICE)

such that connects(swt) = {dev1, . . . , devn} denotes the fact that swt
currently connects the devices, dev1, . . . , devn.

4. A Label-based Security Model

In this section we propose a basic mandatory label-based security
model that will be used in the next section to characterize security in
SANs. The model is based on the Bell-La Padula model with partially
trusted subjects [6; 9]. It has been shown that a wide variety of appli-
cation security policies can be encoded in terms of label-based policies.

A label-based security policy is a lattice of security labels (classifica-
tions), SC, with partial ordering, ≤, and the least-upper and greatest-
lower bound operators, t,u, respectively. An example is the multilevel
security policy with labels, SC = {unclassified , secret , topsecret}.

Let ENTITIES represent the set of all components that can source
and/or sink information (disks, controllers, applications, etc.). Every
entity, e, is bound to an interval of the policy lattice, where int(e) =
(x, y) ∈ SC × SC, and x ≤ y, is interpreted to mean that entity e may
sink information at class y or lower and may source information at class
x or higher. We also write int(e) = [int⊥(e), int>(e)].

If entity e is a subject (in the traditional sense) then int(e) = [x, y]
corresponds to a partially trusted subject that may view/read informa-



Configuring Storage-Area Networks for Mandatory Security 7

tion at class y and lower (vmax) and may write/alter information at class
x and higher (amin). Conventional objects may be interpreted within
this model as entities that are bound to an interval [x, x] with a single
level. Informally, int(e) = [x, y] means that an entity, e, can be trusted
to properly manage multilevel information within the security interval,
[x, y].

Within this model, the definition of a secure system is simply a gen-
eralization of the Bell-La Padula axioms (the simple security condition
and star property). A system is secure if for all entities, A and B, such
that information can flow from A to B then int⊥(A) ≤ int>(B) holds.

Example 1 A SAN is to be configured to manage IBM , HP and
Exxon information. A security policy is defined by the powerset lat-
tice of these values with ordering relation ⊆. An application server that
is being used to securely process IBM and Exxon data has a security
interval [{}, {IBM,Exxon}] and an IBM dataset has security interval
[{IBM}, {IBM}]. 4

An assurance level expresses the level of confidence in the capability of
an entity to properly meet its security requirements. An assurance policy
is a lattice of assurance levels, A, with partial ordering, ≤. The assurance
of a device may depend on the complexity of the device’s function, the
amount of testing that has been applied to the device, the frequency of
use, and the development methodology that has been used. For example,
A1 > B3 > B2 > B1 > . . . is the lattice of assurance ratings from [23].
Every entity, e, has an associated assurance rating, assur(e) ∈ A. An
off-the-shelf physical disk might have a low assurance rating; a multilevel
secure application system that has been formally evaluated might have a
high assurance rating, while a less formally developed embedded device
with very limited functionality might also have a high assurance rating.

The relationship between assurance levels and security intervals can
provide an indication of how much an entity with the given assurance
level should be relied upon. A low-assurance off-the-shelf physical disk
configured with security interval [{IBM}, {IBM}] can be relied upon
to manage single-level IBM data. However, the same disk should not be
configured with an interval [{IBM}, {IBM,HP}] as there is not suffi-
cient assurance that it will reliably manage/separate the data between
these competing organizations. On the other hand, an off-the-shelf disk
configured with the interval [{}, {IBM,Exxon}] is sufficient to man-
age/separate the non-competing IBM and Exxon data.

We use a risk function to quantify the relationship between assurance
levels and security intervals. Given an assurance level, a, and a security
interval, [x, y], then the risk that the entity with assurance level a can be



8

compromised is defined as risk([x, y], a) ∈ N. Note that, for simplicity,
we quantify risk by a natural number. The values for this function are
specified as part of the requirements for the configuration by the security
administrator.

Example 2 Consider the security policy from the previous example and
an assurance lattice, lo ≤ hi. There is a low security risk to using an
off-the-shelf disk for single level data and thus the risk is specified as:

risk([{IBM}, {IBM}], lo) = 1

risk([{HP}, {HP}], lo) = 1

risk([{Exxon}, {Exxon}], lo) = 1

There is a high security risk when using the same disk to manage/store
multilevel data from competing organizations:

risk([{}, {IBM,HP}], lo) = 40

risk([{}, {IBM,HP,Exxon}], lo) = 40

However, there is less of a risk using the off-the-shelf disk to store mul-
tilevel data from non-competing organizations:

risk([{}, {IBM,Exxon}], lo) = 10

risk([{}, {HP,Exxon}], lo) = 10

If we assume that a specialized high assurance disk will properly man-
age/partition data at different security classifications, then there is less
risk when using this disk to manage data from competing organizations:

risk([{}, {IBM,HP}], hi) = 10

risk([{}, {IBM,HP,Exxon}], hi) = 10

4

In providing a relationship between assurance levels and security in-
tervals, the risk function provides a novel approach to characterizing
aggregation problems. This contrasts with the lattice based strategies
for Chinese Walls that are described in [8; 17; 21] which can be thought
as defining an (acceptable aggregation or not) binary risk relation.

5. Configuring Secure SANs

A secure SAN is a SAN extended with the label-based security model.
In the context of our security model, configuring a SAN means searching



Configuring Storage-Area Networks for Mandatory Security 9

for a configuration of the SAN devices that meets the specified security
policy, the applications’ data requirements and any service level agree-
ment (SLA) that may have been agreed with the customers of the data,
and that has the least amount of risk possible.

Before the configuration process commences we require the following.

The security policy, that is, the lattice of security classes, SC, and
the risk function, risk.

The application requirements, that is, the security point intervals
of all datasets, int(data), and the set of streams that relate each
application to the datasets that it reads and writes.

A set of risk limitations in the form of a security class and a max-
imum risk threshold. These limitations correspond to a customer
requirements for an upper bound on the risk in storing one a par-
ticular security point class.

The device specifications, that is, the set of servers, controllers,
switches and disks that the SAN is to be configured from. For
each such device, e, we need its assurance level, assur(e).

Solving the configuration problem will result in finding values for the
partOf , serves , storedOn , runsOn and connects functions that define a
particular instance of a SAN system.

5.1 Defining Security Intervals

A dataset, data, is initially assigned a point interval, int(data) =
[x, x], representing the sensitivity of that dataset. This is a reasonable
assumption as datasets are passive entities that can only be manipulated
and will never themselves manipulate other datasets. Using the point
intervals of a set of datasets, it is possible to directly compute the interval
of an application that will access those datasets by means of streams:

int(app) = [(u set⊥), (t set>)], where,
set⊥ = {int⊥(data) | (app, (op,Attr), data) ∈ STREAM ∧ op ⊇ {W}}
set> = {int>(data′) | (app, (op,Attr), data′) ∈ STREAM ∧ op ⊇ {R}}

Now, for a particular setting of the storedOn function, we can define the
security intervals of the logical volumes:

int(lv) = [(u set⊥), (t set>)], where,
set⊥ = {int⊥(data) | data ∈ DATASET ∧ storedOn(data) = lv}
set> = {int>(data) | data ∈ DATASET ∧ storedOn(data) = lv}



10

From the security intervals of logical volumes and given a particular
definition of the serves function, we can define the security intervals of
controllers:

int(ctr) = [(u set⊥), (t set>)] where,
set⊥ = {int⊥(lv) | lv ∈ LV ∧ lv ∈ serves(ctr)}
set> = {int>(lv) | lv ∈ LV ∧ lv ∈ serves(ctr)}

Similarly, security intervals of disks may be defined based on the security
intervals of the logical volumes and a definition of the partOf function:

int(disk) = int(partOf (disk))

On the other hand, the security interval of an application server is de-
fined based on the security intervals of its applications running and a
definition of the runsOn function:

int(srv) = [(u set⊥), (t set>)] where,
set⊥ = {int⊥(app) | app ∈ APP ∧ runsOn(app) = srv}
set> = {int>(app) | app ∈ APP ∧ runsOn(app) = srv}

Finally, intervals of switches are computed from intervals of the de-
vices they connect (i.e. other switches, controllers, disks and application
servers), given a definition of the connects function:

int(swt) = [(u set⊥), (t set>)] where,
set⊥ = µ swt′.

({int⊥(srv) | srv ∈ SERVER ∧ srv ∈ connects(swt)} ∪
{int⊥(ctr) | srv ∈ CONTROLLER ∧ ctr ∈ connects(swt)} ∪
{int⊥(swt′) | swt′ ∈ SWITCH ∧ swt′ ∈ connects(swt)})

set> = µ swt′.
({int>(srv) | srv ∈ SERVER ∧ srv ∈ connects(swt)} ∪
{int>(ctr) | srv ∈ CONTROLLER ∧ ctr ∈ connects(swt)} ∪
{int>(swt′) | swt′ ∈ SWITCH ∧ swt′ ∈ connects(swt)})

The usage of the least-fixed point operator, µ, is required since the def-
inition of int(swt) is recursive.

Example 3 Given the following dataset intervals:

int(data1) = [{IBM,Exxon, foo}, {IBM,Exxon, foo}]
int(data2) = [{IBM, foo}, {IBM, foo}]
int(data3) = [{foo}, {foo}],



Configuring Storage-Area Networks for Mandatory Security 11

and the following streams

(app, ({R}, Attr1), data1)
(app, ({R,W}, Attr2), data2)
(app, ({W}, Attr3), data3),

then applications classified with intervals [{foo}, {IBM,Exxon, foo}]
can handle the above data using the streams indicated. 4

5.2 Optimal Configurations

After defining the security intervals, int(e), of every SAN entity, e,
as in the previous section, and given that entities have fixed assurance
levels, assur(e), then we can optimize he definitions of partOf , serves ,
storedOn and connects . This can be formalized by saying that we are
looking for the choice of these functions that minimizes:

∑

∀e∈ENTITIES
risk(int(e), assur(e)) (1)

Individual customers may insist on a Service Level Agreement (SLA)
that limits the risk that their data is compromised. For example, a
customer may provide a security interval intSLA and a limit νSLA and
require that

∑

∀e∈ENTITIES: int(e) ∩ intSLA 6= {}
risk(int(e), assur(e)) <= νSLA (2)

The SLA assures the customer that the risk in the configuration for
storing their data is low enough.

6. OPL Implementation

To test our understanding of this security and configuration model and
to test its usefulness, we implemented the model and used it to generate
the lowest risk configuration that meets the requirements. We decided
to use OPL for the implementation language because of its built-in logic
and search capabilities.

An OPL program consists of five pieces:

Input Data Model: Describes all the data that must be supplied
to define a particular instance of the problem to be solved. The
input data is generally validated to make sure that the request is
not obviously inconsistent.



12

Variable Data Model: Describes the data that the program is to
determine values for.

Constraints: A set of relations that must hold between the vari-
ables and the input data. The number of these constraints can
depend on the input provided. If all the constraints hold for a par-
ticular assignment to the variable data, that assignment is called
a feasible solution.

Objective function: A function that is maximized or minimized
from among the feasible solutions. OPL reports new maxima or
minima as they are determined during the search process, finally
terminating when the search space of variable data has been ex-
hausted.

Search procedure: An optional plan for how to find the optimal
solution. Typically this involves carefully choosing the order in
which the variable data is examined and noticing when further
changes will be ineffective.

The OPL input data consists of an instantiation of the Input Data
Model. The output of the OPL program is a sequence of successively
improving feasible solutions.

For this application, the Input Data Model is used to represent all
needed input: the security policy, the application requirements, any
SLA requirements, and the device specifications. We do validation of
the input data to ensure that the security class forms a lattice and that
the risk function is consistent with the lattice, and also to ensure that any
static requirements, e.g. requirements on the applications themselves,
are met.

The Variable Data Model is used to represent the interval for each
device and the SAN configuration functions, that is, storedOn , runsOn,
serves , partOf and connects . In the worst case, finding the optimal
configuration means examining every combination of values in the Vari-
able Data Model, so it is very important to make sure that there is a
minimum of redundancy or over specification in the model.

The constraints fall into several categories:

Device interval constraints implement the formulas defined in the
previous section.

Configuration consistency constraints make sure that the configu-
ration meets the basic requirements, for example, that each logical
volume is assigned enough disks to store the assigned datasets, that



Configuring Storage-Area Networks for Mandatory Security 13

servers and controllers are all connected to switches, and switches
to each other.

Canonicalization constraints prune all but one equivalent configu-
ration from the configuration space. This is important for reducing
the search space as discussed in [10].

SLA constraints ensure that the risk for a particular security class
is limited to the agreed value.

The final piece of the OPL program is the search method. In this case
it simply makes judicious choices about which part of the variable data
space to explore first. The primary issue in the search is to make sure
that the intervals are evaluated once the needed bits of the configuration
have been generated. Quick elimination of infeasible or less optimal
alternatives is the key to a fast running OPL application.

7. Conclusion and Future Work

In this paper, we presented a model of mandatory security for SANs.
The primary contribution in this paper is the development of a frame-
work that can be used to calculate the lowest risk multilevel secure
configuration of a SAN. The risk function is configured to reflect the
probability of leakage and the cost of the consequences of the leakage
The ‘best’ configuration is determined by searching among the space of
all valid SAN configurations for the one with the minimum aggregate
risk. We also outlined an implementation of the configuration search in
OPL.

A label-based model is used to represent security in SANs. While con-
ceptually simple, lattice/label-based models can be used to characterize
mechanisms that support a wide range of mandatory security require-
ments [2; 23; 9; 8; 16; 17; 21]. Therefore, we conjecture that the results
in this paper can be usefully applied to other more specific mandatory
protection models such as Role Based Access Control; this is a topic of
ongoing research.

The SAN security model extends the dual-label/partially trusted sub-
ject lattice model with the addition of a risk function. This function is
used to encode the level of risk associated with storing/managing combi-
nations of information on entities evaluated to certain degrees of assur-
ance. This is more flexible than the conventional assurance/evaluation
criteria approach [23]; the risk function is used to guide the generation
of a secure configuration within an acceptable degree/measure of risk.
However, like conventional evaluation criteria, there is the potential for
cascading channels [23] within the space of secure configurations. We



14

are currently exploring how constraint-based techniques for removing
channel cascades [3] can be used to reduce the space of suitable config-
urations.

Acknowledgments We are grateful for helpful feedback from the
anonymous referees. This work is supported by the Boole Centre for
Research in Informatics, University College Cork under the HEA-PRTLI
scheme and from Science Foundation Ireland under Grant 00/PI.1/C075.

References

[1] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa Uysal,
and Alistair C. Veitch. Hippodrome: Running circles around storage adminis-
tration. In Darrell D. E. Long, editor, Proceedings of the FAST’02 Conference
on File and Storage Technologies, pages 175–188, Monterey, California, USA,
January 2002. USENIX.

[2] D.E. Bell and L.J. La Padula. Secure computer systems: Unified exposition and
multics interpretation. Technical Report ESD–TR–75–306, Mitre Corporation,
Bedford, M.A., U.S.A., July 1975.

[3] Stefano Bistarelli, Simon N. Foley, and Barry O’Sullivan. Modelling and de-
tecting the cascade vulnerability problem using soft constraints. In Proceedings
of the ACM Symposium on Applied Computing, Nicosia, Cyprus, March 2004.
ACM Press.

[4] D.F.C. Brewer and M.J. Nash. The chinese wall security policy. In Proceedings
of the 1989 IEEE Symposium on Security and Privacy, pages 206–214, Oakland,
California, USA, May 1989. IEEE Computer Society Press.

[5] Inc. Distributed Management Task Force. Web-based enterprise management
(wbem) initiative. http://www.dmtf.org/standards/wbem.

[6] M. Branstad et al. Trusted mach design issues. In Proceedings of the
3rd AIAA/ASIS/DODCI Aerospace Computer Security Conference, Orlando,
Florida, USA, December 1987. IEEE Press.

[7] Gerhard Fleischanderl, Gerhard E. Friedrich, Alois Haselböck, Herwig Schreiner,
and Markus Stumptner. Configuring large systems using generative constraint
satisfaction. IEEE Intelligent Systems, 13(4):59–68, July 1998.

[8] Simon N. Foley. Aggregation and separation as noninterference properties. Jour-
nal of Computer Security, 1(2):159–188, 1992.

[9] Simon N. Foley. The specification and implementation of commercial security
requirements including dynamic segregation of duties. In Proceedings of the 4th

ACM Conference on Computer and Communications Security, pages 125–134,
Zurich, Switzerland, April 1997. ACM Press.

[10] Eugene Freuder. Eliminating interchangeable values in constraint satisfaction
problems. In Proceedings of the 9th National Conference on Artificial Intelli-
gence, volume 1, pages 227–233, California, USA, July 1991. MIT Press.

[11] Garth A. Gibson, Jeffrey Scott Vitter, and John Wilkes. Strategic directions in
storage i/o issues in large-scale computing. ACM Computing Surveys, 28(4):779–
793, December 1996.



Configuring Storage-Area Networks for Mandatory Security 15

[12] Pascal Van Hentenryck. The OPL Optimization Programming Language. MIT
Press, Cambridge, Massachusetts, USA, January 1999.

[13] Tim Howes and Darrel Thomas. Gaining control of complexity: The standard
for the data center. Technical report, DCML: Data Center Markup Language,
Sussex, UK, 2003. http://www.dcml.org/pdf/DCML tech whitepaper.pdf.

[14] M.H. Kang et al. A strategy for an mls workflow management system. In
Proceedings of the 13th Annual IFIP WG11.3 Working Conference on Database
Security, 1999.

[15] Yongdae Kim, Maithili Narasimha, Fabio Maino, and Gene Tsudik. Secure group
services for storage area networks. In Proceedings of the First International
IEEE Security in Storage Workshop, pages 80–93, Greenbelt, Maryland, USA,
December 2002. IEEE Computer Society.

[16] T.M.P. Lee. Using mandatory integrity to enforce ‘commerical’ security. In
Proceedings of the Symposium on Security and Privacy, pages 140–146, 1988.

[17] Catherine Meadows. Extending the brewer-nash model to a multilevel context.
In Proceedings of the IEEE Symposium on Security and Privacy, pages 95–102,
Oakland, California, USA, May 1990. IEEE Computer Society Press.

[18] J.K. Millen. Local reconfiguration policies. In Proceedings of the Symposium on
Security and Privacy, 1999.

[19] Sanjay Mittal and Felix Frayman. Towards a generic model of configuration. In
N. S. Sridharan, editor, Proceedings of 11th International Joint Conference on
Artificial Intelligence, pages 1395–1401, Detroit, Michigan, USA, August 1989.

[20] D.A. Patterson, G.A. Gibson, and R.H. Katz. A case for redundant arrays of
inexpensive disks (raid). In Proceedings of the 1988 ACM Conference on the
Management of Data (SIGMOD), pages 109–116, Chicago, USA, June 1988.

[21] Ravi S. Sandhu. Lattice-based access control models. Computer, 26(11):9–19,
November 1993.

[22] Garret Swart. Storage management by constraint satisfaction. In Proceedings of
the Workshop on Immediate Applications of Constraint Programming, Kinsale,
Cork, Ireland, September 2003.

[23] TNI. Trusted computer system evaluation criteria: trusted network interpreta-
tion. Technical report, National Computer Security Center, 1987. Red Book.

[24] John Wilkes, Richard A. Golding, Carl Staelin, and Tim Sullivan. The hp au-
toraid hierarchical storage system. In Proceedings of the 15th ACM Symposium
on Operating System Principles, pages 96–108, Copper Mountain Resort, Col-
orado, USA, December 1995. ACM Press.


