Implication

...a closer look at this important connective

Intuitive meaning:

• If I haven't finished the first project report then I will study during the break.

NonFinishRep → StudyDurBreak

• Explain situations (i),(ii),(iii), (iv)?

Implication

- The *converse* of $p \rightarrow q$ is $q \rightarrow p$
 - The converse is a **different** unrelated statement
- The *contrapositive* of $p \rightarrow q$ is $\neg q \rightarrow \neg p$
 - The contrapositive does hold (is equivalent)
 - \neg StudyDurBreak $\rightarrow \neg$ NonFinishRep

Truth Tables

- Check a formula by constructing a truth table to consider all possible values for the propositional variables
- tautology
 - formula is always true
- contradiction
 - formula is always false

Truth table

•

Logical Equivalence

- Two formulae are logically equivalent if they have the same truth table
- Truth table shows that for all possible values the formulae(statements) have the same truth value
- How many rows for a formula with 2, 3, 4, or n propositional variables?
- How many different truth tables are possible for 2 propositional variables?
- How many different formulae are possible for 2 propositional variables?

Logical Equivalence

• Check the contrapositive law ...

\boldsymbol{X}	Y		$X \to Y$	$\neg X$	$\neg Y$	$\neg Y \rightarrow \neg X$
F	\boldsymbol{F}	1	T	T	T	T
F	T	1	T	T	F	T
T	F	1	F	F	T	F
T	T		T	F	F	T

Logical Equivalence

• Check a De Morgan equivalence

More equivalences ...

• Distribution law

X	Y	\mathbf{Z}	$X \wedge Y$	$X \wedge Z$	$(X \wedge Y) \vee (X \wedge Z)$	$Y \vee Z$	$X \wedge (Y \vee Z)$
F	F	F	F	F	F	F	F
F	F	T	F	F	F	T	F
F	T	F	F	F	F	T	F
F	T	T	F	F	F	T	F
T	F	F	F	F	F	F	F
T	F	T	F	T	T	T	T
T	T	F	T	F	T	T	T
T	T	T	T	T	T	T	${f T}$

Equivalence Example

• Are columns 5 and 7 equivalent?

X Y	Z	$X \wedge Y$	$(X \wedge Y) \rightarrow Z$	$(Y \rightarrow Z)$	$X \rightarrow (Y \rightarrow Z)$
F F	F	F	T	T	T
F F	T	F	T	T	T
F T	F	F	T	F	T
F T	T	F			
T F	F	F			
T F	T	F			
T T	F	T			
T T	T	T			

Using an equivalence

(example from Discrete Maths and Combinatorics, Grimaldi)

```
z := 4;
                                     z := 4;
For i := 1 to 10 do
                                    For i := 1 to 10 do
Begin
                                     Begin
x := z - i;
                                     x := z - i;
y := z + (3*i);
                                     y := z + (3*i);
If (x>0) and (y>0) then
                                     If x>0 then
  Writeln('sum is', x+y)
                                      If y > 0 then
End;
                                       Writeln('sum is', x+y)
                                     End;
```

- Once it is shown by a truth table that the left-hand side is logically equivalent to the right-hand side ... then whenever one meets the left-hand side in a formula, one can replace it by the right-hand side ...
- Thus, a syntactic transformation Law of Logic has been produced
- The following laws of logic can all be shown using truth tables to establish logical equivalence

- Double negation $\neg \neg p \Leftrightarrow p$
- DeMorgan's Laws $\neg (p \lor q) \Leftrightarrow \neg p \land \neg q$

$$\neg (p \land q) \Leftrightarrow \neg p \lor \neg q$$

Commutative Laws

$$p \lor q \Leftrightarrow q \lor p$$

$$p \land q \Leftrightarrow q \land p$$

Associative Laws

$$p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$$

$$p \land (q \land r) \Leftrightarrow (p \land q) \land r$$

• Distributive Laws

$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

$$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$$

• Idempotent Laws

$$p \lor p \Leftrightarrow p$$

$$p \land p \Leftrightarrow p$$

• Identity Laws

$$p \lor F \Leftrightarrow p$$

$$p \wedge T \iff p$$

Inverse Laws

$$p \lor \neg p \Leftrightarrow T$$

$$p \land \neg p \Leftrightarrow F$$

Domination Laws

$$p \vee T \Leftrightarrow T$$

$$p \land F \Leftrightarrow F$$

Absorption Laws

$$p \lor (p \land q) \Leftrightarrow p$$

$$p \land (p \lor q) \Leftrightarrow p$$

Additional Laws

• Implication Defn.

- $p \rightarrow q \Leftrightarrow \neg p \lor q$
- If-and-only-if Defn,
- $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$

- Truth tables provide definitions for ¬,∧,∨ etc
- ...

Using Laws of Logic

Simplification:

- Algebraic laws allow us to transform formulae, for example, to simplify them
- if a formula simplifies to T
 - then it's a tautology
- if a formula simplifies to F
 - then it's a contradiction

Simplification

• If a process is not suspended and the process is either active or suspended then it is active.

 \neg suspended \land (active \lor suspended) \rightarrow active

```
[fm] \negsuspended \land (suspended \lor active)--> active
```

- [1] $\neg(\neg suspended \land (suspended \lor active)) \lor active [fm, Implication Defn]$
- [2] ¬¬suspended V ¬(suspended V active) V active [1,DeMorgan Law]
- [3] suspended V ¬(suspended V active) V active [2,Double Negation]
- [4] suspended ∨ (¬suspended ∧ ¬active) ∨ active [3, DeMorgan Law]
- [5] (suspended V ¬suspended) ∧ (suspended V ¬active) V active [4, Distrib Law]
- [6] (T \land (suspended $\lor \neg$ active)) \lor active [5, Inverse Law]
- [7] suspended V ¬active V active [6, Domination, Associativity Law]
- [7] suspended V T [7, Inverse Law]
- [8] T [7, Domination Law]

Simplification

```
[fm] (idle --> dataready) ∧ (idle ∨ working) ∧ ¬dataready --> working
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[7]
```

Normal Form

• Rather than transforming formulae in an ad-hoc fashion using the rules, can put formulae into a standardized or "normalized" form.

Examples: conjunctive normal form(CNF), and disjunctive normal form(DNF)

- A statement is in conjunctive normal form(CNF) if it is a conjunction (AND) of the disjunction (OR) of one or more literals.
- A literal is an atomic formula (e.g. statement letter A) or the negation of an atomic formula.

Normal Forms

Example conjunctive normal form (CNF): $(A \lor \neg B) \land (C \lor \neg A) \land (\neg B \lor C \lor D)$

Example disjunctive normal form(DNF): $(X \land Y) \lor (A \land \neg X \land Y) \lor (\neg A \land X)$

• Equivalence rules can be used to translate any formula into a regular normal form, CNF or DNF

Conjunctive Normal Form

• Which are in CNF? $(A \lor \neg B) \land (C \lor \neg A) \land (\neg B \lor C)$ $A \lor B$ $A \wedge C$ A $(D \lor \neg B) \lor (C \lor \neg A)$ $(A \lor \neg B) \land \neg (C \lor \neg A)$

Conversion to CNF

- Replace $A \leftarrow \rightarrow B$ by $(A \rightarrow B) \land (B \rightarrow A)$
- Eliminate \rightarrow by replacing $A \rightarrow B$ with $\neg A \lor B$
- Puch ¬ in using double negative and De Morgan's rules:
 - $\neg (\neg A) \Leftrightarrow A$ $\neg (A \land B) \Leftrightarrow (\neg A \lor \neg B)$ $\neg (A \lor B) \Leftrightarrow (\neg A \land \neg B)$
- $\neg (A \lor B) \Leftrightarrow (\neg A \land \neg B)$
- Use distributive laws:

$$A \lor (B \land C) \Leftrightarrow (A \lor B) \land (A \lor C)$$

$$(A \lor B) \land C) \Leftrightarrow (A \land C) \lor (B \land C)$$

Conversion to CNF

Exercise, convert the following to CNF:

$$(A \rightarrow B) \rightarrow (\neg C \rightarrow (B \land C))$$

• • •

• • •

Simplify the CNF

- A disjunct with A and ¬A reduces to T
- Delete any disjunct that includes another disjunct e.g. A V B V C includes A V B
- Replace disjuncts A V B and ¬ A V B, by Bl
- ... this also means disjuncts A and \neg A reduce to F (putting B = F in the rule)