
CS6320

Formal Methods for Distributed

Systems

Dr. John Herbert

1.78 Western Gateway Building

j.herbert@cs.ucc.ie

CS6320 Overview

Mathematical basics:

• Overview of standard mathematical logics

including:

– Predicate Calculus,

– Higher-Order Logic, and

– Temporal Logic.

• Semantics and Proof.

• Soundness and Completeness.

CS6320 Overview

Using the mathematical techniques …

• Formal specification of functional requirements

of systems.

– Formal specification of network communication

protocols.

– Safety and Liveness properties.

• Tool-based formal analysis and verification of

communication protocols.

• Specification and verification of programs.
– Design by contract

CS6320: general emphasis

• Basic concepts underlying:

– System requirements/behaviour specification

– Implementation models

– Correctness of implementation wrt requirements

• Application to hardware, software,

distributed systems

• Use of automated tools, e.g.

– SMV (model checking algorithms)

– LTSA/FSP (for concurrency)

Formal Methods

• How we think about systems and their

requirements is influenced by the abstract models

and notations used to describe them.

• Formal mathematical models have different

flavours appropriate for different types of

modelling.

• Our bias in this course is modelling rather than

proof but we make look at automatic analysis

Formal Methods

• Formal methods are mathematical

approaches to software and system

development which support the rigorous

specification, design and verification of

computer systems.

Information System Engineering

• It is sometimes argued that engineering is not

possible for information systems.

• A civil engineer can design a bridge, confident that

it will meet its requirements when built.

• Can a software engineer be confident that their

design will meet its requirements?

• Why is engineering of information systems

difficult?

– Your opinion?

– Many aspects …

Information System Engineering

• This course introduces theories and techniques

that can provide the same level of precision for

information systems that is available and required

for other engineering disciplines

• As well as presenting these techniques, we will

also be asking the question “Are these formal

models and theories practical?”.

Conventional Practice

Requirements:

• stated as natural language text / user stories / use

case text

Implementation:

• Coded in appropriate language + use of libraries,

frameworks

Verification: does what is built satisfy requirements?

• Testing, prototyping, QA, etc.

Limitations of practice

• Requirements stated in natural language text are not

precise

• The code does not convey the abstract behaviour it

is trying to achieve

And so,

• We never directly relate the code to the overall

problem requirements

Need precise models and methods based on the

models

Motivation

Our goal in FM is to improve the situation:

• Use formal models to represent:

What the problem is: requirements (specification)

How we solve it: algorithm, code (implementation)

• Use formal mathematics-based techniques

– to analyse models

– to relate models,

e.g. demonstrate that the code meets requirements

Motivation

• There are many different kinds of Formal Methods

• Formal Methods can be applied at different levels

of detail/precision for different designs and for

different parts of the same design

• Without ever applying the techniques, it is very

empowering to understand what lies behind the

techniques, and ultimately what lies behind the

specification, building and verification of all

complex systems.

