CS6320

Formal Methods for Distributed
Systems

Dr. John Herbert

1.78 Western Gateway Building

j.herbert@cs.ucc.ie



CS6320 Overview

Mathematical basics:

e Overview of standard mathematical logics
including:
— Predicate Calculus,
— Higher-Order Logic, and

— Temporal Logic.
e Semantics and Proof.

e Soundness and Completeness.



CS6320 Overview

Using the mathematical techniques ...

* Formal specification of functional requirements
of systems.

— Formal specification of network communication
protocols.

— Safety and Liveness properties.

e Tool-based formal analysis and verification of
communication protocols.

e Specification and verification of programs.
— Design by contract



CS6320: general emphasis

e Basic concepts underlying:
— System requirements/behaviour specification
— Implementation models

— Correctness of implementation wrt requirements

e Application to hardware, software,
distributed systems

e Use of automated tools, e.g.
— SMV (model checking algorithms)
— LTSA/FSP (for concurrency)



Formal Methods

 How we think about systems and their
requirements 1s influenced by the abstract models
and notations used to describe them.

 Formal mathematical models have different
flavours appropriate for different types of
modelling.

e QOur bias 1n this course 1s modelling rather than
proof but we make look at automatic analysis



Formal Methods

e Formal methods are mathematical
approaches to software and system
development which support the rigorous

specification, design and verification of
computer systems.



Information System Engineering

It 1s sometimes argued that engineering is not
possible for information systems.

A civil engineer can design a bridge, confident that
it will meet 1ts requirements when built.

Can a software engineer be confident that their
design will meet its requirements?

Why 1s engineering of information systems
difficult?
— Your opinion?

— Many aspects ...



Information System Engineering

e This course introduces theories and techniques
that can provide the same level of precision for
information systems that 1s available and required
for other engineering disciplines

* As well as presenting these techniques, we will
also be asking the question “Are these formal
models and theories practical?”.



Conventional Practice

Requirements:

e stated as natural language text / user stories / use
case text

Implementation:

e Coded in appropriate language + use of libraries,
frameworks

Verification: does what is built satisfy requirements?

e Testing, prototyping, QA, etc.



Limitations of practice

 Requirements stated in natural language text are not
precise

 The code does not convey the abstract behaviour it
1s trying to achieve
And so,

 We never directly relate the code to the overall
problem requirements

Need precise models and methods based on the
models



Motivation

Our goal in FM 1s to improve the situation:

e Use formal models to represent:
What the problem is: requirements (specification)

How we solve 1t: algorithm, code (implementation)
e Use formal mathematics-based techniques
— to analyse models

— to relate models,

e.g. demonstrate that the code meets requirements



Motivation

e There are many different kinds of Formal Methods

 Formal Methods can be applied at different levels
of detail/precision for different designs and for
different parts of the same design

e Without ever applying the techniques, it 1s very
empowering to understand what lies behind the
techniques, and ultimately what lies behind the
specification, building and verification of all
complex systems.



