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Abstract

Gossip algorithms are an approach for data dissemination within networks that can compute data aggregates efficiently.
Gossip protocol is fascinating due to its capability of powering the classical protocols, its parallel to larger social structures and
its feature of full decentralization. We deem computing the distributed average in a network a critical and fundamental procedure
for distributed machine learning study. Thus, we are interested in exploring the three well-known gossip algorithms solving this
problem, namely Push-pull, Push-sum, and Sum-weight gossip, particularly in asynchronous mode. This paper first attempts to
connect the theoretical and the practical work, by proposing modifications to the general algorithms which make them more
applicable in practice. Since no thorough empirical comparison of these gossip algorithms has been conducted, we compare three
algorithms on two synthetic dataset and one real-world dataset, by the scale-free graph (Barabási-Albert graph). We show that
all three algorithms have an extremely high accuracy for approximating the distributed mean although Push-sum would obtain
bad result on few occasions. Also, Push-sum is the most efficient algorithm when the mean degree in the graph is small, and
Push-sum and Push-pull are both efficient when the graph or the mean degree is large. On the other hand, the experimental
results demonstrate that the performance (accuracy and efficiency) of each algorithm could be affected by variously distinct graph
properties. Furthermore, we discuss the time complexity of three asynchronous gossip algorithms and prove that they are all
bounded by a logarithmic function of the graph size and other properties.
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Comparing Asynchronous Distributed Averaging
Gossip Algorithms Over Scale-free Graphs

I. INTRODUCTION

COMPUTATION over large networks, such as social
networks, web graphs, and wireless sensor networks,

requires efficient algorithms given the vast size of networks
currently encountered. Gossip algorithms [36] have received
significant attention, since they facilitate network-based infer-
ence low complexity, high scalability, and high reliability. A
profound review [7] discussed that, although the “efficiency”
of gossip protocol is controversy, its bright side is still evident:
it is still a strong adjunct to the classical distributed ap-
proaches, in parallel with large social structures (e.g., mobiles,
chats, friend relationship, etc.,), and completely decentralized.

More importantly, there has been a decent amount of
research on applying machine learning techniques with gos-
sip protocols. A collection of gossip-based machine learning
methods are already investigated, such as K-means Clustering,
Gassian Mixture model, Principal Component Analysis, Sup-
port Vector Machine, Regression, and Stochastic Optimization
etc., [6], [15], [16], [19]–[22], [39], [40], [42]. This fact
demonstrates the positive potential of merging machine learn-
ing techniques into the fully distributed environment using
gossip. The fact that most methods are built on top of gossip
averaging motivates this research.

Gossip algorithms for distributed averaging enables each
node to communicate with its neighbors in the graph and
exchange data. It has been proved that a variety of gossip
algorithms converge exponentially for aggregating data, under
certain conditions [10]–[12], [36], [44].

There are two main approaches to gossip algorithms. One
manner, which we call random, proceeds by having each
network node sharing data with a random single other node at
each step. For randomized gossip, we have Push-pull gossip
(PPG) and Push-sum gossip (PSG). The other main approach,
weighted broadcast, proceeds by having nodes share data with
all its network neighbors in a weighted fashion. In the paper,
we consider Sum-weight gossip (SWG) for this approach.

Although the theoretical principles of (synchronous) gossip
averaging algorithms are well known, there has no systematic
empirical comparison of the performance of them. Let alone
the study of comapring the asynchronous algorithms and the
them against the graph properties. We address that need in
this article. We conduct our empirical study by examining the
performance of the three selected gossip algorithms in asyn-
chronous mode. The simulations are carried out on a random
complex network topology, scale-free (Barabási-Albert) graph
[1], [4], [8], which is a degree-biased graph topology staying
close to real-world structures.

The paper presents the following contributions of our own:

• We conduct the empirical comparison between the three
algorithms on scale-free graphs, with regard to the
computation accuracy, rounds, and messages transmitted
in the network. We also propose a metric to measure
the quantity of rounds that do not contribute to the
global convergence. The finding shows that all algorithms
achieve little approximation error, although PSG has a
low probability to perform not sufficiently well. SWG
uses the least rounds to converge in all cases; however,
the number of rounds for PSG is close and that for PPG
falls dramatically as the graph mean degree grows.

• This paper demonstrates that the performance of each
algorithm can be affected by several graph features to
different extents.

• We propose adjusted practical algorithms for PPG and
PSG, as well as a detailed discussion.

• We revise the proof for PPG in [10]–[12] to remove the
constraint that the diffusion matrix for the protocol is
symmetric. Meanwhile, we also prove the round com-
plexity of asynchronous PSG and SWG.

A. Outline

The rest of the paper is organized as follows. Section II
reviews the previous work. Section III defines the problem
and elaborates on the notation. Next, Section IV details the
protocols and algorithm, and Section V depicts the implemen-
tation concerns and the modifications to the algorithms. Later,
we describe the network topology in Section VI, and discuss
the experimental study in Section VII, Section VIII concludes
the paper. Last, the theoretical study lies in Appendix.

II. RELATED WORK

It is essential to examine the performance of the Gossip
protocol against the network topologies that can be used
to model a variety of real-world systems. Scale-free graphs
have the properties close to what a few real-world topologies
maintain, such as the World Wide Web [2], metabolic networks
[34], and trust cooperation networks [26], etc.

Despite the lack of the empirical comparison between the
gossip protocols for distributed averaging, there has been
some work for comparing the information dissemination using
gossip. [23] compared the message and communication step
complexity (round complexity) between a few probabilistic
gossip strategies for one single gossip algorithm in the random
graph [17] and scale-free graph. In their algorithm, each node
uses a probabilistic switch to control if to gossip once it is
awaken. This work proposed a strategy in which the high-
degree sites send messages in a higher probability than low-
degree sites. This approach works better than the common
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approaches with respect to the time and message complexity.
They also empirically demonstrated that the convergence speed
is faster starting in a hub node other than in a random
node. Hu et al. [29] denoted a few metrics effectual fanout,
message complexity, reliability, and latency to compare three
types of diffusion-oriented gossip algorithms on three network
topologies, which are respectively: random graph, random
geometric graph, and scale-free graph. [27], [30] proposed a
strategy that all the nodes send messages to the high-degree
neighbors with a higher probability, and tested it on scale-free
graphs. Unfortunately, the above gossip algorithms are merely
for message spreading.

For the gossip algorithms tackling distributed averaging,
Boyd’s group provided the theoretical framework for PPG
[10]–[12]. When proposing PPG, [33] conducted a fairly
detailed empirical study for PPG, including scale-free graphs
however the mean degree was limited to 20. [31], [32] pre-
sented both theory and simulations for SWG. However, the
work missed a detailed description of the experiments and
topology configuration. [3] proposed a broadcast-based gossip
averaging algorithm. We do not consider this algorithm as it
does not guarantee the convergence to the global mean [3],
[31], [32].

For the asynchronous gossip algorithms, [24], [25] analyzed
the complexity of the asynchronous gossip protocols for the
message dissemination. [9] discussed the difficulty of the
convergence of an asynchronous gossip algorithm that is not in
the selected algorithms in the paper. Besides, there also exists a
few research of utilizing the asynchronous gossip for machine
learning techniques only [21], [37], [42]. Given the number
of gossip-based applications, we feel it neccessary study its
underlying framework.

To address the aforementioned shortcomings, we are about
to carry out a novel study on the three well-known gossip
algorithms that computes the distributed mean, more precisely,
in an asynchronous mode. We compare the three algorithms
across a set of graphs of a variety of graph properties. Plus,
we analyze the time complexity for the asynchronous PSG and
SWG, and show the proof. For PPG, we add a simple proof
that removes one constraint from what exists in the proof made
by [10]–[12].

III. PRELIMINARIES

a) Distributed Averaging Problem: Consider a network
that reflects an undirected graph G = (V,E), where V and
E denote the vertex set and edge set respectively. Let x =
{xi}i=1...n, where xi is the local value held by node i, s.t.
i ∈ V . The objective is to compute the distributed mean of
the node values x = 1

n

∑
i xi.

b) Notation: Let n be the number of vertices/sites/nodes,
namely the graph order or the graph size, of the network
G, s.t. n = |E|. Each node also holds a weight w, s.t.
w = {w1, . . . , wn}. Any two nodes i and j are thought to
be neighbors if and only if (i, j) ∈ E, and Ni denotes the
neighbor set of node i. We denote the mean degree by V
where V = 1

n

∑
i|Ni|. Moreover, let i∗ denote that node i is

awaken, and let i→ j indicate i sends a message to j.

We denote the transition matrix by P = {pi,j}i,j=1...n,
where pi,j denotes the probability of i contacting j and
pi,j = 0, ∀(i, j) /∈ E. Additionally, we denote the weight
for transmitting the local data from i to j by ki,j . K =
{ki,j}i,j=1...n is also known as the diffusion matrix, e.g.,
x(t)TK(t) = x(t+ 1)T. Let us also denote the product of the
diffusion matrix by K(0 : t), where K(0 : t) = K(0) . . .K(t).
Let τ denote the stopping condition threshold.

For the expression, we use 1 for the indicator function,
with the predicate in its subscript. Let ‖·‖2 denote the square
of vector norm, s.t. ‖x‖2 = xTx =

∑
i x

2
i . Let us also denote

the second largest eigenvalue by λ2. Given a set of samples,
we present its mean a with the lower and upper bound b and
c for the corresponding .95 confidence interval (CI), by the
format “a (b, c)”. Last, % denotes a positive number smaller
than 1, and λ2(·) is the second largest eigenvalue of the input
matrix.

IV. GOSSIP PROTOCOL

In the gossip protocol, each node in the network com-
municates with its neighbor(s) to exchange data. This paper
mainly focuses on the distributed averaging problem and the
three algorithms for solving it. Regarding the diffusion strategy
per round, PPG allows a node to exchange with merely one
neighbor per action. In PSG, each node sends a message to a
randomly chosen neighbor without waiting for the response,
whereas SWG holds a transition matrix that guides each node
to disseminate around to multiple nodes [5], [31], [36].

There are various criteria for categorizing the gossip al-
gorithms. In terms of the diffusion strategy, one can classify
PPG and PSG as binary gossip, and label SWG as broadcast
gossip. On the other hand, PSG and SWG can also be one
family as they both are one-way pushing and weight-based
averaging protocols, whilst PPG is a two-way transmission
protocol. Consequently, we will describe them separately in
the following sub-sections.

Prior to the details, we introduce mass conservation [31],
[36], which is a vital proposition for the three algorithms.

Proposition 1 (Mass Conservation). At any time t during the
process, the sum of the values in the network remains unaltered
and the weights sum up to n. That is, ∀t :

∑
x(t) = nx and∑

w(t) = n hold.

A. Push-Pull Gossip

In this approach, node i pushes one message to one arbitrary
neighbor j each round. Meanwhile, each node keeps replying
a PULL message to the PUSH sender. Therefore, its diffusion
matrix keeps changing over at all times, as one node selects
one random neighbor to proceed at each round. However, at
any t, there is

x(t+ 1)T = x(t)TK(t) = x(0)TK(0 : t) . (1)

Note that, the symmetricity of K enables that x(t) =
K(t)x(t). Right stochasticity of K(t) for any t indicates
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K(t)1 = 1 is also valid. The vector x (at any time t) sums
up to nx.

∀t :

{
x(t+ 1)T1 = x(t)TK(t)1 = x(t)T1∑
xi(t) =

∑
xi(0) = nx .

(2)

All node values converge to the global mean x eventually. The
process should be considered as converged when ∃t′,∀t ≥
t′,x(t) ≈ x(t′). Moreover, K(t) is doubly stochastic in this
approach, since node i receives a message from neighbor j will
send back a message to j. We then have kj,i = ki,i = 0.5.

1) Algorithm: PPG concurrently executes two processes -
one is active for disseminating PUSH messages, and another
is passively listening to the returning PULL messages. Al-
gorithm 1 depicts the basic version of PPG [33], [43]. In
the algorithm, RANDOM(Ni) returns a random neighbor of
the node i, and the function CONVERGED(·) is for checking
the convergence locally (Algorithm 5). Upon the receipt of a
message, the node updates its local value by summing up the
local value and the incoming value.

Algorithm 1 PUSH-PULL GOSSIP

At node i
1: procedure DIFFUSE
2: j ← RANDOM(Ni)
3: send PUSH(xi) to j
4: end procedure

5: procedure RECEIVE . passive thread
6: receive a message msg from j
7: if msg.status == PUSH then
8: send PULL(xi) to j
9: end if

10: xi ← (xi +msg.xj)/2
11: end procedure

a) Complexity: All nodes will converge to the global
average after O( log ε

log % ) rounds for some arbitrarily small pos-
itive value ε and some positive value % < 1 (see [10]–[12]).
Following the approach in [10]–[12], λ could be the second
largest eigenvalue of the expected diffusion matrix, and has
been proved to be strictly smaller than 1. Consequently the
mean rounds in the process is then O( log ε

n log % ). The message
passing complexity is simply the same as its time complexity,
as a node only passes one message to the neighbor per round. It
is notable that, the complexity function is still a logarithmically
increasing function and hence enables the scalability of the
algorithm.

B. Push-Sum Gossip

PSG designs that each node i sends a message to a random
neighbor, without waiting for any response message. Subse-
quently, it updates its value by summing up all incoming data.
Notably, in one certain time slot, a node is possible to receive
multiple messages.

In the protocol, each node holds a value x, and a weight
w which will be initialized as 1. Instead of the value x, a
node i will use the sum value s to exchange with neighbors,

where si(0) = xi(0). Every node starts a round by sending the
weighted data 1

2 (wi, si) to a randomly chosen neighbor j and
itself Afterwards, the node updates its weight and value by
summing up all the received weights and values, i.e., wi(t) =∑
j wj(t)1t;j→i. The estimate of x is defined as

x(t) =
{
s(t)1
w(t)1

. . . s(t)n
w(t)n

}
. (3)

Also, the following equations hold:

s(t+ 1)T = s(t)TK(t) = s(0)TK(0 : t) (4)

w(t+ 1)T = w(t)TK(t) = w(0)TK(0 : t) . (5)

K(t) is only row-stochastic in most cases. The algorithm
initializes with w(0) = 1, and s(0) = x. Analogously to
Eq. (2) in PPG, we have

∀t :

{∑
xi(t) =

∑ si(0)
wi(0)

= nx∑
wi(t) = n .

(6)

1) Algorithm: The algorithm was proposed in [36], and its
underlying version is presented in Algorithm 2. At each round,
a node i diffuses only one message, and sums its local si and
wi with all incoming data if there is any.

Algorithm 2 PUSH-SUM GOSSIP

At node i
1: repeat
2: j ← RANDOM(Ni)
3: send (si/2, wi/2) to j and i
4: receive {(sj , wj) : j → i}
5: (si, wi)←

(∑
j sj ,

∑
j wj

)
6: until CONVERGED()

2) Complexity: [36] showed that the average rounds is
bounded in O(log n). However, since the same analysis tech-
nique in [10]–[12] can be applied to this algorithm, we believe
that the the average rounds is also bounded by O( log ε

n log % ). We
prefer O( log ε

n log % ), which characterize the algorithm more (refer
to Section A-B2). The message cost is then intuitively identical
to the rounds taken in the process.

C. Sum-Weight Gossip

SWG is a representative of weighted gossip. Each node i, in
SWG, maintains a non-negative one-sum weighted adjacency
vector ki, and broadcast the weighted data ki,j(wi, si) to each
corresponding neighbor j per action. [36] first suggested syn-
opsis gossip - the prototype which was later coined “weighted
gossip” [5]. Benezit et al [5] also proved that the algorithms
based on the framework are guaranteed to converge to the
global average value. We study the Sum-Weight Gossip (SWG)
for this protocol, and present it in Algorithm 3 [31], [32].

We regard SWG as a generalization of PSG [36]. In particu-
lar, they share exactly the same properties as shown in Eqs. (3)
to (6). The only difference is that SWG broadcasts messages
while PSG disseminates only one message at each time. It is
not mandatory for K(t) to be column-stochastic, although it
must be right stochastic.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

1) Algorithm: Each node i keeps a codebook ki main-
taining the share distribution over its neighbors. A node
disseminates |Ni| messages, and then updates the local s and
w exactly as how a node updates in PSG. Like the mechanism
in PSG, every node will preserve a portion of data for itself
when gossiping, i.e., wi,i > 0.

Algorithm 3 SUM-WEIGHT GOSSIP

At node i
1: repeat
2: for all j ∈ {j : ki,j > 0} do
3: send (ki,jsi, ki,jwi) to node j
4: end for
5: receive {(sj , wj) : j → i}
6: (si, wi)←

(∑
j sj ,

∑
j wj

)
7: until CONVERGED()

a) Complexity: The process will also stop after
O( log ε

n log % ) rounds. However, its number of messages is co-
governed by the mean degree in the graph. The expected
message complexity of the network is O(V log ε

n log % ) that can be
significantly worse than the complexity of PPG and PSG.

V. IMPLEMENTATION ANALYSIS

We use this section to document the challenges we have
encountered when implementing the algorithms. Section V-A
is for discussing the problem of obtaining zero-error. Sec-
tion V-B depicts the local convergence check and its necessity.
With respect to each challenge, we comment on the algorithms
facing the challenge and our solutions. We propose changes for
PPG and PSG to handle practice as the discussion proceeds.

A. Accuracy Concerns

Theoretically, the errors of all the algorithms tend to 0 as
the rounds tend to infinity, disregarding the message passing
losses. However, the error may easily grow in real-world
applications, due to the violation of mass conservation.

Message sending failure is a straight factor that distorts mass
conservation and is more severe to PSG and SWG than to
PPG. The failure downgrades the accuracy of PPG only when
there are PULL message loss, since PUSH message loss will
not trigger the receipts to send back a PULL message. For
such as case, the current round can be ignored. Assuming the
number of lost messages are fixed, the message loss occurs
later has a lower expected negative impact to the accuracy less
than that occurs earlier in the computation The value in later
rounds are closer to be converged value hence the discrepency,
|xi − x|, will be relatively smaller. The loss of the mass is
therefore more likely to be smaller than that occurs in early
rounds.

For PPG, mass conservation will be distorted if a node i
receives PUSH messages from other sites but node j, when
it waits only for the pull message from node j. One can
devise that the node i blocks itself and only accepts the
PULL message from the node j after pushing to j. However,
this design is likely to raise deadlocks during the process.

Algorithm 4 PRACTICAL PUSH-PULL GOSSIP

At node i
1: busy ← false . indicates if the node is busy
2: procedure DIFFUSE
3: repeat
4: j ← RANDOM(Ni)
5: send PUSH(msgi) to j
6: busy ← true
7: until CONVERGED()
8: end procedure

9: procedure RECEIVE(msg) . passive thread
10: j ← msg.sender
11: if msg.status = BUSY then
12: SLEEP(∆t) . throttling
13: else if msg.status = PUSH & busy then
14: send BUSY(msgi) to j
15: else
16: if msg.status = PUSH then
17: send PULL(msgi) to j
18: else if msg.status = PULL then
19: busy ← false
20: else
21: raise error
22: end if
23: xi ← (xi +msg.xj)/2
24: end if
25: end procedure

For instance, we assume there are three nodes {i, j, k} such
that i → j, j → k, and k → i happen simultaneously. It
clearly forms a circular wait chain between the three nodes.
Hence, in addition to the design above, our implementation
consider using a BUSY message for notifying the latter PUSH
sender(s) to seek a new target, as the receiver has already been
waiting for a PULL message. A practical version of Push-Pull
gossip (P-PPG) is laid out in Algorithm 4. This mechanism
is not perfect as it will generate undesirable extra message
communication; however, our empirical outcome show that
the quantity added is acceptable. Fortunately, this problem
does not arise in PSG and SWG, as they are one-way pushing
protocols.

B. Local Convergence Concerns

Previous study generally suggested to run the gossip al-
gorithms to a certain number of rounds. Given the theory,
the algorithms are thought to be converged surely. However,
we view this approach is not ideal for the real-world applica-
tion, since we observe that the convergence rounds for each
algorithm diversify. Also, in a distributed network, checking
the local convergence complies more with the self-interested
discipline for the agents.

Implementing the convergence check requires extra consid-
erations. It is not ideal for a node to either stop too early or
too late. Stopping too early may not lead to a convergence,
while terminating too late may generate redundant rounds. The
difficulty lies in that a local node possesses little knowledge
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of the global convergence. We rule that, if the local value
change is smaller than an extremely small value ε during τ
rounds, the node is thought to be converged (Algorithm 5).
However, even if the condition is met, it may be the case
that the nodes in a cycle do not receive any updates from the
outside, but exchange inside the cycle over τ times. In this
case, the nodes in the cycle are not truly converged, although
they seem to be. For example, Fig. 1a shows a case which may
lead to quick local but not global convergence. Assuming at
some point, nodes a, b, c, d, e have the same local value, the
nodes in the cycle keep exchanging messages, but node e is not
involved with certain probability. Therefore, node a, b, c, and
d are likely to converge rapidly, if τ is small. In particular,
more nodes are connected in such cycle, the quicker these
nodes stop processing due to the local misjudging the global
convergence. Fig. 1b depicts an even worse case, by which
the updates from the others will be harder to be passed to the
cycle.

a

b

c

de

others

(a) A bad case

a

b

c

d

e

f

others

(b) An even worse case

Fig. 1. Local convergence examples that lead to a loss of mass

Algorithm 5 Local Convergence Check
At node i
i.c is initialized to be 0 . a local counter

1: function CONVERGED
2: i.c← i.c+ 1 if

∣∣∣xi(t−1)−xi(t)
xi(t−1)

∣∣∣ < ε else 0

3: return true if i.c > τ else false
4: end function

Considering the reason, setting a larger τ straightforwardly
diminishes the likelihood of the final misjudgment for a
node. The idea behind is that if the probability of one single
misjudgment of convergence for a node is around q, and then
the probability of misjudgment will be qτ . It implies that
there is a trade-off between the accuracy and the stopping
threshold τ , and we believe there must be other techniques that
can apply. Nevertheless, we regard optimizing the stopping
scenarios as an important future research topic.

We pay extra attention to PSG, as PSG is the most sensitive
to the convergence out of the three algorithms. It is probable
that at least one node remains not contacted in a certain
period, due to the nature of the algorithm, especially in the
real-world network which are degree-biased. Such a node will
terminate as it deems itself “converged”. To prevent this, the
general solution is to enlarge the stopping threshold τ . One
cannot simply cancel the convergence checking for the nodes
not receiving anything. This raw method will occasionally
hang the process, as one node’s neighbors may all have

terminated but itself remains active. It is also necessary to
add extra sleeping time for each node that receives nothing.
That is, sleeping enlarges the chance for a node to receive a
message in its next round. The practical algorithm is detailed
in Algorithm 6. There is an option to prevent the deadlock
that each node sends the message to notify the neighbors that
it has converged. However it adds a lot more message cost,
and hence not considered at the stage.

Algorithm 6 PRACTICAL PUSH-SUM GOSSIP

At node i
1: repeat
2: j ← RANDOM(Ni)
3: send (si/2, wi/2) to j and i
4: M← {(sj , wj) : j → i}
5: if M 6= ∅ then
6: (si, wi)←

(∑
j sj ,

∑
j wj

)
7: else
8: SLEEP(∆t)
9: end if

10: until CONVERGED()

VI. BARABÁSI-ALBERT GRAPH

To explore more opportunities for gossip-based applications,
it is crucial to examine the performance of the algorithms
in the networks that are close to the real-world topologies.
Albert and Barabási [1] empirically demonstrated that most
large topologies in real-world are scale free and their degree
distribution follows a power law for large mean degree k.
Hence, we study the scale-free (Barabási-Albert) graph [4].
Let us denote the graph by B(n,m), where n denotes the
number of nodes, and m is the number of edges that each
new node should connect to the existing graph with.

The Barabási-Albert model has two ingredients, growth and
preferential attachment. It initializes with a clique containing a
small number of nodes, say m0, where m ≤ m0 � n. A clique
is a complete subgraph relative to the entire graph. Moving
forward, it links a new node to m(≤ m0) existing nodes in
the existing graph repeatedly. A new node will be allied with
node i with a probability Π dependent on the degree di, such
that

Π(di) =
di∑
j dj

Polynikis [41] also claimed that V ≈ 2m, and V does not
depend on the number of nodes n in the graph.

VII. EMPIRICAL STUDY

In this section, we first discuss the experimental setup and
comment on the empirical findings.

A. Data

The simulations evaluate the algorithm performance on two
sets of synthetic data and one real-world dataset. The two sets
of synthetic data are generated from the Gaussian distributions
regarding a range of graph size. They are
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TABLE I
THE (MEAN, STANDARD DEVIATION) PAIRS OF THE DATASETS

Graph Size

Dataset 200 400 600 800 1000 5000

N1 (101.73, 1054.74) (104.08, 954.65) (104.76, 1011.62) (106.88, 1028.75) (99.54, 967.69) (100.39, 1007.12)
N2 (112.48, 96.79) (97.78, 97.03) (95.00, 103.85) (103.55, 102.44) (101.64, 101.25) (100.76, 100.70)
YT (8.93, 28.88) (5.70, 19.48) (7.90, 31.35) (9.43, 68.00) (7.70, 52.57) (8.59, 68.66)

1) N1: drawn from N (102, 106),
2) N2: sampled by N (102, 104).

We are interested in examining the performance of and
the comparison between the algorithms, hence consider the
anonymized YouTube friendship data (YT), provided by [38].
YouTube is an active video sharing website wherein the users
can connect together or simply interact with others, etc. Since
the entire dataset is large, we sample the data to fit each
simulation scenario.

B. Graphs

The experiments are repeated on many random graphs with
various graph orders and graph parameters, generated by the
Python NetworkX package [28]. For each graph size and each
parameter setting, we create 5 random graphs for each single
set of parameter configuration. E.g., we randomize 5 graphs
for the setting n = 200 and w = 10 for the scale-free graphs.
A graph will be re-generated if it is a disconnected graph.

C. Measurement Metrics

1) Waste Round: By the nature of the algorithms, we easily
notice that there must be certain rounds that do not raise any
local value change towards the convergence. The principle
of this metric is indeed to reflect the inefficiency. Thus, the
rounds for reaching τ are also counted as waste rounds, as
they comply with “inefficiency”. It also represents a round
that wastes the computational energy. Hence, we define a term
waste round, for further understanding the effectiveness of the
algorithms

Definition 1 (Waste Round). In any averaging gossip algo-
rithms, a waste round for a node is a round during which a
node has no value change after updating with the incoming
messages.

It is worth noting that the rounds for deciding if it is
approaching convergence will be also counted, as we found
that the stopping thresholds vary for maintaining the high
accuracy of different algorithms. Therefore, we penalize those
ones which demand a larger τ . Our finding shows that the
number of waste rounds are not ignorable in both PPG and
PSG, while SWG is solely slightly affected. Generally, we
always desire to obtain a solution that solves distributed
problems efficiently in energy consumption, computation and
transmission. This is a metric that allows us to further optimize
the algorithms in the future.

2) Performance Metrics: This paper sticks to the simple
but instructive metrics, which are shown as follows.
• mean rounds (R): the mean rounds for reaching the

consensus over all nodes
• mean waste rounds (W): the waste rounds per node

during the process
• mean messages (M): the average messages sent by each

node
• mean least absolute percent error (L):

L =
1

n

∑
i

∣∣∣∣xi − xx

∣∣∣∣
The number of rounds and messages are associated with the
time and message efficiency respectively. We use L instead
of mean least squares error over all nodes which was used in
the theoretical analysis in Appendix, as minimizing them are
equivalent in this task. Choosing L is for better illustration in
the figures. Finally, we would like to clarify that, for instance,
R is the mean rounds over all nodes, whilst R is the mean
value of the mean rounds with respect to multiple simulations.

In regard to the graph properties, we focus on the following
ones:
• degree (V ): we consider the mean, variance, minimum,

and maximum of degree, respectively denoted by V ,
V ar(V ), Min(V ), and Max(V ).

• clustering coefficient (C): the fraction of possible edges
linking the node’s neighbors through that existing edges
between the node’s neighbors. It will be studied with
the mean, variance, minimum, and maximum. It uses the
identical naming convention as that for V .

• eccentricity (E): the maximum graph distance of reach-
ing any node from any distinct node in a connected graph.
We consider the mean, variance, minimum (namely ra-
dius) and maximum (diameter).

• density (DEN): the rate of number of edges over possi-
ble number of edges.

, For more details, please refer to [18], [46]

D. Sensitivity Analysis

Fig. 2 shows the sensitivity analysis of the stopping condi-
tion τ . Note that we denote the graph of order 200 by G(200),
in the rest of the paper. The plots illustrate the .95 CI of L for
each algorithm running on the three datasets for B(200, 10),
given a range of the thresholds. Since m = 5 may be too
extreme, we stick to the graph with 200 nodes and m = 10. We
found that the numeric scales and the trends for each dataset
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Fig. 2. Sensitivity Analysis for Stopping Threshold

and graph size are very similar. Hence, we show the analysis
on merely one graph of each graph order.

Given τ = 3, PSG shows a random error level with respect
to different graph size. We see that the errors drop dramatically
as τ increases. Certain cases show that in a 10−4 level, a larger
threshold for PSG may not be strictly decreasing. However,
PPG and SWG obtain extremely low error within 10−4 level
in decreasing order as τ enlarges. Compared to others, PSG
is the most stopping condition sensitive algorithm. All errors
approach 0 as τ grows; hence, it implies that limτ→∞ L = 0
regarding every algorithm and graph.

As a result, we select τ = 3 for PPG and SWG, and τ = 24
for PSG for retaining an error less than 10−3. These values
are decided from the worst cases among all sensitivity analysis

simulations.

E. Empirical Result

1) Accuracy: This section is used to review the accuracy
of the three algorithms. We mark that median is more suitable
than mean for demonstrating the accuracy, since the most of
L are close to 0 and the “outlier” outcomes will make the
overall performance look terribly bad. Moreover, in comparing
the gossip algorithms, the likelihood of getting unexpected
outcome is more important and expressive the accuracy value.
However, we still show the mean of L in the Supplementary
Document (SD). We conclude that all three algorithms can
have exceedingly accurate approximation to the global mean.

Fig. 3 depicts the median of L of the algorithms against
the mean degree in any graph size. The plots are with .95 CI.
One can see that L for each algorithms are below a certain
low level, and decreases approximately exponentially. With
the median metric, PSG has the lowest L. However, PSG has
the most unstable L when considering the mean instead of
median, shown in the SD. Nonetheless, SWG is always a very
solid performer in regard to accuracy.

There exists a slight rise for PPG around mean degree 65
in G(200) with data N1. We believe that all the performance
metrics of these randomized algorithms are co-affected by
multiple factors rather just than just mean degree in the graph.

2) Round Consumption: In this section, we look into the
rounds required for each algorithm to reach the consensus. The
.95 CI of the rounds for each algorithm against various graph
size and mean degrees are shown in Fig. 4. Our experiments
depict that SWG has consistently low round usage, PSG is
better than PPG when the graph size is smaller than 1000,
and PPG have better round efficiency once the graph is larger.

The comparison shows that for smaller graph and worse
connectivity, SWG has the least executing rounds while PPG
requires way more convergence rounds. It also shows that as
the graph size grows, the number of rounds needed for PPG to
converge is getting close to that for PSG, and slightly better
than PSG in G(1000), with mean degree larger than 80. In
the case of G(5000), PPG is apparently the best performer
with extremely small error, low time and low message cost
The separate round plots for PSG and SWG are shown in
supplementary material, and demonstrate that the rounds both
need for convergence decline exponentially by the rise of the
average number of the neighbors in the graph.

The mean waste rounds of each process are displayed
in Fig. 5. It shows that the W for PPG and PSG drop
exponentially over the graph mean degree, following their
patterns of R. We realize that the mean waste rounds of PSG
reaches a high number > 40 in all of our simulations, which
accounts for about 70% of the total mean rounds. This implies
the improving potential of the algorithm. We also find that
the mean waste round rate (Fig XXX in supporting files) of
SWG lifts exponentially however the number keeps around 3-
ish constantly but the rounds also reduces in an exponential
trend. It is close to τ for SWG - which indicates that round
wasting is not significant in SWG.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

20 40 60

Mean degree

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014
M

LA
P

E
G(200)

20 40 60 80

Mean degree

G(400)

20 40 60 80

Mean degree

G(600)

20 40 60 80

Mean degree

G(800)

20 40 60 80

Mean degree

G(1000)

20 40 60 80

Mean degree

G(5000)
PPG PSG SWG

(a) YT

20 40 60

Mean degree

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

M
LA

P
E

G(200)

20 40 60 80

Mean degree

G(400)

20 40 60 80

Mean degree

G(600)

20 40 60 80

Mean degree

G(800)

20 40 60 80

Mean degree

G(1000)

20 40 60 80

Mean degree

G(5000)
PPG PSG SWG

(b) N1

20 40 60

Mean degree

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

M
LA

P
E

G(200)

20 40 60 80

Mean degree

G(400)

20 40 60 80

Mean degree

G(600)

20 40 60 80

Mean degree

G(800)

20 40 60 80

Mean degree

G(1000)

20 40 60 80

Mean degree

G(5000)
PPG PSG SWG

(c) N2

Fig. 3. Accuracy performance

3) Message Cost: Fig. 6 is used to display the comparison
of the mean messages for each node transferred within various
processes. In summary, PSG and PPG consume much less
messages for convergence relative to SWG. In the worst case
throughout all simulations, SWG disseminate 10 times more
messages than PSG and PPG. Even though, its best case is
that SWG and PPG diffuse close number of messages, and this
usually happens when the mean degree in the graph is small.
However, the messages used for PSG and PPG are decreasing
as the graph degrees enlarge. Not surprisingly, the message
usage of SWG scales against V of the graph - we have already
known that its expected complexity is V log(y) for some y >
1.

We use the yellow curve (labeled as Push-pull effective) in
each figure to present the message quantity ignoring the BUSY
messages, which is only counted in PPG. For the simulations
in G(5000), the mean effective messages of PPG is lower
than the mean messages of PSG; however, M of PPG is
slightly higher than that of PSG. Although in the simulations
on G(5000), PPG is more time efficient than PSG, PSG is
slightly better with regard to the message complexity. The
mean of the amount of BUSY messages is greater given larger
graphs, even though it is not strictly increasing when the mean
degree enlarges in the graphs.

The illustration implies that our modification for retaining
the mass conservation is fair as it only adds a limited number
of messages. Despite of the increase of the BUSY message
quantity, the mean rounds still decrease.

F. Graph Properties
In this section, we denote a metric instability rate by I, for

the rate of the simulations having L > 10−4. As we notice that
L is only either arbitrarily bad or exceedingly good, we believe
the rate of getting bad accuracy is more valuable. In summary,
the metrics associated with degree and clustering coefficient
are more correlated to a range of performance metrics.

Correlation Coefficient is always employed to statistically
evaluate the dependence between two variables. Pearson Cor-
relation is used to measure the linear dependence of two
variables using the numeric values, whilst Spearman Cor-
relation applies the rank of the values of two variables to
evaluate their monotonic relationship [14]. We utilize them
to display the relationship between the graph properties and
the performance. Two variables gains the strongest correlation
when the absolute correlation value hits 1, and are thought to
be linearly/monotonically independent given correlation 0. A
negative correlation value implies that the two variables affect
each other in an opposite direction.

Unfortunately, we cannot draw a conclusion stating that
certain variables are the most influencing factors for all the
algorithms. Apart from that, the same variable would have dif-
ferent linear and monotonic correlations to those measurement
metrics. However, in general, properties about node and eccen-
tricity are important to PPG. The properties related to node,
eccentricity and clustering are all factors to PSG, although
most of them are weak elements. Finally, SWG is affected
by the same kinds as PSG does. The difference is SWG is
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Fig. 4. Mean round performance

controlled by node-related properties more significantly than
that of cluster-realted, while PSG is the opposite.

a) PPG: The outcome for PPG is shown by Table II. For
the mean rounds, larger number of nodes may result in less
rounds for convergence. The situation ofM andW just follow
the pattern of R. Also, Graph density and mean clustering
coefficient have both small linear and monotonic correlation
to R andM. Besides, the waste rounds and the instability rate
will be lowered when the graph has lower degree variance. The
variance clustering coefficient is the most influencing factor
that have the positive correlations to the four measurements.
This fact supports the examples in Fig. 1.

b) PSG: Table III depicts that mean rounds and mean
messages are just weakly correlated to the degree, eccentricity,
and clustering coefficient, either linearly or monotonically.
The quantity of mean waste rounds can be diminished by
having higher mean clustering coefficient and higher density.
However, PSG may generate more waste rounds in a graph of
greater mean eccentricity. With respect to the accuracy, I can
be increased due to a low minimum degree or connectivity.
It is intuitive because any node converges too quickly distorts
the mass conservation, and the node with small degree tend
to converge earlier than others. Interestingly, I demonstrates
a relatively strong monotonic dependence to C (−0.68),
however is almost linearly independent to C (−0.02).

We also learn that the factors leading bad performance are
all related to eccentricity, and that for the positive outcome
stays with minimum clustering coefficient and minimum de-

TABLE II
CORRELATION OF GRAPH PROPERTIES AND PERFORMANCE FOR PPG

Pearson Spearman

R M W I R M W I

DEN -0.01 -0.03 -0.14 -0.09 0.07 0.05 -0.05 -0.07

V -0.60 -0.60 -0.71 -0.57 -0.72 -0.73 -0.83 -0.81
V ar(V ) -0.64 -0.63 -0.70 -0.55 -0.82 -0.82 -0.90 -0.91
Min(V ) -0.57 -0.57 -0.66 -0.63 -0.66 -0.66 -0.75 -0.83
Max(V ) -0.71 -0.69 -0.73 -0.58 -0.85 -0.84 -0.88 -0.86

E 0.12 0.14 0.26 0.18 0.20 0.23 0.34 0.34
V ar(E) -0.36 -0.35 -0.42 -0.32 -0.38 -0.37 -0.40 -0.37
Min(E) -0.15 -0.14 -0.05 -0.05 -0.14 -0.12 -0.04 0.04
Max(E) -0.07 -0.06 0.03 0.01 -0.08 -0.06 0.02 0.05

C 0.01 0.00 -0.12 -0.07 0.06 0.04 -0.07 -0.10
V ar(C) 0.76 0.75 0.82 0.74 0.84 0.82 0.86 0.83
Min(C) -0.15 -0.16 -0.28 -0.19 -0.21 -0.23 -0.35 -0.30
Max(C) 0.35 0.34 0.31 0.27 0.54 0.52 0.52 0.59

gree. As PSG is an one-way and single pushing algorithm, it is
sensible that Min(E) is a dominant feature since eccentricity
computes the distance of spreading information from one node
to any others. The mean eccentricity has a relatively strong
correlation (0.71) to the accuracy in a negative way, i.e., the
larger E is, the worse the accuracy PSG could obtain.

c) SWG: Last, we use Table IV to present the result for
SWG. The time efficiency can be upgraded when the graph
mean degree grows. The number of messages is greatly related
to mean degree with regard to both Pearson and Spearman
correlation. That is, despite the great time efficiency, the
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Fig. 5. Mean wast round performance

TABLE III
CORRELATION OF GRAPH PROPERTIES AND PERFORMANCE FOR PSG

Pearson Spearman

R M W I R M W I

DEN -0.30 -0.30 -0.50 0.02 -0.36 -0.36 -0.54 -0.65

V -0.30 -0.30 -0.51 -0.27 -0.31 -0.31 -0.48 -0.55
V ar(V ) -0.17 -0.17 -0.31 -0.28 -0.22 -0.22 -0.33 -0.41
Min(V ) -0.23 -0.23 -0.40 -0.55 -0.26 -0.26 -0.39 -0.70
Max(V ) -0.03 -0.03 -0.08 -0.12 -0.06 -0.06 -0.11 -0.13

E 0.33 0.33 0.55 0.11 0.39 0.39 0.58 0.71
V ar(E) -0.08 -0.08 -0.17 0.30 -0.06 -0.06 -0.14 -0.02
Min(E) 0.25 0.25 0.38 0.36 0.27 0.27 0.34 0.54
Max(E) 0.27 0.27 0.42 0.35 0.29 0.29 0.38 0.57

C -0.32 -0.32 -0.51 -0.02 -0.36 -0.36 -0.54 -0.68
V ar(C) 0.09 0.09 0.18 -0.03 0.07 0.07 0.12 0.05
Min(C) -0.32 -0.32 -0.53 0.05 -0.39 -0.39 -0.59 -0.64
Max(C) -0.12 -0.12 -0.18 0.16 -0.09 -0.09 -0.14 -0.14

message numbers of node i is dominated by |Ni|, particularly
when |Ni| is large. Therefore, there exists a trade-off between
the time and message complexity in this algorithm. Again, the
variance of clustering coefficient is also factor that probably
lead to more waste rounds, although the exact number of W
is only slightly greater than 3. We can see that with L > 10−4

does not raise a positive instability rate (all are 0). Given that
threshold, the correlation to other variables are all 0, which
shows that it is totally independent on other variables. This
resonates with the fact that SWG achieves negligible error
constantly.

TABLE IV
CORRELATION OF GRAPH PROPERTIES AND PERFORMANCE FOR SWG

Pearson Spearman

R M W I R M W I

DEN -0.31 0.33 0.19 0.00 -0.28 0.34 0.38 0.00

V -0.84 0.98 -0.53 0.00 -0.87 0.97 -0.58 0.00
V ar(V ) -0.61 0.73 -0.62 0.00 -0.76 0.82 -0.75 0.00
Min(V ) -0.76 0.91 -0.52 0.00 -0.80 0.90 -0.51 0.00
Max(V ) -0.42 0.43 -0.71 0.00 -0.44 0.45 -0.79 0.00

E 0.52 -0.59 -0.11 0.00 0.52 -0.61 -0.15 0.00
V ar(E) -0.14 0.10 -0.10 0.00 -0.03 0.04 0.01 0.00
Min(E) 0.48 -0.51 -0.09 0.00 0.47 -0.52 -0.07 0.00
Max(E) 0.47 -0.53 -0.11 0.00 0.47 -0.54 -0.11 0.00

C -0.30 0.33 0.25 0.00 -0.29 0.36 0.38 0.00
V ar(C) 0.45 -0.43 0.73 0.00 0.44 -0.43 0.79 0.00
Min(C) -0.41 0.45 0.04 0.00 -0.56 0.63 0.05 0.00
Max(C) 0.14 -0.10 0.54 0.00 0.20 -0.17 0.65 0.00

VIII. CONCLUSION

This paper establishes the comparison of three gossip algo-
rithms - PPG, PSG and SWG, which focuses on the accuracy,
efficiency in time and message passing. During the course
of the comparison, we also demonstrate the stability and
scalability of the algorithms. We suggest to employ PSG when
operating in a smaller graph (size < 1000 and mean degree
< 100). While for a larger and better connected graph, PPG
is a the one should be considered. In addition, we examine
the correlation between the accuracy/efficiency and the graph
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Fig. 6. Mean message performance

properties, and find that there are multiple factors affecting
the accuracy and time efficiency. This coincides with the time
complexity (for the asynchronous gossip algorithms) which
we specify, i.e., % is governed by multiple multiple graph
characteristics.

There are a number of potential future directions. First, one
may continue studying the relationship between the algorithm
performance and the properties of the complex networks, both
theoretically and empirically. Apart from that, it is also crucial
to optimize the algorithm design, in particular for PSG and
PPG. We believe that with better design, PSG would become
extremely stable and efficient, through cutting off substantially
many waste rounds and lowering the stopping threshold τ . In
one sense, creating and analyzing gossip algorithms in directed
graphs is also a critical task. Furthermore, we may also keen
to test the algorithms on small-world [45] and other complex
networks, which have not yet been researched with gossip
algorithms.

APPENDIX A
THEORETICAL ANALYSIS

A. Binary Gossip

1) PPG: [10]–[12], [44] made a key assumption that the
transition matrix P is symmetric, and devariated that the
expected diffusion matrix (denoted by E[W]) was doubly
stochastic and symmetric. However, a real-world scenario does
not necessarily maintain a doubly stochastic and symmetric

matrix. Their formulation of the doubly stochastic diffusion
matrix depends on that the probability of i→ j and j → i are
equal - it is not always assured in real-world scenarios. Hence
we provide an algebraic proof of the push-pull convergence
which relates to waste round straightforwardly. Although there
are many methods proposed to prove the convergence of the
gossip protocols [5], [13], [31], [35], [36], we stick to the
approach close to those in [10]–[12], [44].

One can define the error vector z as

z = x− xw. (7)

Henceforth, we have

z(t+ 1)T = x(t+ 1)T − xw(t+ 1)T

= x(t)TK(t)− xw(t)TK(t)

=
(
x(t)T − xw(t)T

)
K(t)

= z(t)TK(t). (8)

Next, it is trivial to check

‖z(t+ 1)‖2 = z(t)TK(t)
[
z(t)TK(t)

]T
(9)

=
∑
j

(∑
i

ki,j(t)zi(t)

)2

. (10)

In PPG, for node u contacting v at the time slot t, we have

ki,j(t) =


1
2 i, j ∈ {u, v}
1 i = j; i, j /∈ {u, v}
0 otherwise .
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For simplicity, we use ki,j and zi instead of ki,j(t) and zi(t)
for the latter equations. Following Eq. (10), we obtain

‖z(t+ 1)‖2 =

(∑
i

ki,uzi

)2

+

(∑
i

ki,vzi

)2

+
∑

i/∈{u,v}

z2i

=
∑

i/∈{u,v}

z2i + (ku,uzu + kv,uzv)
2

+ (kv,vzv + ku,vzu)
2

= 2

(
zu + zv

2

)2

+
∑

i/∈{u,v}

z2i

≤ 2
z2u + z2v

2
+

∑
i/∈{u,v}

z2i

= ‖z(t)‖2.

Clearly, ‖z(t + 1)‖2 = ‖z(t)‖2 iff zu = zv . It also indicates
that t+1 is a waste round, if zu(t) = zv(t). Otherwise it shows
that, at every round, ‖z(t+1)‖2 < ‖z(t)‖2. By recurrence, the
mean error over all sites keeps decreasing. Once the process
remains unchangeable in a connected graph, it means that all
value minuses the global mean are equal.

∀i, j ∈ V : xi − x = xj − x =⇒ xi = xj .

According to mass conservation, we deduce that all xi = x.
Therefore, the process reaches the consensus of the global
mean.

Without the loss of generosity, we only need to assure that∑
j pi,j = 1. Also,

∑
i pi,∗ = 0 is guaranteed while

∑
i p∗,i =

0 is not assured. Let i∗ denote i is awakened, and yi→j denote
the product of z(t+ 1)Tz(t+ 1) for node i contacting j.

‖z(t+ 1)‖2 =
∑
i

∑
j 6=i

p(i→ j, i∗)yi→j (12)

=
∑
i

∑
j 6=i

1

n
pi,j

2

(
zi + zj

2

)2

+
∑

k/∈{i,j}

z2k


≤
∑
i

∑
j 6=i

1

n
pi,j‖z(t)‖2

=
1

n

∑
i

‖z(t)‖2

= ‖z(t)‖2.

Assuming any single node does not equal to all others before
convergence, we hence obtain

E
[
‖z(t+ 1)‖2

]
< ‖z(t)‖2. (13)

Thus, we have E
[
z(t+ 1)Tz(t+ 1)

]
= λtz(0)Tz(0), where

% < 1. Based on Markov inequality, there is:

P
(
‖z(t+ 1)‖2

‖z(0)‖2
≥ ε
)
≤ λt

ε
≤ ε =⇒ t ≤ 2 log ε

log %
. (14)

To conclude, the mean round complexity is then bounded by
O( 2

n ×
2 log ε
log % ) = O( log ε

n log % ), as one t in PPG has actually two
rounds for two nodes, i.e. one for each.

B. Weighted Gossip

In the following section, we analyze SWG first and then
PSG.

1) SWG: We apply the asynchronous setting in [5] to SWG
- ∀t : ki,j(t) = wi,j(t), kj,j(t)1j 6=i = 1 and other entries in
W equal to 0. Also, E[K] =

∑
i p(i → j, i∗)Ki→j . We have

postulated that each node is randomly awakened, and thus
have p(i∗) = 1/n for any i. The expected transition matrix is
shown as follows:

E [ki,j ] =

{
1
npi,jwi,j i 6= j
1
npi,iwi,i +

∑
j 6=i

1
n otherwise .

Letting E[K] = Q+ n−1
n I, the auxiliary matrix Q is defined

by

qi,j =

{
1
nwi,j (i, j) ∈ E
0 others .

(15)

Considering Eq. (9), we write

z(t)TE[K(t)]
{
z(t)TE[K(t)]

}T
= z(t)T

(
Q(t) +

n− 1

n
I

)(
Q(t)T +

n− 1

n
I

)
z(t)

= z(t)TQ(t)Q(t)Tz(t) +
n− 1

n
z(t)TQ(t)Tz(t)

+
n− 1

n
z(t)TQ(t)z(t) +

(n− 1)2

n2
‖z‖2. (16)

We are going to analyze the terms in turn. First, we have
z(t)TQ(t)Tz(t) = z(t)TQ(t)z(t), given the fact that the final
outcome of both sides are a singular. It satisfies that

[Q(t)z(t)]Tz(t) = z(t)T[Q(t)z(t)].

nQ(t) is a stochastic matrix and thus its largest eigenvalue is
1 and largest eigenvector is 1. Provided the premise, Rayleigh
quotient is bounded by the second largest eigenvalue λ2. The
inequality follows,

z(t)TQ(t)Tz(t) ≤ 1

n
λ2(nQ(t))z(t)Tz(t) ≤ 1

n
‖z(t)‖2. (17)

Let us denote A(t) = Q(t)Q(t)T. A may have the largest
eigenvalue greater than 1, and therefore the corresponding
eigenvector is not 1. We cannot apply Rayleigh quotient to
it. We stick to Eq. (10). Again, we omit the time stamp in the
following deduction.

n2zTAz =
∑
j

∑
i

q2i,jz
2
i +

∑
i

∑
j 6=i

(qi,jqj,izizj)

=
∑
i

∑
j

q2i,j + 1− 1

 z2i

+
∑
i

∑
j 6=i

[(qi,jkj,i + 1− 1) zizj ]

=

(∑
i

zi

)2

+
∑
i

∑
j

q2i,j − 1

 z2i

+
∑
i

∑
j 6=i

[(qi,jqj,i − 1) zizj ]
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=
∑
i

∑
j

q2i,j − 1

 z2i

+
∑
i

∑
j 6=i

[(qi,jqj,i − 1) zizj ] . (18)

Provided that 0 ≤ qi,j = wi,j < 1 and
∑
j ki,j = 1, there

exists

arg min
a,b

qa,bqb,a − 1 ≤ qi,jqj,i − 1 ≤ arg max
a,b

qa,bqb,a − 1.

According to Corollary 1, for some −1 ≤ c̃ < 0, we have∑
i

∑
j 6=i

[(qi,jqj,i − 1) zizj ] = c̃
∑
i

∑
j 6=i

zizj

s.t.
∑
i

∑
j 6=i

zizj 6= 0.

∑
i

∑
j 6=i zizj 6= 0 holds when the algorithm is not yet

converged. Otherwise we have

−
∑
i

z2i =

(∑
i

zi

)2

−
∑
i

z2i =
∑
i

∑
j 6=i

zizj ≤ 0.

This implies that the error between the global mean the local
mean at each node is 0, by which the process is thought to be
converged.

Therefore, Section A-B1 is then extended to

∑
i

∑
j

q2i,j − 1

 z2i + c̃
∑
i

∑
j 6=i

zizj

=
∑
i

∑
j

q2i,j − 1

 z2i + c̃

(∑
i

zi

)2

−
∑
i

z2i


=
∑
i

∑
j

q2i,j − 1− c̃

 z2i (19a)

<
∑
i

z2i . (19b)

Eqs. (19a) and (19b) is deducted as follows.∑
j

q2i,j − arg max
a,b

qa,bkb,a ≤
∑
j

q2i,j − 1− c̃

≤
∑
j

q2i,j − arg min
a,b

qa,bqb,a . (20)

It is clear that 1
n ≤

∑
j q

2
i,j ≤ 1 subject to

∑
j qi,j = 1

and ki,j > 0, as a basic optimization problem. Plus, our
graph is connected, and thus has no two nodes sending the
whole portion of their data to each other. Without the loss
of generosity, we let 1 − arg maxa,b ka,bkb,a < ε. Hence,
we obtain −n−1n <

∑
j k

2
i,j − 1 − c̃ ≤ 1. Also, we have

known that
∑
i z

2
i is nonnegative, and thus bound it to be

0 ≤
∑
j k

2
i,j − 1− c̃ < 1. This concludes that

z(t)TQ(t)Q(t)Tz(t) ≤ 1

n2
‖z(t)‖2.

Refer back to Eq. (16), it follows

z(t)TE[K(t)]
{
z(t)TE[K(t)]

}T
≤
(

1

n2
+

2(n− 1)

n2
+

(n− 1)2

n2

)
‖z(t)‖2

≤ ‖z(t)‖2 (21)

Given the above results, one can conclude that the mean
round complexity of SWG is also bounded by O( log ε

n log % ), for
some % < 1, via the same technique for PPG.

2) PSG: PSG is a special case of weighted gossip, and
hence can employ the procedure for the SWG directly. Con-
sidering at time t, there is u→ v. The weight W for PSG is
then

wi,j =


1
2 i, j ∈ {u, v} : i 6= j ∨ i = j

1 i = j 6= u

0 otherwise .

(22)

Following that, we derive Q.

qi,j =


1
2npi,j i 6= j
1
n

∑
j∈Ni,j 6=i

1
2pi,j = 1

2n i = j

0 otherwise .

(23)

Given that nQ is stochastic, Eq. (17) for PSG holds.
Next, we substitute this Q into Section A-B1, it is then

∑
i

∑
j,j 6=i

1

4
p2i,j +

1

4
− 1

 z2i

+
∑
i

∑
j 6=i

[(
1

4
pi,jpj,i − 1

)
zizj

]
(24)

Letting c̃ = 1
4pi,jpj,i − 1,

−1 ≤ c̃ < −3

4
.

Also, recall Eq. (19a).

1

n
≤
∑
j,j 6=i

p2i,j +
1

4
− 1− c̃ ≤ 1

2
.

This concludes that

z(t)TE[Q(t)]E[Q(t)T]z(t) <
1

n
z(t)Tz(t).

Finally, we come to the result that the time complexity of
PSG is also within O( log ε

n log % ).

Corollary 1. Given any i and 0 ≤ a ≤ ci ≤ b and
∑
i di 6= 0

holds, ∃c :
∑
i cidi = c

∑
i di, s.t. a ≤ c ≤ b.

Proof: Since
∑
i di 6= 0, we have

c =

∑
i cidi∑
i di

If
∑
i di > 0, a

∑
i di ≤

∑
i cidi ≤ b

∑
i di holds. If∑

i di < 0, there comes b
∑
i di ≤

∑
i cidi ≤ a

∑
i di. Both

cases conclude that a ≤ c ≤ b.
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