
CS 6423

 Scalable Computing for

Big Data Analytics

Lecture 4:

MapReduce:

Graph Algorithhms

Prof. Gregory Provan
Department of Computer Science

University College Cork

Lecture adapted from:NETS 212: Scalable and Cloud Computing

Recap: MapReduce dataflow

2

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer

Reducer

Reducer

I
np

ut
 d

a
ta

O
ut

pu
t

d
a
ta

"The Shuffle"

Intermediate
(key,value) pairs

What we have seen so far

• Initial algorithms

• map/reduce model could be used to filter, collect, and

aggregate data values

• Useful for data with limited structure

• We could extract pieces of input data items and collect them to

run various reduce operations

• We could “join” two different data sets on a common key

• But that’s not enough…

3

Beyond average/sum/count

• Much of the world is a network of

relationships and shared features

• Members of a social network can be friends, and

may have shared interests / memberships / etc.

• Customers might view similar movies, and might

even be clustered by interest groups

• The Web consists of documents with links

• Documents are also related by topics, words,

authors, etc.

4

Goal: Develop a toolbox

• We need a toolbox of algorithms useful for

analyzing data that has both relationships and

properties

• For the next ~2 lectures we’ll start to build this

toolbox

• Compare the “traditional” and MapReduce solution

5

Plan for today

• Representing data in graphs

• Graph algorithms in MapReduce

• Computation model

• Iterative MapReduce

• A toolbox of algorithms

• Single-source shortest path (SSSP)

• k-means clustering

• Classification with Naïve Bayes

6

NEXT

Thinking about related objects

• We can represent related objects as a labeled,

directed graph

• Entities are typically represented as nodes;

relationships are typically edges

• Nodes all have IDs, and possibly other properties

• Edges typically have values, possibly IDs and other

properties
7

fan-of

friend-of friend-of

fan-of

fan-of

fan-of

fan-of

Alice Sunita Jose

Mikhail

Magna Carta

Facebook

I
m
a
ge

s
b
y
 J

oj
o

M
e
nd

oz
a
,

C
re

a
ti
ve

 C
om

m
on

s
li
ce

ns
e
d

Encoding the data in a graph

• Recall basic definition of a graph:

• G = (V, E) where V is vertices, E is edges of the form

(v1,v2) where v1,v2  V

• Assume we only care about connected vertices

• Then we can capture a graph simply as the edges

• ... or as an adjacency list: vi goes to [vj, vj+1, …]

8

Alice Sunita Jose

Mikhail

Magna Carta

Facebook

Graph encodings: Set of edges

(Alice, Facebook)

(Alice, Sunita)

(Jose, Magna Carta)

(Jose, Sunita)

(Mikhail, Facebook)

(Mikhail, Magna Carta)

(Sunita, Facebook)

(Sunita, Alice)

(Sunita, Jose)

9

Alice Sunita Jose

Mikhail

Magna Carta

Facebook

Graph encodings: Adding edge types

(Alice, fan-of, Facebook)

(Alice, friend-of, Sunita)

(Jose, fan-of, Magna Carta)

(Jose, friend-of, Sunita)

(Mikhail, fan-of, Facebook)

(Mikhail, fan-of, Magna Carta)

(Sunita, fan-of, Facebook)

(Sunita, friend-of, Alice)

(Sunita, friend-of, Jose)

10

Alice Sunita Jose

Mikhail

Magna Carta

Facebook fan-of

friend-of friend-of

fan-of

fan-of

fan-of

fan-of

Graph encodings: Adding weights

(Alice, fan-of, 0.5, Facebook)

(Alice, friend-of, 0.9, Sunita)

(Jose, fan-of, 0.5, Magna Carta)

(Jose, friend-of, 0.3, Sunita)

(Mikhail, fan-of, 0.8, Facebook)

(Mikhail, fan-of, 0.7, Magna Carta)

(Sunita, fan-of, 0.7, Facebook)

(Sunita, friend-of, 0.9, Alice)

(Sunita, friend-of, 0.3, Jose)

11

Alice Sunita Jose

Mikhail

Magna Carta

Facebook fan-of

friend-of friend-of

fan-of

fan-of

fan-of

fan-of

0.5

0.9

0.7

0.3

0.8
0.7

0.5

Recap: Related objects

• We can represent the relationships between related

objects as a directed, labeled graph
• Vertices represent the objects

• Edges represent relationships

• We can annotate this graph in various ways
• Add labels to edges to distinguish different types

• Add weights to edges

• ...

• We can encode the graph in various ways
• Examples: Edge set, adjacency list

12

Plan for today

• Representing data in graphs

• Graph algorithms in MapReduce

• Computation model

• Iterative MapReduce

• A toolbox of algorithms

• Single-source shortest path (SSSP)

• k-means clustering

• Classification with Naïve Bayes

13

NEXT

A computation model for graphs

• Once the data is encoded in this way, we can perform

various computations on it
• Simple example: Which users are their friends' best friend?

• More complicated examples (later): Page rank, adsorption, ...

• This is often done by
• annotating the vertices with additional information, and

• propagating the information along the edges

• "Think like a vertex"!

14

Alice Sunita Jose

Mikhail

Magna Carta

Facebook fan-of

friend-of friend-of

fan-of

fan-of

fan-of

fan-of

0.5

0.9

0.7

0.3

0.8
0.7

0.5

A computation model for graphs

• Example: Am I my friends' best friend?

15

Alice Sunita Jose

Mikhail

Magna Carta

Facebook fan-of

friend-of friend-of

fan-of

fan-of

fan-of

fan-of

0.5

0.9

0.7

0.3

0.8
0.7

0.5
Slightly more

technical: How many
of my friends have

me as their
best friend?

Can we do this in MapReduce?

• Using adjacency list representation?
16

map(key: node, value: [<otherNode, relType, strength>])

{

}

reduce(key: ________, values: list of _________)

{

}

Can we do this in MapReduce?

• Using single-edge data representation?
17

map(key: node, value: <otherNode, relType, strength>)

{

}

reduce(key: ________, values: list of _________)

{

}

A computation model for graphs

• Example: Am I my friends' best friend?

• Step #1: Discard irrelevant vertices and edges

18

Alice Sunita Jose

Mikhail

Magna Carta

Facebook fan-of

friend-of friend-of

fan-of

fan-of

fan-of

fan-of

0.5

0.9

0.7

0.3

0.8
0.7

0.5

A computation model for graphs

• Example: Am I my friends' best friend?

• Step #1: Discard irrelevant vertices and edges

• Step #2: Annotate each vertex with list of friends

• Step #3: Push annotations along each edge

19

Alice Sunita Jose

Mikhail

friend-of friend-of

0.9 0.3

sunitaalice: 0.9
sunitajose: 0.3

josesunita: 0.3 alicesunita: 0.9

A computation model for graphs

• Example: Am I my friends' best friend?

• Step #1: Discard irrelevant vertices and edges

• Step #2: Annotate each vertex with list of friends

• Step #3: Push annotations along each edge

20

Alice Sunita Jose

Mikhail

friend-of friend-of

0.9 0.3

sunitaalice: 0.9
sunitajose: 0.3 josesunita: 0.3

alicesunita: 0.9 sunitaalice: 0.9
sunitajose: 0.3

josesunita: 0.3 sunitaalice: 0.9
sunitajose: 0.3

alicesunita: 0.9

A computation model for graphs

• Example: Am I my friends' best friend?

• Step #1: Discard irrelevant vertices and edges

• Step #2: Annotate each vertex with list of friends

• Step #3: Push annotations along each edge

• Step #4: Determine result at each vertex

 21

Alice Sunita Jose

Mikhail

friend-of friend-of

0.9 0.3

sunitaalice: 0.9
sunitajose: 0.3 josesunita: 0.3

alicesunita: 0.9 sunitaalice: 0.9
sunitajose: 0.3

josesunita: 0.3 sunitaalice: 0.9
sunitajose: 0.3

alicesunita: 0.9

A real-world use case

• A variant that is actually used in social networks

today: "Who are the friends of multiple of my

friends?"

• Where have you seen this before?

• Friend recommendation!

• Maybe these people should be my friends too!

22

Generalizing…

• Now suppose we want to go beyond direct friend

relationships

• Example: How many of my friends' friends (distance-2

neighbors) have me as their best friend's best friend?

• What do we need to do?

• How about distance k>2?

• To compute the answer, we need to run multiple

iterations of MapReduce!
23

Iterative MapReduce

• The basic model:

• Note that reduce output must be compatible with the

map input!
• What can happen if we filter out some information in the mapper or in the

reducer?

24

copy files from input dir  staging dir 1

(optional: do some preprocessing)

while (!terminating condition) {

 map from staging dir 1

 reduce into staging dir 2

 move files from staging dir 2  staging dir1

}

(optional: postprocessing)
move files from staging dir 2  output dir

Graph algorithms and MapReduce

• A centralized algorithm typically traverses a tree

or a graph one item at a time (there’s only one

“cursor”)

• You’ve learned breadth-first and depth-first

traversals

• Most algorithms that are based on graphs make

use of multiple map/reduce stages processing

one “wave” at a time

• Sometimes iterative MapReduce, other times chains

of map/reduce

25

"Think like a vertex"
• Let's think about a different model for a bit:

• Suppose we had a network that has exactly the same topology

as the graph, with one node for each vertex

• Suppose each vertex A has some

local state sA

• The computation proceeds in rounds.

In each round:

• Step #1: Each vertex A reads its local state sA

• Step #2: A can then send some messages mi

to adjacent nodes Bi

• Step #3: Then each vertex A looks at all the

messages it has received in step #2

• Step #4: Finally, each vertex can update its

local state to some other value sA' if it wants to

• This would be a natural fit for many graph algorithms!

26

(A,sA) tuple in the
input file

MapReduce
rounds

map(A,sA) invocation

map() emits a
(Bi,mi) tuples

reduce(A,{m1,m2,...,mk})
invocation

reduce() emits an
(A,sA')

Recap: MapReduce on graphs

• Suppose we want to:
• compute a function for each vertex in a graph...

• ... using data from vertices at most k hops away

• We can do this as follows:
• "Push" information along the edges

• "Think like a vertex"

• Finally, perform the computation at each vertex

• May need more than one MapReduce phase
• Iterative MapReduce: Outputs of stage i  inputs of stage i+1

27

Plan for today

• Representing data in graphs

• Graph algorithms in MapReduce

• Computation model

• Iterative MapReduce

• A toolbox of algorithms

• Single-source shortest path (SSSP)

• k-means clustering

• Classification with Naïve Bayes

28

NEXT

Path-based algorithms

• Sometimes our goal is to compute information about the

paths (sets of paths) between nodes
• Edges may be annotated with cost, distance, or similarity

• Examples of such problems:
• Shortest path from one node to another

• Minimum spanning tree (minimal-cost tree connecting all vertices

in a graph)

• Steiner tree (minimal-cost tree connecting certain nodes)

• Topological sort (node in a DAG comes before all nodes it points to)

29

Single-Source Shortest Path (SSSP)

30

0 s

?

?

?

?

a b

c d

10

5

2 3

1

9

7

2

4 6

Given a directed graph G = (V, E) in which each edge e has a cost c(e):

 Compute the cost of reaching each node from the source node s in the

most efficient way (potentially after multiple 'hops')

SSSP: Intuition
• We can formulate the problem using induction

• The shortest path follows the principle of optimality:

the last step (u,v) makes use of the shortest path to u

• We can express this as follows:

31

bestDistanceAndPath(v) {

 if (v == source) then {

 return <distance 0, path [v]>

 } else {

 find argmin_u (bestDistanceAndPath[u] + dist[u,v])

 return <bestDistanceAndPath[u] + dist[u,v], path[u] + v>

 }

}

SSSP: traditional solution

• Traditional approach: Dijkstra's algorithm

32

V: vertices, E: edges, S: start node

foreach v in V

 dist_S_to[v] := infinity

 predecessor[v] = nil

spSet = {}

Q := V

while (Q not empty) do

 u := Q.removeNodeClosestTo(S)

 spSet := spSet + {u}

 foreach v in V where (u,v) in E

 if (dist_S_To[v] > dist_S_To[u]+cost(u,v)) then

 dist_S_To[v] = dist_S_To[u] + cost(u,v)

 predecessor[v] = u

Initialize length and
last step of path
to default values

Update length and
path based on edges
radiating from u

SSSP: Dijkstra in Action

33

0 s

∞

∞

∞

∞

a b

c d

10

5

2 3

1

9

7

2

4 6

Q = {s,a,b,c,d} spSet = {}

dist_S_To: {(a,∞), (b,∞), (c,∞), (d,∞)}

predecessor: {(a,nil), (b,nil), (c,nil), (d,nil)}

E
x
a
m
pl
e
 f

ro
m
 C

L
R
 2

nd
 e

d
.

p.
 5

2
8

SSSP: Dijkstra in Action

34

0 s

10

5

∞

∞

a b

c d

10

5

2 3

1

9

7

2

4 6

Q = {a,b,c,d} spSet = {s}

dist_S_To: {(a,10), (b,∞), (c,5), (d,∞)}

predecessor: {(a,s), (b,nil), (c,s), (d,nil)}

E
x
a
m
pl
e
 f

ro
m
 C

L
R
 2

nd
 e

d
.

p.
 5

2
8

SSSP: Dijkstra in Action

35

0 s

8

5

1

4

7

a b

c d

10

5

2 3

1

9

7

2

4 6

Q = {a,b,d} spSet = {c,s}

dist_S_To: {(a,8), (b,14), (c,5), (d,7)}

predecessor: {(a,c), (b,c), (c,s), (d,c)}

E
x
a
m
pl
e
 f

ro
m
 C

L
R
 2

nd
 e

d
.

p.
 5

2
8

SSSP: Dijkstra in Action

36

0 s

8

5

13

7

a b

c d

10

5

2 3

1

9

7

2

4 6

Q = {a,b} spSet = {c,d,s}

dist_S_To: {(a,8), (b,13), (c,5), (d,7)}

predecessor: {(a,c), (b,d), (c,s), (d,c)}

E
x
a
m
pl
e
 f

ro
m
 C

L
R
 2

nd
 e

d
.

p.
 5

2
8

SSSP: Dijkstra in Action

37

0 s

8

5

9

7

a b

c d

10

5

2 3

1

9

7

2

4 6

Q = {b} spSet = {a,c,d,s}

dist_S_To: {(a,8), (b,9), (c,5), (d,7)}

predecessor: {(a,c), (b,a), (c,s), (d,c)}

E
x
a
m
pl
e
 f

ro
m
 C

L
R
 2

nd
 e

d
.

p.
 5

2
8

SSSP: Dijkstra in Action

38

0 s

8

5

9

7

a b

c d

10

5

2 3

1

9

7

2

4 6

Q = {} spSet = {a,b,c,d,s}

dist_S_To: {(a,8), (b,9), (c,5), (d,7)}

predecessor: {(a,c), (b,a), (c,s), (d,c)}

E
x
a
m
pl
e
 f

ro
m
 C

L
R
 2

nd
 e

d
.

p.
 5

2
8

SSSP: How to parallelize?

• Dijkstra traverses the graph along a single route

at a time, prioritizing its traversal to the next

step based on total path length (and avoiding

cycles)

• No real parallelism to be had here!

• Intuitively, we want something

that “radiates” from the origin,

one “edge hop distance” at a time

• Each step outwards can be done in parallel, before

another iteration occurs - or we are done

• Recall our earlier discussion: Scalability depends on

the algorithm, not (just) on the problem!
39

s 0

?

?

?

?

0

?

?

0

?

?

?

?

0

?

?

?

?

SSSP: Revisiting the inductive definition

• Dijkstra’s algorithm carefully considered each u in a

way that allowed us to prune certain points

• Instead we can look at all potential u’s for each v

• Compute iteratively, by keeping a “frontier set” of u

nodes i edge-hops from the source

40

bestDistanceAndPath(v) {

 if (v == source) then {

 return <distance 0, path [v]>

 } else {

 find argmin_u (bestDistanceAndPath[u] + dist[u,v])

 return <bestDistanceAndPath[u] + dist[u,v], path[u] + v>

 }

}

SSSP: MapReduce formulation

• init:
• For each node, node ID  <, -, {<succ-node-ID,edge-cost>}>

• map:
• take node ID  <dist, next, {<succ-node-ID,edge-cost>}>

• For each succ-node-ID:

• emit succ-node ID  {<node ID, distance+edge-cost>}

• emit node ID  distance,{<succ-node-ID,edge-cost>}

• reduce:
• distance := min cost from a predecessor; next := that predec.

• emit node ID  <distance, next, {<succ-node-ID,edge-cost>}>

• Repeat until no changes

• Postprocessing: Remove adjacency lists

41

Why is this necessary?

The shortest path we have found so far
from the source to nodeID has length
...

... and here is the adjacency
list for nodeID

This is a new path from
the source to succ-node-
ID
that we just discovered
(not necessarily shortest)

... this is the next
hop on that path...

Example: SSSP – Parallel BFS in MapReduce

• Adjacency matrix

• Adjacency List
s: (a, 10), (c, 5)

a: (b, 1), (c, 2)

b: (d, 4)

c: (a, 3), (b, 9), (d, 2)

d: (s, 7), (b, 6)

42

0









10

5

2 3

2

1

9

7

4 6

s

a b

c d

s a b c d

s 10 5

a 1 2

b 4

c 3 9 2

d 7 6

s a b c d

s

a

b

c

d

Iteration 0: Base case

43

mapper: (a,<s,10>) (c,<s,5>) edges

reducer: (a,<10, ...>) (c,<5, ...>)

"Wave"

0 s

∞

∞

∞

∞

a b

c d

10

5

2 3

1

9

7

2

4 6

0









10

5

2 3

2

1

9

7

4 6

s

a b

c d

Iteration 0– Parallel BFS in MapReduce

• Map input: <node ID, <dist, adj list>>
<s, <0, <(a, 10), (c, 5)>>>

<a, <inf, <(b, 1), (c, 2)>>>

<b, <inf, <(d, 4)>>>

<c, <inf, <(a, 3), (b, 9), (d, 2)>>>

<d, <inf, <(s, 7), (b, 6)>>>

• Map output: <dest node ID, dist>
<a, 10> <c, 5>

<b, inf> <c, inf>

<d, inf>

<a, inf> <b, inf> <d, inf>

<s, inf> <b, inf>

44

<s, <0, <(a, 10), (c, 5)>>>
<a, <inf, <(b, 1), (c, 2)>>>
<b, <inf, <(d, 4)>>>
<c, <inf, <(a, 3), (b, 9), (d, 2)>>>
<d, <inf, <(s, 7), (b, 6)>>>

Iteration 0 – Parallel BFS in MapReduce

• Reduce input: <node ID, dist>
<s, <0, <(a, 10), (c, 5)>>>

<s, inf>

<a, <inf, <(b, 1), (c, 2)>>>

<a, 10> <a, inf>

<b, <inf, <(d, 4)>>>

<b, inf> <b, inf> <b, inf>

<c, <inf, <(a, 3), (b, 9), (d, 2)>>>

<c, 5> <c, inf>

<d, <inf, <(s, 7), (b, 6)>>>

<d, inf> <d, inf>

45

0









10

5

2 3

2

1

9

7

4 6

s

a b

c d

Iteration 0– Parallel BFS in MapReduce

• Reduce input: <node ID, dist>
<s, <0, <(a, 10), (c, 5)>>>

<s, inf>

<a, <inf, <(b, 1), (c, 2)>>>

<a, 10> <a, inf>

<b, <inf, <(d, 4)>>>

<b, inf> <b, inf> <b, inf>

<c, <inf, <(a, 3), (b, 9), (d, 2)>>>

<c, 5> <c, inf>

<d, <inf, <(s, 7), (b, 6)>>>

<d, inf> <d, inf>

46

0









10

5

2 3

2

1

9

7

4 6

s

a b

c d

Iteration 1

47

mapper: (a,<s,10>) (c,<s,5>) (a,<c,8>) (c,<a,12>) (b,<a,11>)

 (b,<c,14>) (d,<c,7>) edges

reducer: (a,<8, ...>) (c,<5, ...>) (b,<11, ...>) (d,<7, ...>)

0

10

5

∞

∞

10

5

2 3 9

7

4 6
s

a b

c d

1

2

"Wave
"

Iteration 1– Parallel BFS in MapReduce

• Reduce output: <node ID, <dist, adj list>>

= Map input for next iteration

<s, <0, <(a, 10), (c, 5)>>>

<a, <10, <(b, 1), (c, 2)>>>

<b, <inf, <(d, 4)>>>

<c, <5, <(a, 3), (b, 9), (d, 2)>>>

<d, <inf, <(s, 7), (b, 6)>>>

• Map output: <dest node ID, dist>
<a, 10> <c, 5>

<b, 11> <c, 12>

<d, inf>

<a, 8> <b, 14> <d, 7>

<s, inf> <b, inf>

48

0

10

5





10

5

2 3

2

1

9

7

4 6

s

a b

c d

<s, <0, <(a, 10), (c, 5)>>>

<a, <10, <(b, 1), (c, 2)>>>

<b, <inf, <(d, 4)>>>

<c, <5, <(a, 3), (b, 9), (d, 2)>>>

<d, <inf, <(s, 7), (b, 6)>>>

Iteration 1 – Parallel BFS in MapReduce

• Reduce input: <node ID, dist>

<s, <0, <(a, 10), (c, 5)>>>

<s, inf>

<a, <10, <(b, 1), (c, 2)>>>

<a, 10> <a, 8>

<b, <inf, <(d, 4)>>>

<b, 11> <b, 14> <b, inf>

<c, <5, <(a, 3), (b, 9), (d, 2)>>>

<c, 5> <c, 12>

<d, <inf, <(s, 7), (b, 6)>>>

<d, inf> <d, 7>

49

0

10

5





10

5

2 3

2

1

9

7

4 6

s

a b

c d

Iteration 1– Parallel BFS in MapReduce

• Reduce input: <node ID, dist>

<s, <0, <(a, 10), (c, 5)>>>

<s, inf>

<a, <10, <(b, 1), (c, 2)>>>

<a, 10> <a, 8>

<b, <inf, <(d, 4)>>>

<b, 11> <b, 14> <b, inf>

<c, <5, <(a, 3), (b, 9), (d, 2)>>>

<c, 5> <c, 12>

<d, <inf, <(s, 7), (b, 6)>>>

<d, inf> <d, 7>

50

0

10

5





10

5

2 3

2

1

9

7

4 6

s

a b

c d

Iteration 2

51

mapper: (a,<s,10>) (c,<s,5>) (a,<c,8>) (c,<a,12>) (b,<a,11>)
 (b,<c,14>) (d,<c,7>) (b,<d,13>) (d,<b,15>) edges

reducer: (a,<8>) (c,<5>) (b,<11>) (d,<7>)

0

8

5

1

1

7

10

5

2 3 9

7

4 6
s

a b

c d

1

2

"Wave
"

Iteration 2– Parallel BFS in MapReduce

• Reduce output: <node ID, <dist, adj list>>

= Map input for next iteration

<s, <0, <(a, 10), (c, 5)>>>

<a, <8, <(b, 1), (c, 2)>>>

<b, <11, <(d, 4)>>>

<c, <5, <(a, 3), (b, 9), (d, 2)>>>

<d, <7, <(s, 7), (b, 6)>>>

 … the rest omitted …

52

0

8

5

11

7

10

5

2 3

2

1

9

7

4 6

s

a b

c d

Iteration 3

53

mapper: (a,<s,10>) (c,<s,5>) (a,<c,8>) (c,<a,12>) (b,<a,11>)

 (b,<c,14>) (d,<c,7>) (b,<d,13>) (d,<b,15>) edges

reducer: (a,<8>) (c,<5>) (b,<11>) (d,<7>)

No change!

Convergence!

Question: If a vertex's path cost
is the same in two consecutive
rounds, can we be sure that
this vertex has converged?

0

8

5

1

1

7

10

5

2 3 9

7

4 6
s

a b

c d

1

2

BFS Pseudo-Code

Stopping Criterion

• How many iterations are needed in parallel BFS

(equal edge weight case)?

• Now answer the question...

• Six degrees of separation?

• Practicalities of implementation in MapReduce

Comparison to Dijkstra

• Dijkstra’s algorithm is more efficient

• At any step it only pursues edges from the minimum-

cost path inside the frontier

• MapReduce explores all paths in parallel

• Lots of “waste”

• Useful work is only done at the “frontier”

• Why can’t we do better using MapReduce?

Summary: SSSP

• Path-based algorithms typically involve iterative

map/reduce

• They are typically formulated in a way that

traverses in “waves” or “stages”, like breadth-

first search

• This allows for parallelism

• They need a way to test for convergence

• Example: Single-source shortest path (SSSP)

• Original Dijkstra formulation is hard to parallelize

• But we can make it work with the "wave" approach

57

