CS 6423

Scalable Computing for Big Data Analytics

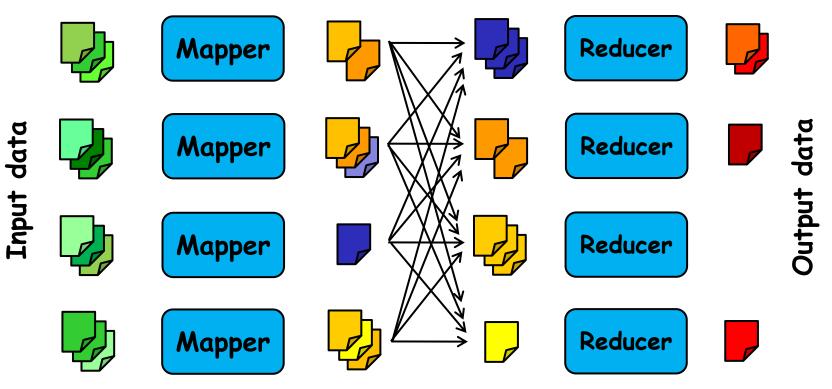
Lecture 4: MapReduce: Graph Algorithhms

Prof. Gregory Provan Department of Computer Science University College Cork

Lecture adapted from: NETS 212: Scalable and Cloud Computing

Recap: MapReduce dataflow

Intermediate (key,value) pairs



"The Shuffle"

What we have seen so far

• Initial algorithms

- map/reduce model could be used to filter, collect, and aggregate data values
- Useful for data with limited structure
 - We could extract pieces of input data items and collect them to run various reduce operations
 - We could "join" two different data sets on a common key
- But that's not enough...

Beyond average/sum/count

- Much of the world is a network of relationships and shared features
 - Members of a social network can be friends, and may have shared interests / memberships / etc.
 - Customers might view similar movies, and might even be clustered by interest groups
 - The Web consists of documents with links
 - Documents are also related by topics, words, authors, etc.

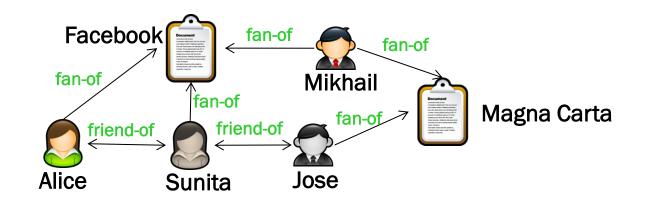
Goal: Develop a toolbox

- We need a toolbox of algorithms useful for analyzing data that has both relationships and properties
- For the next ~2 lectures we'll start to build this toolbox
 - Compare the "traditional" and MapReduce solution

Plan for today

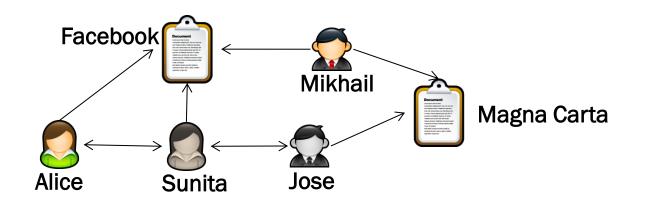
- Representing data in graphs
- Graph algorithms in MapReduce
 - Computation model
 - Iterative MapReduce
- A toolbox of algorithms
 - Single-source shortest path (SSSP)
 - k-means clustering
 - Classification with Naïve Bayes

Thinking about related objects



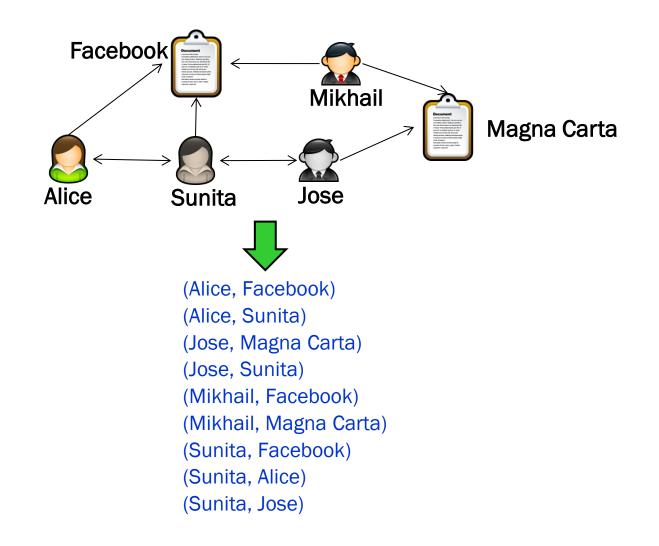
- We can represent related objects as a labeled, directed graph
- Entities are typically represented as nodes; relationships are typically edges
 - Nodes all have IDs, and possibly other properties
 - Edges typically have values, possibly IDs and other properties

Encoding the data in a graph

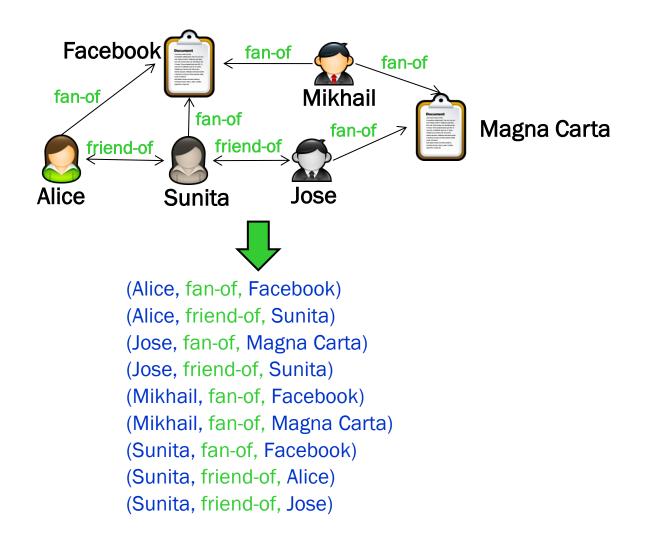


- Recall basic definition of a graph:
 - G = (V, E) where V is vertices, E is edges of the form (v_1, v_2) where $v_1, v_2 \in V$
- Assume we only care about connected vertices
 - Then we can capture a graph simply as the edges
 - ... or as an adjacency list: v_i goes to $[v_i, v_{i+1}, ...]$

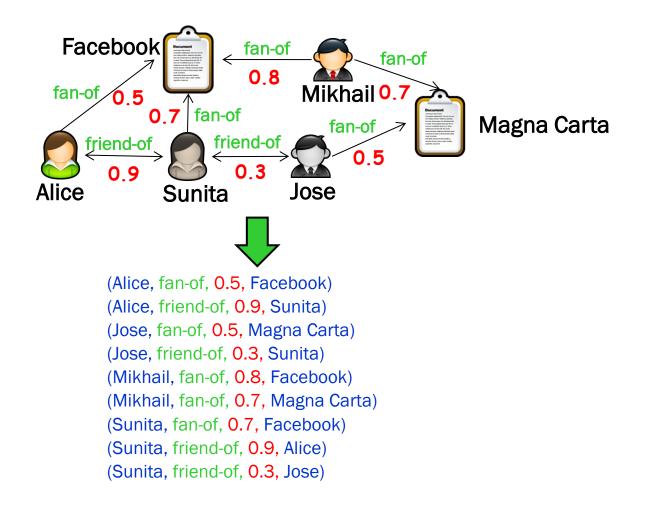
Graph encodings: Set of edges



Graph encodings: Adding edge types



Graph encodings: Adding weights

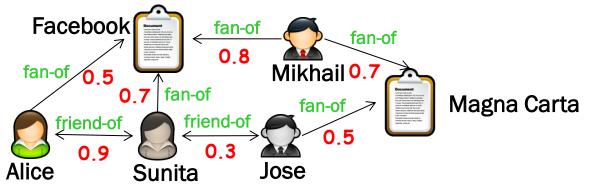


Recap: Related objects

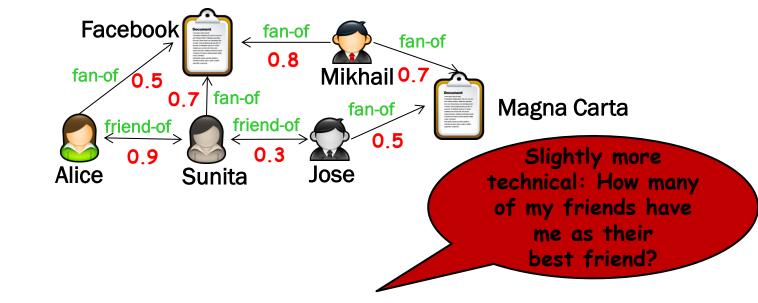
- We can represent the relationships between related objects as a directed, labeled graph
 - Vertices represent the objects
 - Edges represent relationships
- We can annotate this graph in various ways
 - Add labels to edges to distinguish different types
 - Add weights to edges
 - ...
- We can encode the graph in various ways
 - Examples: Edge set, adjacency list

Plan for today

- Representing data in graphs
- Graph algorithms in MapReduce
 - Computation model
 - Iterative MapReduce
- A toolbox of algorithms
 - Single-source shortest path (SSSP)
 - k-means clustering
 - Classification with Naïve Bayes



- Once the data is encoded in this way, we can perform various computations on it
 - Simple example: Which users are their friends' best friend?
 - More complicated examples (later): Page rank, adsorption, ...
- This is often done by
 - annotating the vertices with additional information, and
 - propagating the information along the edges
 - "Think like a vertex"!



Can we do this in MapReduce?

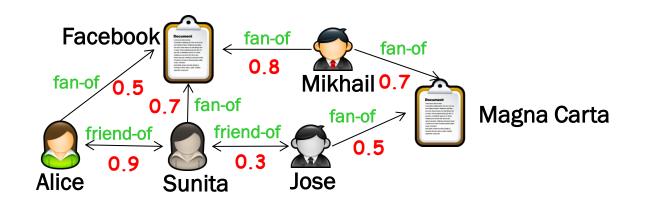
<pre>map(key: nod {</pre>	e, value:	<pre>[<othernode,< pre=""></othernode,<></pre>	relType,	<pre>strength>])</pre>
}				
reduce(key: {	/	values: list	of)
}				

Using adjacency list representation?

Can we do this in MapReduce?

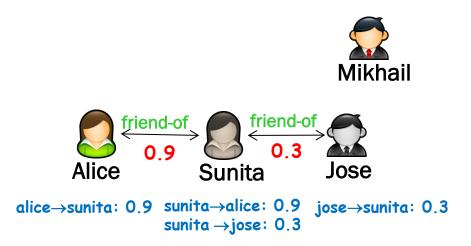
<pre>map(key: node, value: {</pre>	<othernode, reltype,="" strength="">)</othernode,>
} reduce(key:, {	values: list of)
}	

Using single-edge data representation?

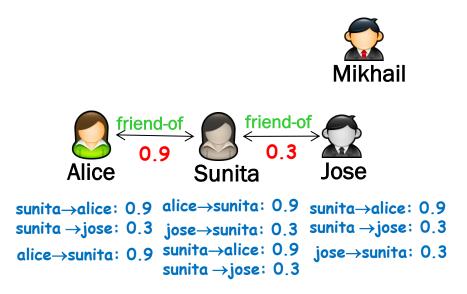


• Example: Am I my friends' best friend?

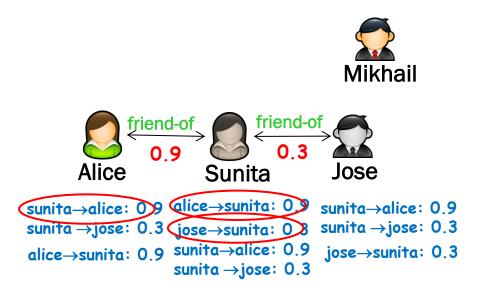
• Step #1: Discard irrelevant vertices and edges



- Step #1: Discard irrelevant vertices and edges
- Step #2: Annotate each vertex with list of friends
- Step #3: Push annotations along each edge



- Step #1: Discard irrelevant vertices and edges
- Step #2: Annotate each vertex with list of friends
- Step #3: Push annotations along each edge



- Step #1: Discard irrelevant vertices and edges
- Step #2: Annotate each vertex with list of friends
- Step #3: Push annotations along each edge
- Step #4: Determine result at each vertex

A real-world use case

- A variant that is actually used in social networks today: "Who are the friends of multiple of my friends?"
 - Where have you seen this before?
- Friend recommendation!
 - Maybe these people should be my friends too!

Generalizing...

- Now suppose we want to go beyond direct friend relationships
 - Example: How many of my friends' friends (distance-2 neighbors) have me as their best friend's best friend?
 - What do we need to do?
- How about distance k>2?
- To compute the answer, we need to run multiple iterations of MapReduce!

Iterative MapReduce

• The basic model:

```
copy files from input dir → staging dir 1
(optional: do some preprocessing)
while (!terminating condition) {
  map from staging dir 1
  reduce into staging dir 2
  move files from staging dir 2 → staging dir1
}
(optional: postprocessing)
move files from staging dir 2 → output dir
```

- Note that reduce output must be compatible with the map input!
 - What can happen if we filter out some information in the mapper or in the reducer?

Graph algorithms and MapReduce

- A centralized algorithm typically traverses a tree or a graph one item at a time (there's only one "cursor")
 - You've learned breadth-first and depth-first traversals
- Most algorithms that are based on graphs make use of multiple map/reduce stages processing one "wave" at a time
 - Sometimes iterative MapReduce, other times chains of map/reduce

"Think like a vertex"

- Let's think about a different model for a bit:
 - Suppose we had a network that has exactly the same topology as the graph, with one node for each vertex
 - Suppose each vertex A has some local state s_A
 - The computation proceeds in rounds. In each round:
 - Step #1: Each vertex A reads its local state s_A
 - Step #2: A can then send some messages mi to adjacent nodes B_i
 - Step #3: Then each vertex A looks at all the messages it has received in step #2
 - Step #4: Finally, each vertex can update its local state to some other value s_A' if it wants to
 - This would be a natural fit for many graph algorithms!

 (A, s_A) tuple in the input file

MapReduce rounds

```
map(A, s_A) invocation
```

map() emits a (B_i,m_i) tuples

reduce(A,{ m_1 , m_2 ,..., m_k }) invocation

reduce() emits an (A,s_A')

Recap: MapReduce on graphs

• Suppose we want to:

- compute a function for each vertex in a graph...
- ... using data from vertices at most k hops away
- We can do this as follows:
 - "Push" information along the edges
 - "Think like a vertex"
 - Finally, perform the computation at each vertex
- May need more than one MapReduce phase
 - Iterative MapReduce: Outputs of stage i \rightarrow inputs of stage i+1

Plan for today

NEXT

- Representing data in graphs
- Graph algorithms in MarReduce
 - Computation model
 - Iterative MapReduce
- A toolbox of algorithms
 - Single-source shortest path (SSSP)
 - k-means clustering
 - Classification with Naïve Bayes

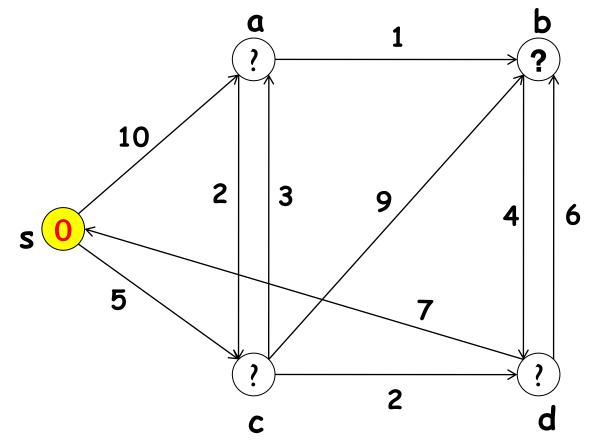
Path-based algorithms

- Sometimes our goal is to compute information about the paths (sets of paths) between nodes
 - Edges may be annotated with cost, distance, or similarity
- Examples of such problems:
 - Shortest path from one node to another
 - Minimum spanning tree (minimal-cost tree connecting all vertices in a graph)
 - Steiner tree (minimal-cost tree connecting certain nodes)
 - Topological sort (node in a DAG comes before all nodes it points to)

Single-Source Shortest Path (SSSP)

Given a directed graph G = (V, E) in which each edge e has a cost c(e):

 Compute the cost of reaching each node from the source node s in the most efficient way (potentially after multiple 'hops')



SSSP: Intuition

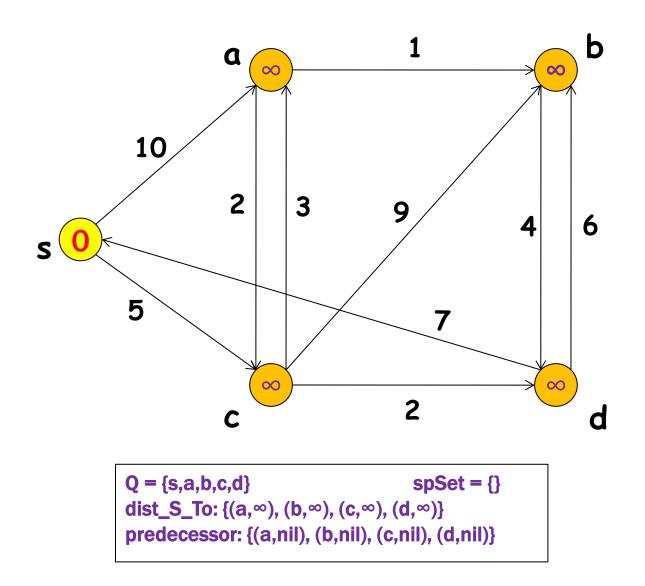
- We can formulate the problem using induction
 - The shortest path follows the principle of optimality: the last step (u,v) makes use of the shortest path to u
- We can express this as follows:

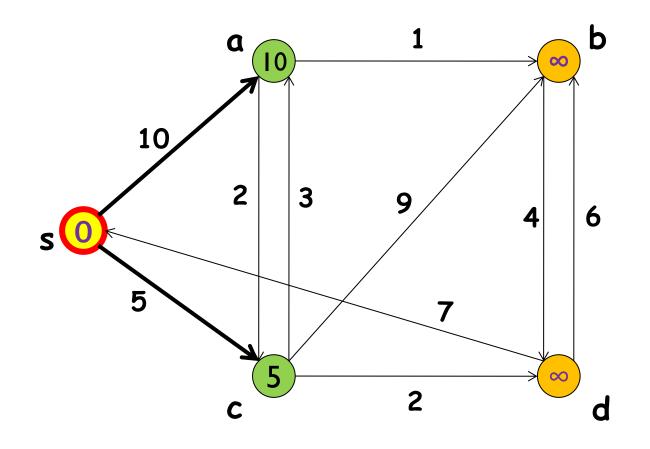
```
bestDistanceAndPath(v) {
  if (v == source) then {
    return <distance 0, path [v]>
  } else {
    find argmin_u (bestDistanceAndPath[u] + dist[u,v])
    return <bestDistanceAndPath[u] + dist[u,v], path[u] + v>
  }
}
```


SSSP: traditional solution

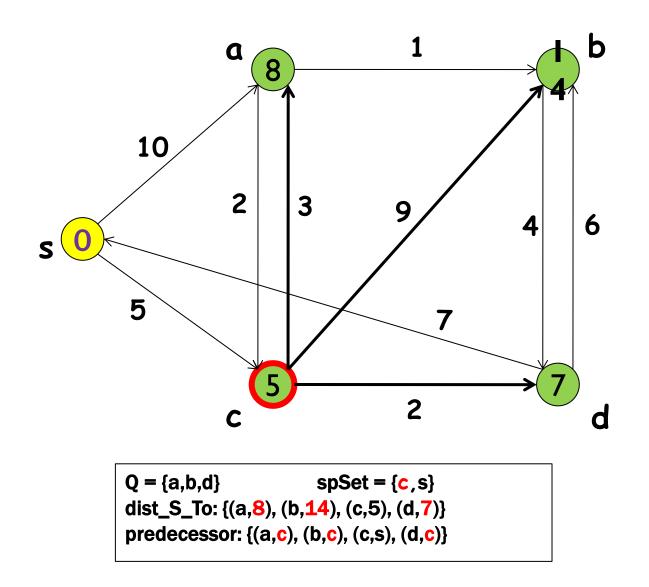
• Traditional approach: Dijkstra's algorithm

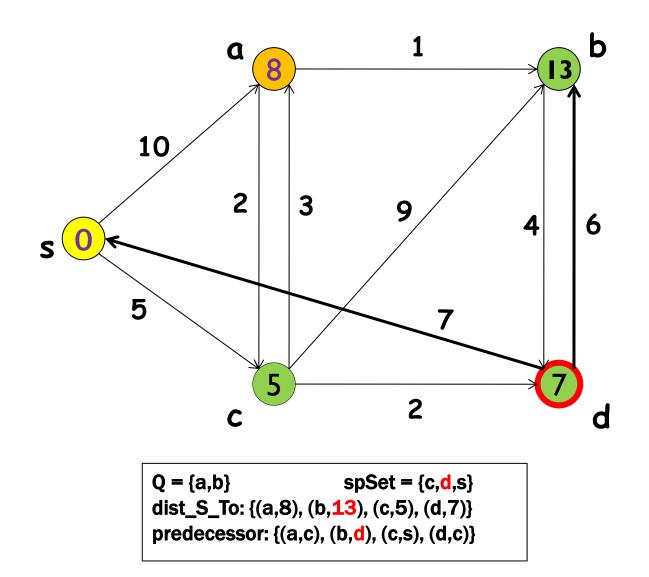
```
V: vertices, E: edges, S: start node
foreach v in V
  dist_S_to[v] := infinity
                                 Initialize length and
  predecessor[v] = nil
                                 last step of path
spSet = \{\}
                                 to default values
O := V
while (Q not empty) do
  u := Q.removeNodeClosestTo(S)
                                     Update length and
  spSet := spSet + {u}
                                     path based on edges
  foreach v in V where (u, v) in E
                                     radiating from u
    if (dist S To[v] > dist S To[u]+cost(u,v)) then
      dist S To[v] = dist S To[u] + cost(u,v)
    predecessor[v] = u
```

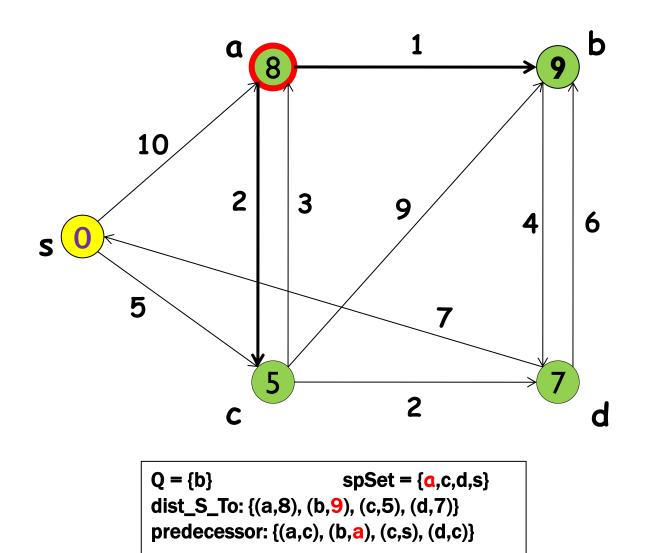


 $\begin{array}{ll} Q = \{a,b,c,d\} & spSet = \{s\} \\ dist_S_To: \{(a,10), (b,\infty), (c,5), (d,\infty)\} \\ predecessor: \{(a,s), (b,nil), (c,s), (d,nil)\} \end{array}$

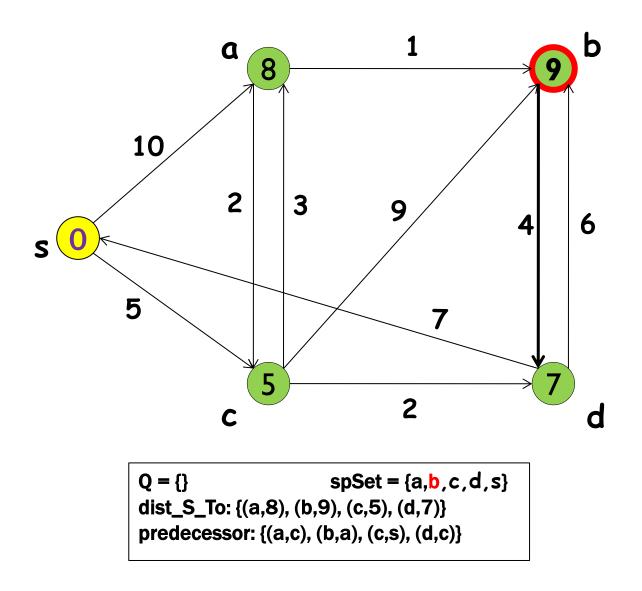




SSSP: Dijkstra in Action



SSSP: Dijkstra in Action



SSSP: How to parallelize?

- Dijkstra traverses the graph along a single route at a time, prioritizing its traversal to the next step based on total path length (and avoiding cycles)
 - No real parallelism to be had here!
- Intuitively, we want something that "radiates" from the origin, one "edge hop distance" at a time
 - Each step outwards can be done in parallel, before another iteration occurs or we are done
 - Recall our earlier discussion: Scalability depends on the algorithm, not (just) on the problem!

SSSP: Revisiting the inductive definition

```
bestDistanceAndPath(v) {
  if (v == source) then {
    return <distance 0, path [v]>
  } else {
    find argmin_u (bestDistanceAndPath[u] + dist[u,v])
    return <bestDistanceAndPath[u] + dist[u,v], path[u] + v>
  }
}
```

- Dijkstra's algorithm carefully considered each u in a way that allowed us to prune certain points
- Instead we can look at all potential u's for each v
 - Compute iteratively, by keeping a "frontier set" of u nodes i edge-hops from the source

SSSP: MapReduce formulation

- The shortest path we have found so far.. this is the next... and here is the adjacency from the source to nodeID has length hop on that path...list for nodeID
- For each node, node ID $\rightarrow <\infty, \times$, {<succ-node-ID,edge-cost>}>
- map:

• init:

- take node ID \rightarrow <dist, next, {<succ-node-ID,edge-cost>}>
- For each succ-node-ID:
 - emit succ-node ID → {<node ID, distance+edge-cost>This is a new path from the source to succ-node-
- emit node ID → distance,{<succ-node-ID,edge-cost ≥
 that we just discovered
- reduce:
 - distance := min cost from a predecessor; next := that predec.
 - emit node ID → <distance, next, {<succ-node-ID,edge-cost>}
- Repeat until no changes
- Postprocessing: Remove adjacency lists

(not necessarily shortest)

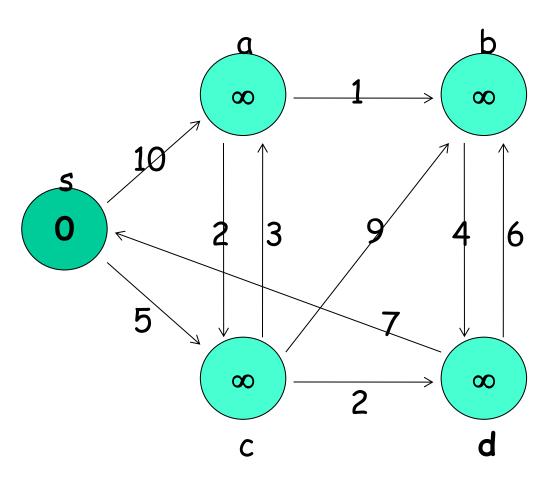
Example: SSSP – Parallel BFS in MapReduce

Adjacency matrix

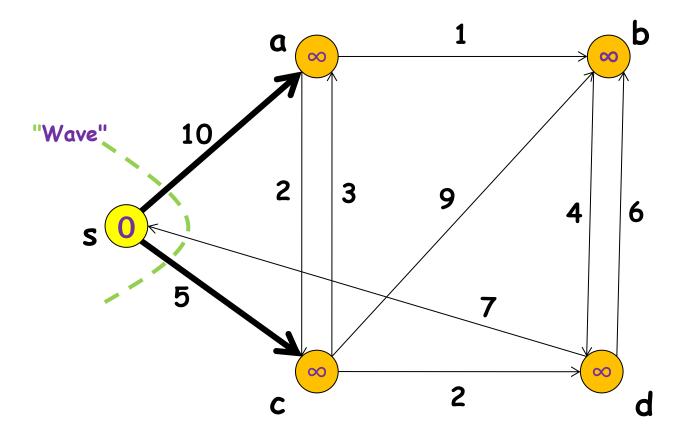
	S	а	b	С	d
S		10		5	
а			1	2	
b					4
С		3	9		2
d	7		6		

• Adjacency List

s: (a, 10), (c, 5) a: (b, 1), (c, 2) b: (d, 4) c: (a, 3), (b, 9), (d, 2) d: (s, 7), (b, 6)



Iteration 0: Base case



Iteration O- Parallel BFS in MapReduce

• Map input: <node ID, <dist, adj list>>

<s, <0, <(a, 10), (c, 5)>>> <a, <inf, <(b, 1), (c, 2)>>> <b, <inf, <(d, 4)>>> <c, <inf, <(a, 3), (b, 9), (d, 2)>>> <d, <inf, <(s, 7), (b, 6)>>>

• Map output: <dest node ID, dist> $\frac{1}{5}$

<a, 10> <c, 5> <b, inf> <c, inf> <d, inf> <a, inf> <b, inf> <d, inf> <s, inf> <b, inf>

<s, <o, <(a, 10), (c, 5)>>> <a, <inf, <(b, 1), (c, 2)>>> <b, <inf, <(d, 4)>>> <c, <inf, <(a, 3), (b, 9), (d, 2)>>> <d, <inf, <(s, 7), (b, 6)>>>

b

00

 ∞

d

0

 ∞

3

 ∞

С

2

1(

S

Iteration 0 – Parallel BFS in MapReduce

Reduce input: <node ID, dist>

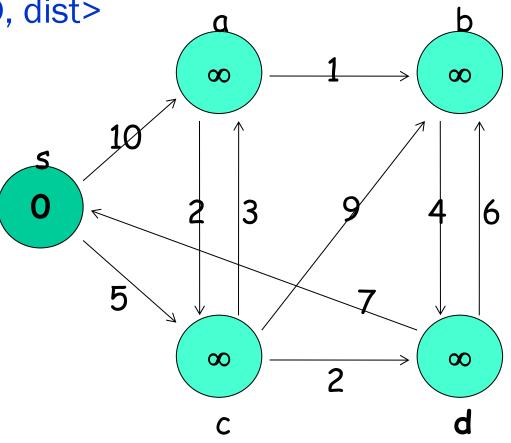
<s, <0, <(a, 10), (c, 5)>>> <s, inf>

<a, <inf, <(b, 1), (c, 2)>>> <a, 10> <a, inf>

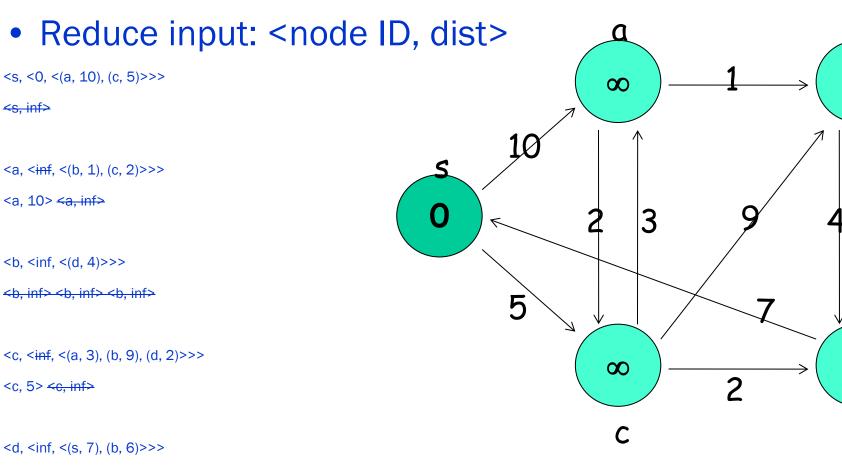
<b, <inf, <(d, 4)>>> <b, inf> <b, inf> <b, inf>

<c, <inf, <(a, 3), (b, 9), (d, 2)>>> <c, 5> <c, inf>

<d, <inf, <(s, 7), (b, 6)>>> <d, inf> <d, inf>



Iteration O- Parallel BFS in MapReduce



<d, inf> <d, inf>

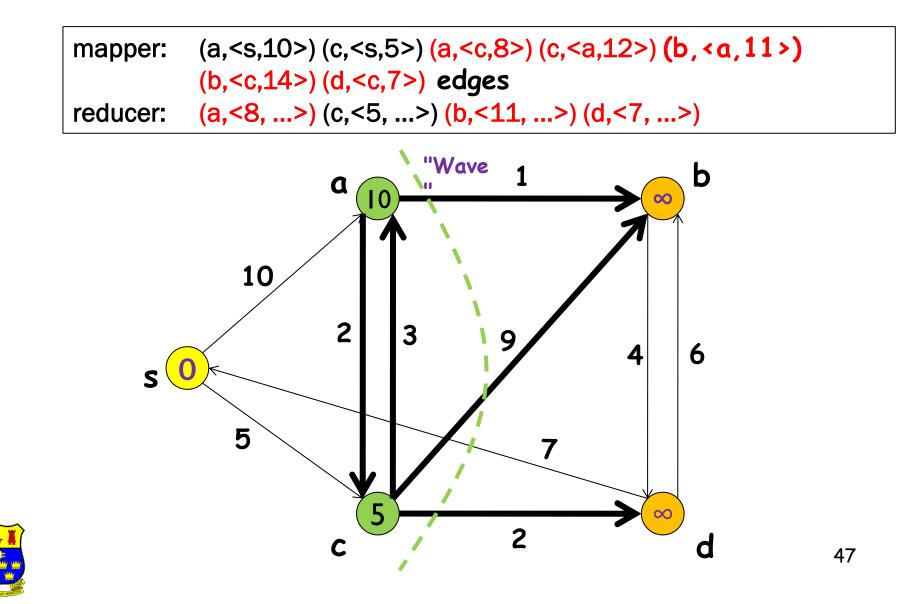
h

00

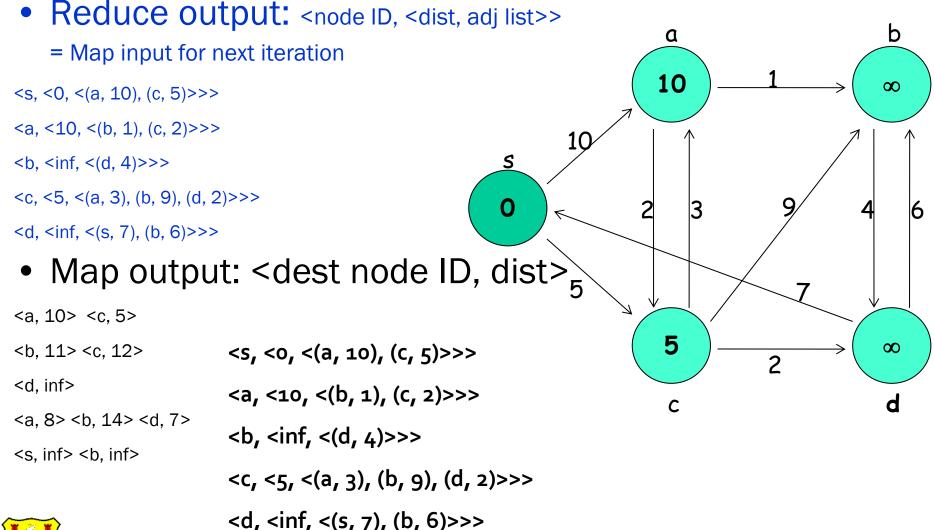
00

d

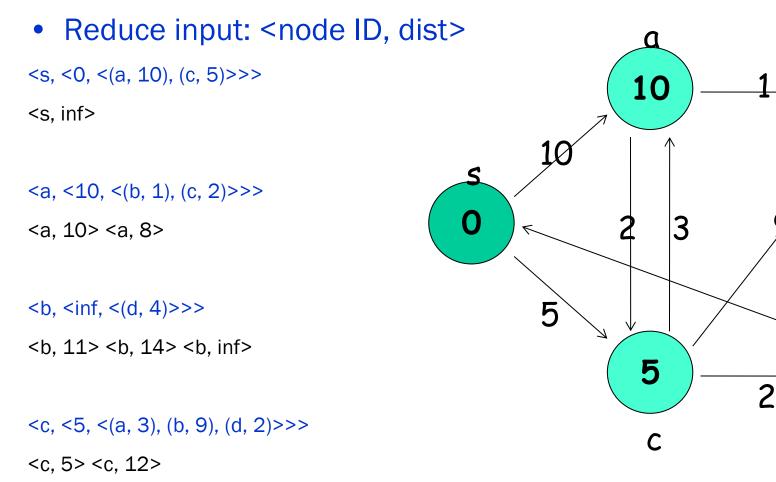
Iteration 1

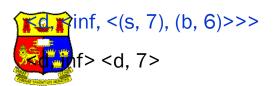


Iteration 1 – Parallel BFS in MapReduce



Iteration 1 – Parallel BFS in MapReduce





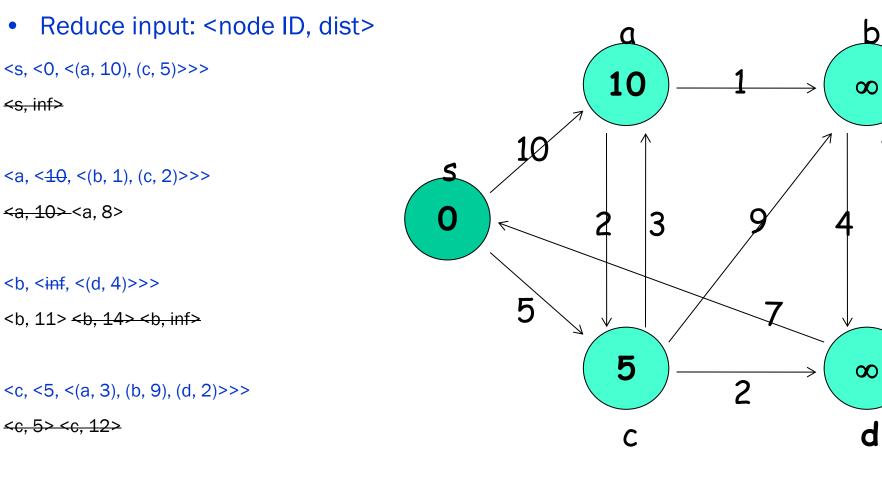
h

00

 ∞

d

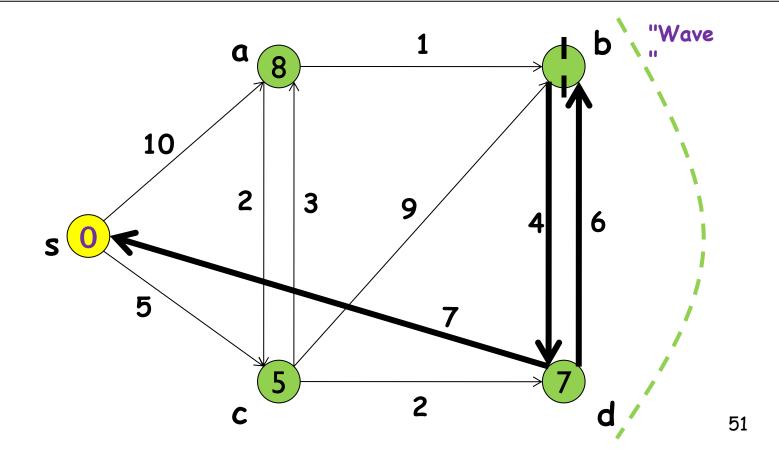
Iteration 1– Parallel BFS in MapReduce



<d, <inf, <(s, 7), (b, 6)>>>

Iteration 2

mapper: (a, <s, 10>) (c, <s, 5>) (a, <c, 8>) (c, <a, 12>) (b, <a, 11>)(b, <c, 14>) (d, <c, 7>) (b, <d, 13>) (d, <b, 15>) edgesreducer: (a, <8>) (c, <5>) (b, <11>) (d, <7>)



Iteration 2 – Parallel BFS in MapReduce

Reduce output: <node ID, <dist, adj list>>
 = Map input for next iteration

<s, <0, <(a, 10), (c, 5)>>>

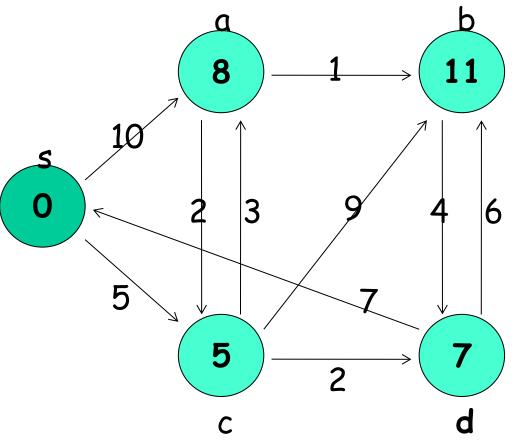
<a, <8, <(b, 1), (c, 2)>>>

<b, <11, <(d, 4)>>>

<c, <5, <(a, 3), (b, 9), (d, 2)>>>

<d, <7, <(s, 7), (b, 6)>>>

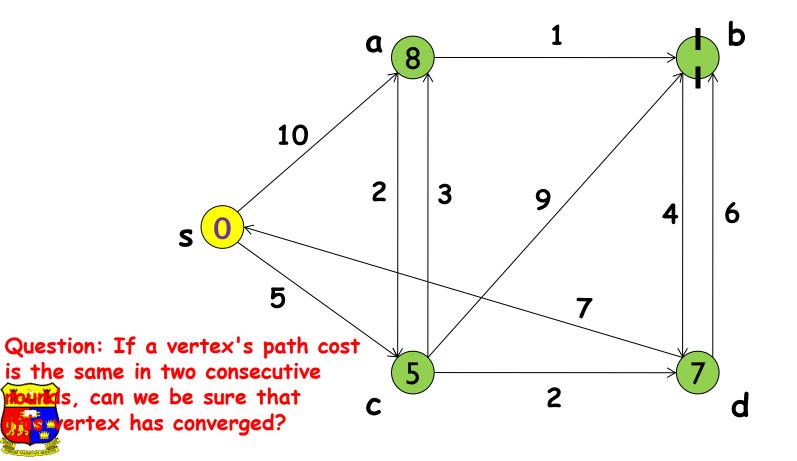
... the rest omitted ...



Iteration 3

No change! Convergence!

mapper: (a, <s, 10>) (c, <s, 5>) (a, <c, 8>) (c, <a, 12>) (b, <a, 11>)(b, <c, 14>) (d, <c, 7>) (b, <d, 13>) (d, <b, 15>) edgesreducer: (a, <8>) (c, <5>) (b, <11>) (d, <7>)



BFS Pseudo-Code

1: 0	class Mapper				
2:	method MAP(nid n , node N)				
3:	$d \leftarrow N.\text{Distance}$				
4:	$\operatorname{Emit}(\operatorname{nid} n, N)$	\triangleright Pass along graph structure			
5:	for all nodeid $m \in N$. AdjacencyList do				
6:	Emit(nid $m, d+1$)	\triangleright Emit distances to reachable nodes			
1: 0	1: class Reducer				
2:	method Reduce(nid $m, [d_1, d_2, \ldots]$)				
3:	$d_{min} \leftarrow \infty$				
4:	$M \leftarrow \emptyset$				
5:	for all $d \in \text{counts } [d_1, d_2, \ldots]$ do				
6:	if $IsNode(d)$ then				
7:	$M \leftarrow d$	\triangleright Recover graph structure			
8:	else if $d < d_{min}$ then	\triangleright Look for shorter distance			
9:	$d_{min} \leftarrow d$				
10:	$M.DISTANCE \leftarrow d_{min}$	\triangleright Update shortest distance			
11:	Emit(nid m , node M)				

Stopping Criterion

- How many iterations are needed in parallel BFS (equal edge weight case)?
- Now answer the question...
 - Six degrees of separation?
- Practicalities of implementation in MapReduce

Comparison to Dijkstra

- Dijkstra's algorithm is more efficient
 - At any step it only pursues edges from the minimumcost path inside the frontier
- MapReduce explores all paths in parallel
 - Lots of "waste"
 - Useful work is only done at the "frontier"
- Why can't we do better using MapReduce?

Summary: SSSP

- Path-based algorithms typically involve iterative map/reduce
- They are typically formulated in a way that traverses in "waves" or "stages", like breadth-first search
 - This allows for parallelism
 - They need a way to test for convergence
- Example: Single-source shortest path (SSSP)
 - Original Dijkstra formulation is hard to parallelize
 - But we can make it work with the "wave" approach

