CS 6423
Scalable Computing for

Big Data Analytics

Lecture 4:
MapReduce:
Graph Algorithhms

Prof. Gregory Provan
Department of Computer Science
University College Cork

Recap: MapReduce dataflow

o4op 4ndinQ

P RS D
==
HEE N

e e

o4op 4hdug

"The Shuffle"

What we have seen so far

* |nitial algorithms

* map/reduce model could be used to , , and
data values

e Useful for data with limited structure

 We could extract pieces of input data items and collect them to
run various reduce operations

 We could “join” two different data sets on a common key

e But that’s not enough...

Beyond average/sum/count

* Much of the world is a network of
relationships and shared features

e Members of a social network can be friends, and
may have shared interests / memberships / etc.

e Customers might view similar movies, and might
even be clustered by interest groups

e The Web consists of documents with links

* Documents are also related by topics, words,
authors, etc.

Goal: Develop a toolbox

 We need a toolbox of algorithms useful for
analyzing data that has both relationships and
properties

* For the next ~2 lectures we’ll start to build this
toolbox
e Compare the “traditional” and MapReduce solution

Plan for today

* Representing data in graphs ==
e Graph algorithms in MapReduce

e Computation model

e [terative MapReduce
* A toolbox of algorithms

* Single-source shortest path (SSSP)

* k-means clustering
 Classification with Naive Bayes

Thinking about related objects

Facebook

fan-of Q fan-of

Mikhail

fan-of ==l
— | Magn r
— éfr'end of W — | Magna Carta
&
Alice Sunita Jose

* We can represent related objects as a labeled,

directed graph

e Entities are typically represented as nodes;
relationships are typically edges
* Nodes all have IDs, and possibly other properties

* Edges typically have values, possibly IDs and other
properties

, Creative Commons licens

by Jojo Mendoza

Images

Encoding the data in a graph

Facebook (= ﬂ
Mikhail
/ Magna Carta
— 00—
Alice Sunita Jose

* Recall basic definition of a graph:
* G=(V, E)where Vis vertices, E is edges of the form
(V4,V,) Where v, ,v, e V
 Assume we only care about connected vertices
 Then we can capture a graph simply as the edges
* ... Orasan adjacency list: v, goes to [v;, Vi,4, ...]

Graph encodings: Set of edges

Magna Carta

¢

(Alice, Facebook)
(Alice, Sunita)
(Jose, Magna Carta)
(Jose, Sunita)
(Mikhail, Facebook)
(Mikhail, Magna Carta)
(Sunita, Facebook)
(Sunita, Alice)
(Sunita, Jose)

Graph encodings: Adding edge types

Facebook

fan-of ﬁ fan-of

Mikhail

fan-of
friend-of Q/
T D

Alice Suita Jose

¢

(Alice, fan-of, Facebook)
(Alice, friend-of, Sunita)
(Jose, fan-of, Magna Carta)
(Jose, friend-of, Sunita)
(Mikhail, fan-of, Facebook)
(

(

(

(

Magna Carta

friend-of

Mikhail, fan-of, Magna Carta)
Sunita, fan-of, Facebook)
Sunita, friend-of, Alice)
Sunita, friend-of, Jose)

10

Graph encodings: Adding weights

fan-of Q fan-of
0.8

Mikhail 0.7 ,
fan-of
frlend of
0.5
Sunlta Jose

i

(Alice, fan-of, 0.5, Facebook)
(Alice, friend-of, 0.9, Sunita)

(Jose, fan-of, 0.5, Magna Carta)
(Jose, friend-of, 0.3, Sunita)
(Mikhail, fan-of, 0.8, Facebook)
(Mikhail, fan-of, 0.7, Magna Carta)
(Sunita, fan-of, 0.7, Facebook)
(Sunita, friend-of, 0.9, Alice)
(Sunita, friend-of, 0.3, Jose)

Magna Carta

11

Recap: Related objects

* We can represent the relationships between related

objects as a directed, labeled graph
» Vertices represent the objects
* Edges represent relationships

* We can annotate this graph in various ways
* Add labels to edges to distinguish different types
* Add weights to edges

e We can encode the graph in various ways
 Examples: Edge set, adjacency list

12

Plan for tgday

e Graph algorithms in MapReduce <=

e Computation model
* [terative MapReduce

* A toolbox of algorithms
* Single-source shortest path (SSSP)
* k-means clustering
 Classification with Naive Bayes

13

A computation model for graphs

f'“\
Facebook = fan-of Q fan-of
- Mikhail 0.7

0.7 | fan-of fan-of Magna Carta
friend-of
v aL
P 09 Q=
Alice Sunlta Jose

Once the data is encoded in this way, we can perform
various computations on it

e Simple example: Which users are their friends' best friend?

* More complicated examples (later): Page rank, adsorption, ...

 This is often done by

e annotating the vertices with additional information, and

e propagating the information along the edges

* "Think like a vertex"!

14

A computation model for graphs

Magna Carta

frlend of

fan-of =
frlend of / ==
0.5

Alice Sumta Jose

e Example: Am | my friends' best friend?

15

Can we do this in MapReduce?

map (key: node, value: [<otherNode, relType, strength>])
{

}

reduce (key: , values: list of)

{

e Using adjacency list representation?

16

Can we do this in MapReduce?

map (key: node, value: <otherNode, relType, strength>)
{

}

reduce (key: , values: list of)

{

e Using single-edge data representation?

17

A computation model for graphs

Magna Carta

frlend of

fan-of =
frlend of / ==
0.5

Alice Sumta Jose

e Example: Am | my friends' best friend?
e Step #1. Discard irrelevant vertices and edges

18

A computation model for graphs

2

Mikhail

Q friend-of g friend- of

Alice Sumta Jose

alice—»sunita: 0.9 sunita—alice: 0.9 jose—sunita: 0.3
sunita —»>jose: 0.3

e Example: Am | my friends' best friend?
e Step #1.: Discard irrelevant vertices and edges
e Step #2: Annotate each vertex with list of friends
e Step #3: Push annotations along each edge

19

A computation model for graphs

2

Mikhail

Q friend-of g friend- of

Alice Sumta Jose

sunita—alice: 0.9 alice—»sunita: 0.9 sunita—alice: 0.9
sunita —»jose: 0.3 jose—sunita: 0.3 sunita —jose: 0.3

alicessunita: 0.9 sunita—alice: 0.9 jose—sunita: 0.3
sunita —»>jose: 0.3

e Example: Am | my friends' best friend?
e Step #1.: Discard irrelevant vertices and edges
e Step #2: Annotate each vertex with list of friends
e Step #3: Push annotations along each edge

20

A computation model for graphs

2

Mikhail

Q friend-of g friend- of

Alice Sumta Jose

sunita—alice: 09 @lice—sunita: 0.9 sunita—alice: 0.9
sunita > jose: 0.3 (jose—sunita: 03 sunita —>jose: 0.3

alice—sunita: 0.9 sunita—>alice: 0.9 jose—sunita: 0.3
sunita —»>jose: 0.3

e Example: Am | my friends' best friend?
e Step #1.: Discard irrelevant vertices and edges
e Step #2: Annotate each vertex with list of friends
e Step #3: Push annotations along each edge
e Step #4: Determine result at each vertex

21

A real-world use case

e A variant that is actually used in social networks
today: "Who are the friends of multiple of my
friends?"

* Where have you seen this before?

* Friend recommendation!
* Maybe these people should be my friends too!

22

Generalizing...

 Now suppose we want to go beyond direct friend
relationships

e Example: How many of my friends' friends (distance-2
neighbors) have me as their best friend's best friend?

e What do we need to do”?
e How about distance k>27

e To compute the answer, we need to run multiple
iterations of MapReduce!

23

Ilterative MapReduce

e The basic model:

 Note that reduce output must be compatible with the

map input!
* What can happen if we filter out some information in the mapper or in the
reducer?

24

Graph algorithms and MapReduce

* A centralized algorithm typically traverses a tree

or a graph one item at a time (there’s only one
“cursor’)

e You've learned breadth-first and depth-first
traversals

 Most algorithms that are based on graphs make

use of multiple map/reduce stages processing
one “wave” at a time

e Sometimes iterative MapReduce, other times chains
of map/reduce

25

"Think like a vertex"

e |et's think about a different model for a bit:

e Suppose we had a network that has exactly the same topology
as the graph, with one node for each vertex

« Suppose each vertex A has some (AISA)le“P'e in the
local state s, put e
* The computation proceeds in rounds. MapReduce
In each round: rounds
» Step #1: Each vertex A reads its local state s, map(A,s,) invocation
e Step #2: A can then send some messages mi map() emits a
to adjacent nodes B, (B;.m;) tuples
e Step #3: Then each vertex A looks at all the reduce(A,{m,,m,,...,mJ})
messages it has received in step #2 invocation
» Step #4: Finally, each vertex can update its reduce() emits an

local state to some other value s,' if it wants to (A,s,')
* This would be a natural fit for many graph algorithms!

26

Recap: MapReduce on graphs

e Suppose we want to:
e compute a function for each vertex in a graph...
e ... using data from vertices at most k hops away

e We can do this as follows:

e "Push" information along the edges
* "Think like a vertex"

e Finally, perform the computation at each vertex

e May need more than one MapReduce phase
e Iterative MapReduce: Outputs of stage i — inputs of stage i+1

27

Plan for todax‘

%
Y‘ -
4

* Atoolbox of algorithms (=
* Single-source shortest path (SSSP)
* k-means clustering
 Classification with Naive Bayes

28

Path-based algorithms

e Sometimes our goal is to compute information about the

paths (sets of paths) between nodes
* Edges may be annotated with : , Or

e Examples of such problems:
from one node to another
 Minimum spanning tree (minimal-cost tree connecting all vertices
in a graph)
e Steiner tree (minimal-cost tree connecting certain nodes)
* Topological sort (node in a DAG comes before all nodes it points to)

29

Single-Source Shortest Path (SSSP)

Given a directed graph G = (V, E) in which each edge e has a cost c(e):

= Compute the cost of reaching each node from the source node s in the
most efficient way (potentially after multiple 'hops')

30

SSSP: Intuition

* We can formulate the problem using induction

* The shortest path follows the principle of optimality:
the last step (u,v) makes use of the shortest path to u

e We can express this as follows:

bestDistanceAndPath (v) {
if (v == source) then {
return <distance 0, path [v]>
} else {
find argmin u (bestDistanceAndPath[u] + dist[u,v])
return <bestDistanceAndPath[u] + dist[u,v], path[u] + v>

}
}

31

SSSP: traditional solution

e Traditional approach: Dijkstra's algorithm

V: vertices, E: edges, S: start node

foreach v in V 7

dist S to[v] := infinity
spSet = {} - last step of path
Q :=V to default values
while (Q not empty) do
u := Q.removeNodeClosestTo (S) Update length and
spSet := spSet + {u}

_ _ path based on edges
foreach v in V where (u,v) in E radiating from u

if (dist S To[v] > dist S To[u]+cost(u,v)) then
dist S To[v] = dist S To[u] + cost(u,v)
predecessor[v] = u

32

SSSP: Dijkstra in Action

a 1

Q={s,a,b,c,d} spSet = {}
dist_S_To: {(a,*), (b,*), (¢,*), (d,~)}
predecessor: {(a,nil), (b,nil), (¢,nil), (d,nil)}

33

Example from CLR 2nd ed. p. 528

SSSP: Dijkstra in Action

a

Q={a,b,c,d} spSet = {s}
dist_S_To: {(a,10), (b,*~), (¢,5), (d,~)}
predecessor: {(a,s), (b,nil), (c,s), (d,nil)}

34

Example from CLR 2nd ed. p. 528

SSSP: Dijkstra in Action

/|7b

Q={a,b,d} spSet = {c,s}
dist_S_To: {(a,8), (b,14), (c,5), (d,7)}
predecessor: {(a,c), (b,c), (c,s), (d,c)}

35

Example from CLR 2nd ed. p. 528

SSSP: Dijkstra in Action

Q={a,b} spSet = {c,d,s}
dist_S_To: {(a,8), (b,13), (¢,5), (d,7)}
predecessor: {(a,c), (b,d), (c,s), (d,c)}

36

Example from CLR 2nd ed. p. 528

SSSP: Dijkstra in Action

Q={b} spSet = {a,c,d,s}
dist_S_To: {(a,8), (b,9), (c,5), (d,7)}
predecessor: {(a,c), (b,a), (c,s), (d,c)}

37

Example from CLR 2nd ed. p. 528

SSSP: Dijkstra in Action

1
"8

Q={} spSet ={a,b,c,d, s}
dist_S_To: {(a,8), (b,9), (c,5), (d,7)}
predecessor: {(a,c), (b,a), (c,s), (d,c)}

b

38

Example from CLR 2nd ed. p. 528

SSSP: How to parallelize?

e Dijkstra traverses the graph along a single route
at a time, prioritizing its traversal to the next
step based on total path length (and avoiding

cycles)
* No real parallelism to be had here!

* Intuitively, we want something
that “radiates” from the origin,

one “edge hop distance” at a time
e Each step outwards can be done in parallel, before
another iteration occurs - or we are done
e Recall our earlier discussion: Scalability depends on
the algorithm, not (just) on the problem! 2

SSSP: Revisiting the inductive definition

bestDistanceAndPath (v) {
if (v == source) then {
return <distance 0, path [v]>
} else {
find argmin u (bestDistanceAndPath[u] + dist[u,v])
return <bestDistanceAndPath[u] + dist[u,v], path[u] + v>

}
}

e Dijkstra’s algorithm carefully considered each uin a
way that allowed us to prune certain points

e |nstead we can look at all potential u’s for each v

 Compute iteratively, by keeping a “frontier set” of u
nodes i edge-hops from the source

40

SSSP: MapReduce formulation

this is the next... and here is the adjacency

o The shortest path we have found so fap-- .
* NIt from the source to nodeID has length Lop on that path.. list for nodeID
...
 For each node, node ID = «k,i, {<€@ode-lD,edg -cost>}>
* map:

e take node ID = <dist, next, {<succ-node-ID,edge-cost>}>
* For each succ-node-ID:

* emit succ-node ID = {<node ID, distance+edge- his is a new path from
the source to succ-node-
ID
that we just discovered
¢ I’ed uce: (not necessarily shortest)

e distance := min cost from a predecessor; next:= that predec.
e emit node ID = <distance, next, {<succ-node-ID,edge-cost>}>

Repeat until no changes
* Postprocessing: Remove adjacency lists

41

Example: SSSP - Parallel BFS in MapReduce

e Adjacency matrix

[)
S a b C d 1
S 10 5
a 1 | 2
b
c 3109 2 4 6
d | 7 6
e Adjacency List
s: (a, 10), (c, b)
a: (b, 1), (c, 2) 2
b: (d, 4)
c: (a, 3), (b, 9), (d, 2) C d
d: (s, 7), (b, 6)

42

lteration O: Base case

mapper:

reducer:

(a,<s,10>) (c,<s,5>) edges

(a,<10, ...>) (c,<5, ...>)

Wave"

43

I[teration O- Parallel BFS in MapReduce

e Map input: <node ID, <dist, adj list>>

<s, <0, <(a, 10), (c, 5)>>>
<a, <inf, <(b, 1), (c, 2)>>>

<b, <inf, <(d, 4)>>>

’ ’

e Map output

<a, 10> <c, b>

<b, inf> <c, inf>

<d, inf>

<a, inf> <b, inf> <d, inf>
<s, inf> <b, inf>

S

- <dest node ID, dist&

<s, <0, <(a, 10), (¢, 5)>>>
<a, <inf, <(b, 1), (¢, 2)>>>
<b, <inf, <(d, 4)>>>

a b
(o) v (o)

.

<cl <infl <(al 3)[(bl 9)[(dl 2)>>>

<d, <inf, <(s, 7), (b, 6)>>>

44

Ilteration O - Parallel BFS in MapReduce

e Reduce input: <node ID, dist> :

<s,
<s,

<a,
<a,

<D,
<D,

<C

<d,
<d,

<0, <(a, 10), (c, 5)>>>
inf>

<inf, <(b, 1), (¢, 2)>>>
10> <a, inf>

<inf, <(d, 4)>>>
inf> <b, inf> <b, inf>

, <inf, <(a, 3), (b, 9), (d, 2)>>>
<c,

5> <c¢, inf>

<inf, <(s, 7), (b, 6)>>>
inf> <d, inf>

o
N

—

45

Ilteration O- Parallel BFS in MapReduce

* Reduce input: <node ID, dist> ¢ >
<s, <0, <(a, 10), (¢, 5)>>>
<sHpf>

<a, <inf, <(b, 1), (c, 2)>>> /
<a, 10> <a-inf>)
<b, <inf, <(d, 4)>>> \ |
ing _ _
S 5
<c, <#nf, <(a, 3), (b, 9), (d, 2)>>>
<c, 5> <e-inf> 2

<d, <inf, <(s, 7), (b, 6)>>>

—

46

lteration 1

mapper:

reducer:

(a,<s,10>) (c,<s,5>) (a,<c,8>) (¢,<a,12>) (b,<a,11>)
(b,<c,14>) (d,<c,7>) edges
(a,<8, ...>) (¢,<5, ...>) (b,<11], ...>) (d,<7, ...>)

47

<s

<a

<C

<d

<a
<b
<d

<a

<s

Ilteration 1- Parallel BFS in MapReduce

Reduce output: <node ID, <dist, adj list>>
= Map input for next iteration

, <0, <(a, 10), (¢, 5)>>>

, <10, <(b, 1), (¢, 2)>>>
<b, <inf, <(d, 4)>>> S

1
, <5, <(a, 3), (b, 9), (d, 2)>>> 2 3 9 4 6
, <inf, <(s, 7), (b, 6)>>> \

. T~
Map output: <dest node ID, dlstx

, 10> <c, 5>

, 11> <c, 12> <S5, <0, <(al 10)1 (cl 5)>>>

,inf> <q, <10, <(b, 1), (c, 2)>>>

, 8> <b, 14> <d, 7>

<b, <inf, <(d, 4)>>>
, inf> <D, inf>

<c, <5, <(q, 3), (b, 9), (d, 2)>>>
<d, <infl <(s, 7), (b, 6)>>>

a

b
@@

@®——06

48

Ilteration 1 - Parallel BFS in MapReduce
 Reduce input: <node ID, dist> s -
<s, <0, <(a, 10), (c, 5)>>>

<s, inf>

<a, <10, <(b, 1), (c, 2)>>> /19/
<a, 10> <a, 8> \2 3 4 6
T~
<b, <inf, <(d, 4)>>> R
<b, 11> <b, 14> <b, inf>
®—

<c, <b, <(a, 3), (b, 9), (d, 2)>>>

—

<c, b> <c, 12>

(REWinf, <(s, 7), (b, 6)>>>
f><d, 7> 49

lteration 1- Parallel BFS in MapReduce

 Reduce input: <node ID, dist>

<s, <0, <(a, 10), (¢, 5)>>>
<s. inf>

<a, <49, <(b, 1), (c, 2)>>>
<3, 40><3a, 8>

<b, <inf, <(d, 4)>>>
<b, 11> <b; 44> <b;inf>

<c, <b, <(a, 3), (b, 9), (d, 2)>>>
< b><e 42>

<d, <inf, <(s, 7), (b, 6)>>>

o
N
s

H—

50

lteration 2

mapper: (a,<s,10>) (¢,<s,5>) (a,<c,8>) (¢,<a,12>) (b, <a,11>)
(b,<c,14>) (d,<c,7>) (b,<d,13>) (d,<b,15>) edges
reducer: (a,<8>)(c,<5>) (b,<11>) (d,<7>)

b "Wave

Ilteration 2- Parallel BFS in MapReduce

 Reduce output: <node ID, <dist, adj list>>
= Map input for next iteration

(]
<s, <0, <(a, 10), (¢, 5)>>>
<a, <8, <(b, 1), (¢, 2)>>>
<b, <11, <(d, 4)>>>

<c, <5, <(a, 3), (b, 9), (d, 2)>>>
<d1 <77 <(87 7)1 (b! 6)>>>

... the rest omitted ... X

H—

Iteration 3 |Nochange!

nv !

mapper:

reducer:

(a,<s,10>) (¢,<s,5>) (a,<c,8>) (c,<a,12>) (b,<a,11>)
(b,<c,14>) (d,<c,7>) (b,<d,13>) (d,<b,15>) edges
(a,<8>) (¢,<5>) (b,<11>) (d,<7>)

Question: If a vertex's path cost
is 'rhe same in two consecutive

e er'1'ex has converged?

53

BFS Pseudo-Code

1: class MAPPER

2 method Map(nid n, node N)

3 d — N.DistaANCE

4: EmiT(nid n, N) - Pass along graph structure
5 for all nodeid m € N.ApjacEncyLisT do

6 Emit(nid m,d + 1) - Emit distances to reachable nodes

1: class REDUCER

2 method REbucE(nid m, [dy, ds, . . .])

3 dmin «— 00

4 M— @

5: for all d € counts [d;.ds,...|] do

6 it IsNoDE(d) then

7 M —d > Recover graph structure
8 else if d < d,,;, then > Look for shorter distance
0 Apin — d

10 M .DISTANCE «— d, iy, - Update shortest distance
11: Emit(nid m,node M)

Stopping Criterion

e How many iterations are needed in parallel BFS
(equal edge weight case)?

* Now answer the question...
* Six degrees of separation?

* Practicalities of implementation in MapReduce

Comparison to Dijkstra

e Dijkstra’s algorithm is more efficient

e At any step it only pursues edges from the minimum-
cost path inside the frontier

* MapReduce explores all paths in parallel
e | ots of “waste”
e Useful work is only done at the “frontier”

* Why can’t we do better using MapReduce?

Summary: SSSP

 Path-based algorithms typically involve iterative

map/reduce
 They are typically formulated in a way that
traverses in “waves” or “stages”, like breadth-
first search
e This allows for parallelism
* They need a way to test for convergence
e Example: Single-source shortest path (SSSP)

* Original Dijkstra formulation is hard to parallelize
 But we can make it work with the "wave" approach

57

