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Recap: MapReduce dataflow 
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What we have seen so far 

• Initial algorithms 

• map/reduce model could be used to filter, collect, and 

aggregate data values 

 

• Useful for data with limited structure 

• We could extract pieces of input data items and collect them to 

run various reduce operations 

• We could “join” two different data sets on a common key 

 

• But that’s not enough… 
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Beyond average/sum/count 

• Much of the world is a network of 

relationships and shared features 

• Members of a social network can be friends, and 

may have shared interests / memberships / etc. 

• Customers might view similar movies, and might 

even be clustered by interest groups 

• The Web consists of documents with links 

• Documents are also related by topics, words, 

authors, etc. 
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Goal: Develop a toolbox 

• We need a toolbox of algorithms useful for 

analyzing data that has both relationships and 

properties 

 

• For the next ~2 lectures we’ll start to build this 

toolbox 

• Compare the “traditional” and MapReduce solution 
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Plan for today 

• Representing data in graphs 

• Graph algorithms in MapReduce 

• Computation model 

• Iterative MapReduce 

• A toolbox of algorithms 

• Single-source shortest path (SSSP) 

• k-means clustering 

• Classification with Naïve Bayes 
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Thinking about related objects 

• We can represent related objects as a labeled, 

directed graph 

• Entities are typically represented as nodes; 

relationships are typically edges 

• Nodes all have IDs, and possibly other properties 

• Edges typically have values, possibly IDs and other 

properties 
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Encoding the data in a graph 

• Recall basic definition of a graph: 

• G = (V, E) where V is vertices, E is edges of the form 

(v1,v2) where v1,v2  V 

• Assume we only care about connected vertices 

• Then we can capture a graph simply as the edges 

• ... or as an adjacency list: vi goes to [vj, vj+1, … ] 
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Graph encodings: Set of edges 

(Alice, Facebook) 

(Alice, Sunita) 

(Jose, Magna Carta) 

(Jose, Sunita) 

(Mikhail, Facebook) 

(Mikhail, Magna Carta) 

(Sunita, Facebook) 

(Sunita, Alice) 

(Sunita, Jose) 
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Graph encodings: Adding edge types 

(Alice, fan-of, Facebook) 

(Alice, friend-of, Sunita) 

(Jose, fan-of, Magna Carta) 

(Jose, friend-of, Sunita) 

(Mikhail, fan-of, Facebook) 

(Mikhail, fan-of, Magna Carta) 

(Sunita, fan-of, Facebook) 

(Sunita, friend-of, Alice) 

(Sunita, friend-of, Jose) 
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Graph encodings: Adding weights 

(Alice, fan-of, 0.5, Facebook) 

(Alice, friend-of, 0.9, Sunita) 

(Jose, fan-of, 0.5, Magna Carta) 

(Jose, friend-of, 0.3, Sunita) 

(Mikhail, fan-of, 0.8, Facebook) 

(Mikhail, fan-of, 0.7, Magna Carta) 

(Sunita, fan-of, 0.7, Facebook) 

(Sunita, friend-of, 0.9, Alice) 

(Sunita, friend-of, 0.3, Jose) 
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Recap: Related objects 

• We can represent the relationships between related 

objects as a directed, labeled graph 
• Vertices represent the objects 

• Edges represent relationships 

 

• We can annotate this graph in various ways 
• Add labels to edges to distinguish different types 

• Add weights to edges 

• ... 

 

• We can encode the graph in various ways 
• Examples: Edge set, adjacency list 
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Plan for today 

• Representing data in graphs 

• Graph algorithms in MapReduce 

• Computation model 

• Iterative MapReduce 

• A toolbox of algorithms 

• Single-source shortest path (SSSP) 

• k-means clustering 

• Classification with Naïve Bayes 
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A computation model for graphs 

• Once the data is encoded in this way, we can perform 

various computations on it 
• Simple example: Which users are their friends' best friend? 

• More complicated examples (later): Page rank, adsorption, ...  

• This is often done by 
• annotating the vertices with additional information, and  

• propagating the information along the edges 

• "Think like a vertex"! 
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A computation model for graphs 

• Example: Am I my friends' best friend? 
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Can we do this in MapReduce? 

• Using adjacency list representation? 
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map(key: node, value: [<otherNode, relType, strength>]) 

{ 

 

 

} 

reduce(key: ________, values: list of _________) 

{ 

 

 

} 



Can we do this in MapReduce? 

• Using single-edge data representation? 
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map(key: node, value: <otherNode, relType, strength>) 

{ 

 

 

} 

reduce(key: ________, values: list of _________) 

{ 

 

 

} 



A computation model for graphs 

• Example: Am I my friends' best friend? 

• Step #1: Discard irrelevant vertices and edges 
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A computation model for graphs 

• Example: Am I my friends' best friend? 

• Step #1: Discard irrelevant vertices and edges 

• Step #2: Annotate each vertex with list of friends 

• Step #3: Push annotations along each edge 
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A computation model for graphs 

• Example: Am I my friends' best friend? 

• Step #1: Discard irrelevant vertices and edges 

• Step #2: Annotate each vertex with list of friends 

• Step #3: Push annotations along each edge 
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A computation model for graphs 

• Example: Am I my friends' best friend? 

• Step #1: Discard irrelevant vertices and edges 

• Step #2: Annotate each vertex with list of friends 

• Step #3: Push annotations along each edge 

• Step #4: Determine result at each vertex 
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A real-world use case 

• A variant that is actually used in social networks 

today: "Who are the friends of multiple of my 

friends?" 

• Where have you seen this before? 

 

• Friend recommendation! 

• Maybe these people should be my friends too! 
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Generalizing… 

• Now suppose we want to go beyond direct friend 

relationships 

• Example: How many of my friends' friends (distance-2 

neighbors) have me as their best friend's best friend? 

• What do we need to do? 

 

• How about distance k>2? 

 

• To compute the answer, we need to run multiple 

iterations of MapReduce! 
23 



Iterative MapReduce 

• The basic model: 
 

 

 
 

 

 

 

 

 

• Note that reduce output must be compatible with the 

map input! 
• What can happen if we filter out some information in the mapper or in the 

reducer? 
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copy files from input dir  staging dir 1 

(optional: do some preprocessing) 

 

while (!terminating condition) { 

  map from staging dir 1 

  reduce into staging dir 2 

  move files from staging dir 2  staging dir1 

} 

 

(optional: postprocessing) 
move files from staging dir 2  output dir 



Graph algorithms and MapReduce 

• A centralized algorithm typically traverses a tree 

or a graph one item at a time (there’s only one 

“cursor”) 

• You’ve learned breadth-first and depth-first 

traversals 

 

• Most algorithms that are based on graphs make 

use of multiple map/reduce stages processing 

one “wave” at a time 

• Sometimes iterative MapReduce, other times chains 

of map/reduce 
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"Think like a vertex" 
• Let's think about a different model for a bit: 

• Suppose we had a network that has exactly the same topology 

as the graph, with one node for each vertex 

• Suppose each vertex A has some  

local state sA 

• The computation proceeds in rounds.  

In each round: 

• Step #1: Each vertex A reads its local state sA  

• Step #2: A can then send some messages mi 

to adjacent nodes Bi 

• Step #3: Then each vertex A looks at all the  

messages it has received in step #2 

• Step #4: Finally, each vertex can update its 

local state to some other value sA' if it wants to 

• This would be a natural fit for many graph algorithms! 
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input file 
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map() emits a 
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Recap: MapReduce on graphs 

• Suppose we want to: 
• compute a function for each vertex in a graph... 

• ... using data from vertices at most k hops away 

 

• We can do this as follows: 
• "Push" information along the edges 

• "Think like a vertex" 

• Finally, perform the computation at each vertex 

 

• May need more than one MapReduce phase 
• Iterative MapReduce: Outputs of stage i  inputs of stage i+1 
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Plan for today 

• Representing data in graphs 

• Graph algorithms in MapReduce 

• Computation model 

• Iterative MapReduce 

• A toolbox of algorithms 

• Single-source shortest path (SSSP) 

• k-means clustering 

• Classification with Naïve Bayes 

28 

NEXT 



Path-based algorithms 

• Sometimes our goal is to compute information about the 

paths (sets of paths) between nodes 
• Edges may be annotated with cost, distance, or similarity 

 

• Examples of such problems: 
• Shortest path from one node to another 

• Minimum spanning tree (minimal-cost tree connecting all vertices 

in a graph) 

• Steiner tree (minimal-cost tree connecting certain nodes) 

• Topological sort (node in a DAG comes before all nodes it points to) 
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Single-Source Shortest Path (SSSP) 
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SSSP: Intuition 
• We can formulate the problem using induction 

• The shortest path follows the principle of optimality:  

the last step (u,v) makes use of the shortest path to u 

 

• We can express this as follows: 
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bestDistanceAndPath(v) { 

  if (v == source) then { 

    return <distance 0, path [v]> 

  } else { 

    find argmin_u (bestDistanceAndPath[u] + dist[u,v]) 

    return <bestDistanceAndPath[u] + dist[u,v], path[u] + v> 

  } 

} 



SSSP: traditional solution 

• Traditional approach: Dijkstra's algorithm 
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V: vertices, E: edges, S: start node 

 

foreach v in V 

  dist_S_to[v] := infinity 

  predecessor[v] = nil 

spSet = {} 

Q := V 

while (Q not empty) do 

  u := Q.removeNodeClosestTo(S) 

  spSet := spSet + {u} 

  foreach v in V where (u,v) in E 

    if (dist_S_To[v] > dist_S_To[u]+cost(u,v)) then 

      dist_S_To[v] = dist_S_To[u] + cost(u,v) 

    predecessor[v] = u  

Initialize length and 
last step of path 
to default values 

Update length and 
path based on edges 
radiating from u 



SSSP: Dijkstra in Action  
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SSSP: Dijkstra in Action  
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SSSP: Dijkstra in Action  
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SSSP: Dijkstra in Action  
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SSSP: Dijkstra in Action  
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SSSP: Dijkstra in Action  
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SSSP: How to parallelize? 

• Dijkstra traverses the graph along a single route 

at a time, prioritizing its traversal to the next 

step based on total path length (and avoiding 

cycles) 

• No real parallelism to be had here! 
 

• Intuitively, we want something  

that “radiates” from the origin,  

one “edge hop distance” at a time 

• Each step outwards can be done in parallel, before 

another iteration occurs - or we are done 

• Recall our earlier discussion: Scalability depends on 

the algorithm, not (just) on the problem! 
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SSSP: Revisiting the inductive definition 

• Dijkstra’s algorithm carefully considered each u in a 

way that allowed us to prune certain points 

• Instead we can look at all potential u’s for each v 

• Compute iteratively, by keeping a “frontier set” of u 

nodes i edge-hops from the source 
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bestDistanceAndPath(v) { 

  if (v == source) then { 

    return <distance 0, path [v]> 

  } else { 

    find argmin_u (bestDistanceAndPath[u] + dist[u,v]) 

    return <bestDistanceAndPath[u] + dist[u,v], path[u] + v> 

  } 

} 



SSSP: MapReduce formulation 

• init: 
• For each node, node ID  <, -, {<succ-node-ID,edge-cost>}> 

• map: 
• take node ID  <dist,  next, {<succ-node-ID,edge-cost>}> 

• For each succ-node-ID: 

• emit succ-node ID  {<node ID, distance+edge-cost>} 

• emit node ID  distance,{<succ-node-ID,edge-cost>} 

• reduce: 
• distance := min cost from a predecessor; next := that predec. 

• emit node ID  <distance, next, {<succ-node-ID,edge-cost>}> 

• Repeat until no changes 

• Postprocessing: Remove adjacency lists 

41 

Why is this necessary? 

The shortest path we have found so far 
from the source to nodeID has length 
...  

... and here is the adjacency  
list for nodeID 

This is a new path from  
the source to succ-node-
ID 
that we just discovered 
(not necessarily shortest) 

... this is the next 
hop on that path... 



Example: SSSP – Parallel BFS in MapReduce 

• Adjacency matrix 

 

 

 

 

 

• Adjacency List 
s: (a, 10), (c, 5) 

a: (b, 1), (c, 2) 

b: (d, 4) 

c: (a, 3), (b, 9), (d, 2) 

d: (s, 7), (b, 6) 

 

42 

0 

 

 

 

 

10 

5 

2 3 

2 

1 

9 

7 

4 6 

s 

a b 

c d 

s a b c d 

s 10 5 

a 1 2 

b 4 

c 3 9 2 

d 7 6 

s a b c d 

s 

a 

b 

c 

d 



Iteration 0: Base case 
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mapper:   (a,<s,10>) (c,<s,5>) edges 

  

reducer:  (a,<10, ...>) (c,<5, ...>) 
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Iteration 0– Parallel BFS in MapReduce 

• Map input: <node ID, <dist, adj list>> 
<s, <0, <(a, 10), (c, 5)>>> 

<a, <inf, <(b, 1), (c, 2)>>> 

<b, <inf, <(d, 4)>>> 

<c, <inf, <(a, 3), (b, 9), (d, 2)>>> 

<d, <inf, <(s, 7), (b, 6)>>> 

 

• Map output: <dest node ID, dist> 
<a, 10>  <c, 5> 

<b, inf> <c, inf> 

<d, inf> 

<a, inf> <b, inf> <d, inf> 

<s, inf> <b, inf> 
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<s, <0, <(a, 10), (c, 5)>>> 
<a, <inf, <(b, 1), (c, 2)>>> 
<b, <inf, <(d, 4)>>> 
<c, <inf, <(a, 3), (b, 9), (d, 2)>>> 
<d, <inf, <(s, 7), (b, 6)>>> 



Iteration 0 – Parallel BFS in MapReduce 

• Reduce input: <node ID, dist> 
<s, <0, <(a, 10), (c, 5)>>> 

<s, inf> 

 

<a, <inf, <(b, 1), (c, 2)>>> 

<a, 10> <a, inf> 

 

<b, <inf, <(d, 4)>>> 

<b, inf> <b, inf> <b, inf>  

 

<c, <inf, <(a, 3), (b, 9), (d, 2)>>> 

<c, 5> <c, inf> 

 

<d, <inf, <(s, 7), (b, 6)>>> 

<d, inf> <d, inf> 
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Iteration 0– Parallel BFS in MapReduce 

• Reduce input: <node ID, dist> 
<s, <0, <(a, 10), (c, 5)>>> 

<s, inf> 

 

<a, <inf, <(b, 1), (c, 2)>>> 

<a, 10> <a, inf> 

 

<b, <inf, <(d, 4)>>> 

<b, inf> <b, inf> <b, inf>  

 

<c, <inf, <(a, 3), (b, 9), (d, 2)>>> 

<c, 5> <c, inf> 

 

<d, <inf, <(s, 7), (b, 6)>>> 

<d, inf> <d, inf> 
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Iteration 1 

47 

mapper:   (a,<s,10>) (c,<s,5>) (a,<c,8>) (c,<a,12>) (b,<a,11>)  

 (b,<c,14>) (d,<c,7>) edges 

reducer:  (a,<8, ...>) (c,<5, ...>) (b,<11, ...>) (d,<7, ...>) 
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Iteration 1– Parallel BFS in MapReduce 

• Reduce output: <node ID, <dist, adj list>> 

= Map input for next iteration 

<s, <0, <(a, 10), (c, 5)>>> 

<a, <10, <(b, 1), (c, 2)>>> 

<b, <inf, <(d, 4)>>> 

<c, <5, <(a, 3), (b, 9), (d, 2)>>> 

<d, <inf, <(s, 7), (b, 6)>>> 

• Map output: <dest node ID, dist> 
<a, 10>  <c, 5> 

<b, 11> <c, 12> 

<d, inf> 

<a, 8> <b, 14> <d, 7> 

<s, inf> <b, inf> 
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<s, <0, <(a, 10), (c, 5)>>> 

<a, <10, <(b, 1), (c, 2)>>> 

<b, <inf, <(d, 4)>>> 

<c, <5, <(a, 3), (b, 9), (d, 2)>>> 

<d, <inf, <(s, 7), (b, 6)>>> 



Iteration 1 – Parallel BFS in MapReduce 

• Reduce input: <node ID, dist> 

<s, <0, <(a, 10), (c, 5)>>> 

<s, inf> 

 

<a, <10, <(b, 1), (c, 2)>>> 

<a, 10> <a, 8>  

 

<b, <inf, <(d, 4)>>> 

<b, 11> <b, 14> <b, inf> 

 

<c, <5, <(a, 3), (b, 9), (d, 2)>>> 

<c, 5> <c, 12> 

 

<d, <inf, <(s, 7), (b, 6)>>> 

<d, inf> <d, 7> 
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Iteration 1– Parallel BFS in MapReduce 

• Reduce input: <node ID, dist> 

<s, <0, <(a, 10), (c, 5)>>> 

<s, inf> 

 

<a, <10, <(b, 1), (c, 2)>>> 

<a, 10> <a, 8>  

 

<b, <inf, <(d, 4)>>> 

<b, 11> <b, 14> <b, inf> 

 

<c, <5, <(a, 3), (b, 9), (d, 2)>>> 

<c, 5> <c, 12> 

 

<d, <inf, <(s, 7), (b, 6)>>> 

<d, inf> <d, 7> 
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Iteration 2 

51 

mapper:   (a,<s,10>) (c,<s,5>) (a,<c,8>) (c,<a,12>) (b,<a,11>) 
 (b,<c,14>) (d,<c,7>) (b,<d,13>) (d,<b,15>) edges 

reducer:  (a,<8>) (c,<5>) (b,<11>) (d,<7>) 
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Iteration 2– Parallel BFS in MapReduce 

• Reduce output: <node ID, <dist, adj list>> 

= Map input for next iteration 

<s, <0, <(a, 10), (c, 5)>>> 

<a, <8, <(b, 1), (c, 2)>>> 

<b, <11, <(d, 4)>>> 

<c, <5, <(a, 3), (b, 9), (d, 2)>>> 

<d, <7, <(s, 7), (b, 6)>>> 

 

 … the rest omitted … 
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Iteration 3 

53 

mapper:   (a,<s,10>) (c,<s,5>) (a,<c,8>) (c,<a,12>) (b,<a,11>)  

 (b,<c,14>) (d,<c,7>) (b,<d,13>) (d,<b,15>) edges 

reducer:  (a,<8>) (c,<5>) (b,<11>) (d,<7>) 

No change! 

Convergence! 

 

Question: If a vertex's path cost 
is the same in two consecutive 
rounds, can we be sure that 
this vertex has converged? 
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BFS Pseudo-Code 



Stopping Criterion 

• How many iterations are needed in parallel BFS 

(equal edge weight case)? 

• Now answer the question... 

• Six degrees of separation? 

• Practicalities of implementation in MapReduce 

 



Comparison to Dijkstra 

• Dijkstra’s algorithm is more efficient  

• At any step it only pursues edges from the minimum-

cost path inside the frontier 

• MapReduce explores all paths in parallel 

• Lots of “waste” 

• Useful work is only done at the “frontier” 

• Why can’t we do better using MapReduce? 



Summary: SSSP 

• Path-based algorithms typically involve iterative 

map/reduce 

• They are typically formulated in a way that 

traverses in “waves” or “stages”, like breadth-

first search 

• This allows for parallelism 

• They need a way to test for convergence 

• Example: Single-source shortest path (SSSP) 

• Original Dijkstra formulation is hard to parallelize 

• But we can make it work with the "wave" approach 
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