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Recap: MapReduce dataflow 
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Recap: MapReduce 

3 

map(key    , value         ) 

{ 

   

 

 

} 

 

reduce(rkey       , rvalues          ) 

{ 

 

 

 

} 

  String[] words = value.split(" "); 

  for each w in words 

    emit(w, 1); 

 

  Integer result = 0; 

  foreach v in rvalues 

    result = result + v; 

  emit(rkey, v); 

:URL :Document 

:String :Integer[] 

reduce gets all the  
intermediate values 
with the same rkey These types can be (and often are) 

different from the ones in map() 

Produces intermediate 
key-value pairs that 
are sent to the reducer 

Any key-value pairs emitted 
by the reducer are added to  
the final output 

These types depend on  
the input data 

Both map() and reduce() are 
stateless: Can't have a 'global 
variable that is preserved  
across invocations! 



Plan for today 

• Single-pass algorithms in MapReduce 

• Filtering algorithms 

• Aggregation algortihms 

• Intersections and joins 

• Partial Cartesian products 

• Sorting 
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NEXT 



The basic idea 

• Single-pass algorithms 

• Break algorithm into 

filter/collect/aggregate steps 
• Filter/collect becomes part of the map 

function 

• Collect/aggregate becomes part of the 
reduce function 

• Note that sometimes we may need 

multiple map / reduce stages – chains of 

maps and reduces 
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Word Count: Baseline 



Word Count: Version 1 



MapReduce and Monoids 

• MapReduce assumes commutative Monoids for the 

underlying algebraic set operations 

• Monoid 

• Suppose that S is a set and • is some binary operation S × S → 

S, then S with • is a monoid if it satisfies the following two 

axioms:  
• Associativity: For all a, b and c in S, the equation (a • b) • c = a • (b • c) 

holds.  

• Identity element: There exists an element e in S such that for every 

element a in S, the equations e • a = a • e = a hold. 

• A binary operation • on a set S is called commutative if: x • y = 

y • x for all  x , y ∈ S. 
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https://en.wikipedia.org/wiki/Set_(mathematics)
https://en.wikipedia.org/wiki/Binary_operation
https://en.wikipedia.org/wiki/Set_(mathematics)


Commutative Monoid and MapReduce 

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 (               ) (                                        ) (                     ) 

3 7 4 
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Closure 

Takes type X and returns type X 

 

• 3 + 4 = 7 (int + int = int) 

• 5 / 2 = 2.5 (int + int != float) 

 



Identity 

“concept of nothing” 

 

• 5 + 0 = 5 

• 5 * 1 = 5 

• {3, 11, 9} + {} = {3, 11, 9} 

 

• Initializing a counter to zero 



Associativity 

Add parenthesis anywhere 

 

• 1 + 2 + 3 = (1 + 2) + 3 

• 10 / 2 / 5 != 10 / (2 / 5) 

 

 

• Huge jobs can become many small jobs 



Commutativity 

Reordering 

 

• 1 + 2 + 3 =  2 + 3 + 1 

• 10 / 2 !=  2 /10 

 

 



Monoid 

• Closure (int + int = int) 

• Identity (1 + 0 = 1) 

• Associativity (1 + 2 + 3 = (1 + 2) + 3) 

 

• Commutative Monoid 

 

 

 

 



Design Pattern for Local Aggregation 

• “In-mapper combining” 

• Fold the functionality of the combiner into the mapper by 

preserving state across multiple map calls 

• Advantages 

• Speed 

• Faster than actual combiners 

• Disadvantages 

• Explicit memory management required 

• Potential for order-dependent bugs 



Combiner Design 

• Combiners and reducers share same method 

signature 

• Sometimes, reducers can serve as combiners 

• Often, not… 

• Remember: combiner are optional optimizations 

• Should not affect algorithm correctness 

• May be run 0, 1, or multiple times 

• Example: find average of all integers associated with 

the same key 

 



Filtering algorithms 

• Goal: Find lines/files/tuples with a particular 

characteristic 

 

• Examples: 

• grep Web logs for requests to *.ucc.ie/* 

• find in the Web logs the hostnames accessed by 192.168.2.1 

• locate all the files that contain the words 'Apple' and 'Jobs' 

 

• Generally: map does most of the work, reduce may 

simply be the identity 
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Aggregation algorithms 

• Goal: Compute the maximum, the sum, the 

average, ..., over a set of values 

 

• Examples: 

• Count the number of requests to *.ucc.ie/* 

• Find the most popular domain 

• Average the number of requests per page per Web site 

 

• Often: map may be simple or the identity 
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Computing the Mean 



A more complex example 
• Goal: Billing for Amazon CloudFront 

• Input: Log files from the edge servers. Two files per domain: 

• access_log-www.foo.com-20111006.txt: HTTP accesses 

• ssl_access_log-www.foo.com-20111006.txt: HTTPS accesses 

• Example line:  
158.130.53.72 - - [06/Oct/2011:16:30:38 -0400] 

"GET /largeFile.ISO HTTP/1.1" 200 8130928734 "-" 

"Mozilla/5.0 (compatible; MSIE 5.01; Win2000)" 

• Mapper receives (filename,line) tuples 

• Billing policy (simplified): 

• Billing is based on a mix of request count and data traffic (why?) 

• 10,000 HTTP requests cost $0.0075 

• 10,000 HTTPS requests cost $0.0100 

• One GB of traffic costs $0.12 

• Desired output is a list of (domain, grandTotal) tuples 
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Advanced Aggregation: Combiners 
• Certain functions can be decomposed into partial 

steps: 
• Can take counts of two sub-partitions, sum them up to get a 

complete count for the partition 

• Can take maxes of two sub-partitions, max them to get a 

complete max for the partition 

 

 

 

• Multiple map jobs on the same machine may write to 

the same reduce key 
• Example: map(1,"Apple juice") -> ("apple",1), ("juice",1) 

• map(2, "Apple sauce") -> ("apple",1),("sauce",1) 

• combiner: ("apple", [1,1]) -> ("apple", 2) 
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Mapper Reducer Combiner 



Intersections and joins 

• Goal: Intersect multiple different inputs on some 

shared values 

• Values can be equal, or meet a certain predicate 

 

• Examples: 

• Find all documents with the words “data” and 

“centric” given an inverted index 

• Find all professors and students in common courses 

and return the pairs <professor,student> for those 

cases 
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Partial Cartesian products 

• Goal: Find some complex relationship, e.g., based 

on pairwise distance 
 

• Examples: 

• Find all pairs of sites within 100m of each other 
 

• Generally hard to parallelize 

• But may be possible if we can divide the input into 

bins or tiles, or link it to some sort of landmark 

• Overlap the tiles? (how does this scale?) 

• Generate landmarks using clustering? 
25 



Sorting 

• Goal: Sort input 

 

• Examples: 

• Return all the domains covered by Google's index and 

the number of pages in each, ordered by the number 

of pages 

 

• The programming model does not support this per 

se, but the implementations do 

• Let’s take a look at what happens in the Shuffle stage 
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Plan for today 

• Single-pass algorithms in MapReduce 

• Filtering algorithms 

• Aggregation algortihms 

• Intersections and joins 

• Partial Cartesian products 

• Sorting 
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NEXT 



The shuffle stage revisited 
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File 

File 

InputFormat 

Split Split Split 

RR RR RR 

map map map 

Partition 

Sort 

Reduce 

OutputFormat 

InputFormat 

Split Split Split 

RR RR RR 

map map map 

Partition 

Sort 

Reduce 

OutputFormat 

File 

File 

Node 1 Node 2 

File system File system 

Combine Combine 

Shuffle really 
consists of 
two parts: 
• Partition 
• Sort 

Example: Hadoop 



Shuffle as a sorting mechanism 

• We can exploit the per-node sorting operation done by 

the Shuffle stage 

• If we have a single reducer, we will get sorted output 

• If we have multiple reducers, we can get partly sorted output (or 

better – consider an order-preserving hash) 
• Note it’s quite easy to write a last-pass file that merges all of the  

part-r-000x files 

 

• Example  

• Return all the domains covered by Google's index and the 

number of pages in each, ordered by the number of pages 
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Strengths and weaknesses 

• What problems can you solve well with 

MapReduce? 

• ... in a single pass? 

• ... in multiple passes? 
 

• Are there problems you cannot solve efficiently 

with MapReduce? 
 

• Are there problems it can't solve at all? 
 

• How does it compare to other ways of doing 

large-scale data analysis? 

• Is MapReduce always the fastest/most efficient 

way? 30 



Recap: MapReduce algorithms 

• A variety of different tasks can be expressed as a single-

pass MapReduce program 

• Filtering and aggregation + combinations of the two 

• Joins on shared elements 

• If we allow multiple MapReduce passes or even fixpoint 

iteration, we can do even more (see later) 

 

• But it does not work for all tasks 

• Partial Cartesian product not an ideal fit, but can be made to 

work with binning and tiling 

• Sorting doesn't work at all, at least in the abstract model, but 

the implementations support it 
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Common mistakes to avoid 

• Mapper and reducer should be stateless 
• Don't use static variables - after map + 

reduce return, they should remember  

nothing about the processed data! 

• Reason: No guarantees about which  

key-value pairs will be processed by  

which workers! 
 

• Don't try to do your own I/O! 
• Don't try to read from, or write to,  

files in the file system 

• The MapReduce framework does all  

the I/O for you: 

• All the incoming data will be fed as arguments to map and reduce 

• Any data your functions produce should be output via emit 
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HashMap h = new HashMap(); 

map(key, value) { 

  if (h.contains(key)) { 

    h.add(key,value); 

    emit(key, "X"); 

  } 

} Wrong! 

map(key, value) { 

  File foo =  

    new File("xyz.txt"); 

  while (true) { 

    s = foo.readLine();   

    ... 

  } 

} Wrong! 



More common mistakes to avoid 

• Mapper must not map too much data to the 

same key 

• In particular, don't map everything to the same key!! 

• Otherwise the reduce worker will be overwhelmed! 

• It's okay if some reduce workers have more work than 

others 
• Example: In WordCount, the reduce worker that works on the 

key 'and' has a lot more work than the reduce worker that 

works on 'syzygy'. 

33 

map(key, value) { 

  emit("FOO", key + " " + value); 

} 

reduce(key, value[]) { 

  /* do some computation on 

  all the values */ 

} 

Wrong! 



Designing MapReduce algorithms 
• Key decision: What should be done by map, and what by 

reduce? 
• map can do something to each individual key-value pair, but  

it can't look at other key-value pairs 

• Example: Filtering out key-value pairs we don't need 

• map can emit more than one intermediate key-value pair for each 

incoming key-value pair 
• Example: Incoming data is text, map produces (word,1) for each word 

• reduce can aggregate data; it can look at multiple values, as 

long as map has mapped them to the same (intermediate) key 

• Example: Count the number of words, add up the total cost, ... 

• Need to get the intermediate format right! 
• If reduce needs to look at several values together, map  

must emit them using the same key! 
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More details on the MapReduce data flow 
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Data partitions 
by key 

Map computation 
partitions 

Reduce computation 
partitions 

Redistribution 
by output’s key 
("shuffle") 

Coordinator 
(Default MapReduce  
uses Filesystem) 
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Some additional details 

• To make this work, we need a few more parts… 

 

• The file system (distributed across all nodes): 
• Stores the inputs, outputs, and temporary results 

• The driver program (executes on one node): 
• Specifies where to find the inputs, the outputs 

• Specifies what mapper and reducer to use 

• Can customize behavior of the execution 

• The runtime system (controls nodes): 
• Supervises the execution of tasks 

• Esp. JobTracker 
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Some details 

• Fewer computation partitions than data partitions 
• All data is accessible via a distributed filesystem with 

replication 

• Worker nodes produce data in key order (makes it easy to 

merge) 

• The master is responsible for scheduling, keeping all nodes 

busy 

• The master knows how many data partitions there are, which 

have completed – atomic commits to disk 

• Locality: Master tries to do work on nodes that have 

replicas of the data 

• Master can deal with stragglers (slow machines) by re-

executing their tasks somewhere else 
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What if a worker crashes? 

• We rely on the file system being shared across 

all the nodes 

• Two types of (crash) faults: 

• Node wrote its output and then crashed 
• Here, the file system is likely to have a copy of the complete 

output 

• Node crashed before finishing its output 
• The JobTracker sees that the job isn’t making progress, and 

restarts the job elsewhere on the system 

• (Of course, we have fewer nodes to do work…) 

• But what if the master crashes? 
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Other challenges 

• Locality 

• Try to schedule map task on machine that already has data 

• Task granularity 

• How many map tasks? How many reduce tasks? 

• Dealing with stragglers 

• Schedule some backup tasks 

• Saving bandwidth 

• E.g., with combiners 

• Handling bad records 

• "Last gasp" packet with current sequence number 

39 



Scale and MapReduce 

• From a particular Google paper on a language built over 

MapReduce: 

• … Sawzall has become one of the most widely used 

programming languages at Google.  …  

[O]n one dedicated Workqueue cluster with 1500 Xeon CPUs, 

there were 32,580 Sawzall jobs launched, using an average of 

220 machines each.  

While running those jobs, 18,636 failures occurred (application 

failure, network outage, system crash, etc.) that triggered 

rerunning some portion of the job. The jobs read a total of 

3.2x1015 bytes of data (2.8PB) and wrote 9.9x1012 bytes 

(9.3TB). 
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