
CS6423: Scalable Computing

Gregory Provan

Spring 2020

Lecture 2: Introduction to MapReduce

Plan for today

• Motivation

• MapReduce architecture

– Data flow

– Execution flow

– Fault tolerance etc.

NEXT

Modern Computing Needs

• Web-search requires traversing enormous graph

• Huge amounts of data to sift through

• Need new computing paradigm

• Examples

– Social networks (Facebook)

– Recommender systems (Amazon)

Social Network

Vertices

• Users

• Posts / Images

Edges

• Social Relationships

• Directed: Twitter

• Undirected: Facebook

• Likes

User - Item Graphs
(Recommender Systems)

Bipartite Graphs

Vertices: Users and

Items

Edges: Ratings

6

Identifying Leaders

Liberal Conservative

Post

Post

Post

Post

Post

Post

Post

Post

Predicting Behavior

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

?
?

?

?

?
?

?

? ?
?

?

?

?
?

?
?

?

?

?

?

?

?

?

?

?

?

?

? ?

?

7

Ratings Item

s

Recommending Products

Users

• Count triangles passing through each vertex:

•

• Measure “cohesiveness” of local community

1

2
3

4

Finding Communities

ClusterCoeff[i] =
2 * #Triangles[i]

Deg[i] * (Deg[i] – 1)

• Count triangles passing through each vertex by counting

triangles on each edge:

Counting Triangles

2

1

E

F
D

C

G

D

C

E

F

B

D

C

G

A

D

C A B

• Every vertex starts out with a unique component

id (typically it’s vertex id):

Connected Components

4

5

6

1

3

2 4

4

4

1

2

1 4

4

4

1

1

1

Putting it All Together

Raw

Wikipedia

< /

>
< /

>
< /

> XM

L

Hyperlinks PageRank Top 20 Pages

Title PR

Text

Table

Title Body

Topic Model

(LDA) Word Topics
Wor

d
Topic

Editor Graph

Community

Detection

User

Community

User
Com

.

Term-Doc

Graph

Discussion

Table
User Disc.

Community

Topic

Topic
Com

.

Many Other Graph Algorithms

• Collaborative Filtering

– Alternating Least Squares

– Stochastic Gradient Descent

– Tensor Factorization

• Structured Prediction

– Loopy Belief Propagation

– Max-Product Linear Programs

– Gibbs Sampling

• Semi-supervised ML

– Graph SSL

– CoEM

• Community Detection

– Triangle-Counting

– K-core Decomposition

– K-Truss

• Graph Analytics

– PageRank

– Personalized PageRank

– Shortest Path

– Graph Coloring

• Classification

– Neural Networks

Topic 1: Modern Distributed
Algorithms

• What is the cloud computing paradigm

• How to characterise its behaviour

• Cloud computing software

– MapReduce

14

Cloud Computing Concept

Cloud

provider

User

Jobs

New Paradigm: MapReduce

• Employ multiple CPUS

– Parallel processing

• New programming paradigm

– Based on functional programming

• Two-phase inference

– Map

– Reduce

Cloud Algorithm: MapReduce

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker

”

“worker

”

“worker

”

Partition

Combine

Word Count Example

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

how, 1

now, 1

quick, 1

the, 3

ate, 1

cow, 1

mouse, 1

fox, 2

the, 1

brown, 1

quick, 1

fox, 1

the, 1

the, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

fox, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

noun, verb

adjective, article

Parallelization Challenges

• How do we assign work units to workers?

• What if we have more work units than workers?

• What if workers need to share partial results?

• How do we aggregate partial results?

• How do we know all the workers have finished?

• What if workers die?

What is the common theme of all of these problems?

Abstracting digital data flows

20

Filter+Stack

Worker

Filter+Stack

Worker

Filter+Stack

Worker

Filter+Stack

Worker

CountStack

Worker

CountStack

Worker

CountStack

Worker

CountStack

Worker

CountStack

Worker

blue: 4k

green: 4k

cyan: 3k

gray: 1k

orange: 4k

Abstracting once more

• There are two kinds of workers:

– Those that take input data items and produce output

items for the “stacks”

– Those that take the stacks and aggregate the results

to produce outputs on a per-stack basis

• We’ll call these:

– map: takes (item_key, value), produces one or

more (stack_key, value’) pairs

– reduce: takes (stack_key, {set of value’}), produces

one or more output results – typically (stack_key,

agg_value)

Why MapReduce?

• Scenario:

– You have a huge amount of data, e.g., all the Google

searches of the last three years

– You would like to perform a computation on the data, e.g.,

find out which search terms were the most popular

• How would you do it?

• Parallel programming

– The computation isn't necessarily difficult, but parallelizing

and distributing it, as well as handling faults, is challenging

• Idea: A programming language!

– Write a simple program to express the (simple)

computation, and let the language runtime do all the hard

work

Plan for today

• Motivation

• MapReduce architecture

– Data flow

– Execution flow

– Fault tolerance etc.

NEXT

What is MapReduce?

• A famous distributed programming model

• In many circles, considered the key building block

for much of Google’s data analysis

– A programming language built on it: Sawzall,

http://labs.google.com/papers/sawzall.html
– … Sawzall has become one of the most widely used programming languages at

Google. … [O]n one dedicated Workqueue cluster with 1500 Xeon CPUs, there were

32,580 Sawzall jobs launched, using an average of 220 machines each. While running

those jobs, 18,636 failures occurred (application failure, network outage, system

crash, etc.) that triggered rerunning some portion of the job. The jobs read a total

of 3.2x1015 bytes of data (2.8PB) and wrote 9.9x1012 bytes (9.3TB).

– Other similar languages: Yahoo’s Pig Latin and Pig; Microsoft’s

Dryad

• Cloned in open source: Hadoop,

http://hadoop.apache.org/

http://labs.google.com/papers/sawzall.html
http://hadoop.apache.org/core/

The MapReduce programming model

• Simple distributed functional programming

primitives

• Modeled after Lisp primitives:

– map (apply function to all items in a collection) and

– reduce (apply function to set of items with a common key)

• We start with:

– A user-defined function to be applied to all data,
map: (key,value) (key, value)

– Another user-specified operation
reduce: (key, {set of values}) result

– A set of n nodes, each with data

• All nodes run map on all of their data, producing

new data with keys
– This data is collected by key, then shuffled, and finally reduced

– Dataflow is through temp files on GFS

Simple example: Word count

• Goal: Given a set of documents, count how

often each word occurs

– Input: Key-value pairs (document:lineNumber,

text)

– Output: Key-value pairs (word, #occurrences)

– What should be the intermediate key-value pairs?

map(String key, String value) {

 // key: document name, line no

 // value: contents of line

}

reduce(String key, Iterator values) {

}

 for each word w in value:

 emit(w, "1")

 // key: a word

 // values: a list of counts

 int result = 0;

 for each v in values:

 result += ParseInt(v);

 emit(key, result)

Simple example: Word count

Mapper
(1-2)

Mapper
(3-4)

Mapper
(5-6)

Mapper
(7-8)

Reducer
(A-G)

Reducer
(H-N)

Reducer
(O-U)

Reducer
(V-Z)

(1, the apple)

(2, is an apple)

(3, not an orange)

(4, because the)

(5, orange)

(6, unlike the apple)

(7, is orange)

(8, not green)

(the, 1)

(apple, 1)

(is, 1)

(apple, 1)

(an, 1)

(not, 1)

(orange, 1)

(an, 1)

(because, 1)

(the, 1)

(orange, 1)

(unlike, 1)

(apple, 1)

(the, 1)

(is, 1)

(orange, 1)

(not, 1)

(green, 1)

(apple, 3)

(an, 2)

(because, 1)

(green, 1)

(is, 2)

(not, 2)

(orange, 3)

(the, 3)

(unlike, 1)

(apple, {1, 1, 1})

(an, {1, 1})

(because, {1})

(green, {1})

(is, {1, 1})

(not, {1, 1})

(orange, {1, 1, 1})

(the, {1, 1, 1})

(unlike, {1})

Each mapper

receives some

of the KV-pairs

as input

The mappers

process the

KV-pairs

one by one

Each KV-pair output

by the mapper is sent to

the reducer that is

responsible for it

The reducers

sort their input

by key

and group it

The reducers

process their

input one group

at a time

1 2 3 4 5

Key range the node

is responsible for

MapReduce dataflow

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer

Reducer

Reducer

In
p

u
t

d
at

a

O
u
tp

u
t

d
at

a

"The Shuffle"

Intermediate

(key,value) pairs

What is meant by a 'dataflow'?

What makes this so scalable?

MapReduce Algorithm Classes

• Aggregation/Enumeration

– Word count

– Count URL access events

• Graph analytics

– FaceBook friendship analysis

– PageRank

• Machine Learning

– Bayesian learning

– clustering

MapReduce Approach

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer

Reducer

Reducer

O
u
tp

u
t

d
at

a

"The Shuffle"

Intermediate

(key,value) pairs

In
p
u

t
d
at

a

Partition

Data

MapReduce Input Data: Graph Analytics

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer

Reducer

Reducer

O
u
tp

u
t

d
at

a

"The Shuffle"

Intermediate

(key,value) pairs

In
p
u

t
d
at

a

Partition

Data

Webgraph,

FaceBook Social Network

More examples

• Distributed grep – all lines matching a pattern

– Map: filter by pattern

– Reduce: output set

• Count URL access frequency

– Map: output each URL as key, with count 1

– Reduce: sum the counts

• Reverse web-link graph

– Map: output (target,source) pairs when link to target

found in souce

– Reduce: concatenates values and emits (target,list(source))

• Inverted index

– Map: Emits (word,documentID)

– Reduce: Combines these into (word,list(documentID))

