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Plan for today 

• Motivation 

• MapReduce architecture 

– Data flow 

– Execution flow 

– Fault tolerance etc.  

NEXT 



Modern Computing Needs 

• Web-search requires traversing enormous graph 

• Huge amounts of data to sift through 

• Need new computing paradigm 

 

• Examples 

– Social networks (Facebook) 

– Recommender systems (Amazon) 



Social Network 

Vertices 

• Users 

• Posts / Images 

 

Edges 

• Social Relationships 

• Directed: Twitter 

• Undirected: Facebook 

• Likes 



User - Item Graphs 
(Recommender Systems) 

Bipartite Graphs 

Vertices: Users and 

Items 

Edges: Ratings 
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Identifying Leaders 
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Ratings Item

s 

Recommending Products 

Users 



• Count triangles passing through each vertex: 

•  

 

 

 

 

• Measure “cohesiveness” of local community 

1 

2 
3 

4 

Finding Communities 

ClusterCoeff[i] =  
2 * #Triangles[i] 

Deg[i] * (Deg[i] – 1) 



• Count triangles passing through each vertex by counting 

triangles on each edge: 

Counting Triangles 
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• Every vertex starts out with a unique component 

id (typically it’s vertex id): 

Connected Components 
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Putting it All Together 
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Many Other Graph Algorithms 

• Collaborative Filtering 

– Alternating Least Squares 

– Stochastic Gradient Descent 

– Tensor Factorization 

• Structured Prediction 

– Loopy Belief Propagation 

– Max-Product Linear Programs 

– Gibbs Sampling 

• Semi-supervised ML 

– Graph SSL  

– CoEM 

 

 

• Community Detection 

– Triangle-Counting 

– K-core Decomposition 

– K-Truss 

• Graph Analytics 

– PageRank 

– Personalized PageRank 

– Shortest Path 

– Graph Coloring 

• Classification 

– Neural Networks 



Topic 1: Modern Distributed 
Algorithms 

 
• What is the cloud computing paradigm 

• How to characterise its behaviour 

• Cloud computing software 

– MapReduce 
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Cloud Computing Concept 

Cloud 

provider 

User 

Jobs 



New Paradigm: MapReduce 

• Employ multiple CPUS 

– Parallel processing 

• New programming paradigm 

– Based on functional programming 

• Two-phase inference 

– Map 

– Reduce 



Cloud Algorithm: MapReduce 

“Work” 

w1 w2 w3 

r1 r2 r3 

“Result” 

“worker

” 

“worker

” 

“worker

” 

Partition 

Combine 



Word Count Example 

the quick 

brown fox 

the fox ate 

the mouse 

how now 

brown cow 

Map 
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Parallelization Challenges 

• How do we assign work units to workers? 

• What if we have more work units than workers? 

• What if workers need to share partial results? 

• How do we aggregate partial results? 

• How do we know all the workers have finished? 

• What if workers die? 

What is the common theme of all of these problems? 



Abstracting digital data flows 
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Abstracting once more 

• There are two kinds of workers: 

– Those that take input data items and produce output 

items for the “stacks” 

– Those that take the stacks and aggregate the results 

to produce outputs on a per-stack basis 

 

• We’ll call these: 

– map:  takes (item_key, value), produces one or 

more (stack_key, value’) pairs 

– reduce:  takes (stack_key, {set of value’}), produces 

one or more output results – typically (stack_key, 

agg_value) 



Why MapReduce? 

• Scenario: 

– You have a huge amount of data, e.g., all the Google 

searches of the last three years 

– You would like to perform a computation on the data, e.g., 

find out which search terms were the most popular 

• How would you do it? 
 

• Parallel programming 

– The computation isn't necessarily difficult, but parallelizing 

and distributing it, as well as handling faults, is challenging 

• Idea: A programming language! 

– Write a simple program to express the (simple) 

computation, and let the language runtime do all the hard 

work 

 



Plan for today 

• Motivation 

• MapReduce architecture 

– Data flow 

– Execution flow 

– Fault tolerance etc.  

NEXT 



What is MapReduce? 

• A famous distributed programming model 

• In many circles, considered the key building block 

for much of Google’s data analysis 

– A programming language built on it:  Sawzall, 

http://labs.google.com/papers/sawzall.html 
– … Sawzall has become one of the most widely used programming languages at 

Google.  … [O]n one dedicated Workqueue cluster with 1500 Xeon CPUs, there were 

32,580 Sawzall jobs launched, using an average of 220 machines each. While running 

those jobs, 18,636 failures occurred (application failure, network outage, system 

crash, etc.) that triggered rerunning some portion of the job. The jobs read a total 

of 3.2x1015 bytes of data (2.8PB) and wrote 9.9x1012 bytes (9.3TB). 

– Other similar languages:  Yahoo’s Pig Latin and Pig; Microsoft’s 

Dryad 

• Cloned in open source: Hadoop, 

http://hadoop.apache.org/ 

http://labs.google.com/papers/sawzall.html
http://hadoop.apache.org/core/


The MapReduce programming model 

• Simple distributed functional programming 

primitives 

• Modeled after Lisp primitives: 

– map (apply function to all items in a collection) and  

– reduce (apply function to set of items with a common key) 

• We start with: 

– A user-defined function to be applied to all data, 
map: (key,value)  (key, value) 

– Another user-specified operation  
reduce: (key, {set of values})  result 

– A set of n nodes, each with data 

• All nodes run map on all of their data, producing 

new data with keys 
– This data is collected by key, then shuffled, and finally reduced 

– Dataflow is through temp files on GFS 



Simple example: Word count 

• Goal: Given a set of documents, count how 

often each word occurs 

– Input: Key-value pairs (document:lineNumber, 

text) 

– Output: Key-value pairs (word, #occurrences) 

– What should be the intermediate key-value pairs? 

 

map(String key, String value) { 

  // key: document name, line no 

  // value: contents of line 

   

 

} 

reduce(String key, Iterator values) { 

   

 

 

 

 

 

} 

  for each word w in value: 

    emit(w, "1") 

  // key: a word 

  // values: a list of counts 

  int result = 0; 

  for each v in values: 

    result += ParseInt(v); 

  emit(key, result) 



Simple example: Word count 
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MapReduce dataflow 
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MapReduce Algorithm Classes 

• Aggregation/Enumeration 

– Word count 

– Count URL access events 

• Graph analytics 

– FaceBook friendship analysis 

– PageRank 

• Machine Learning 

– Bayesian learning 

– clustering 



MapReduce Approach 
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MapReduce Input Data: Graph Analytics 
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More examples 

• Distributed grep – all lines matching a pattern 

– Map: filter by pattern 

– Reduce: output set 

• Count URL access frequency 

– Map: output each URL as key, with count 1 

– Reduce: sum the counts 

• Reverse web-link graph 

– Map: output (target,source) pairs when link to target  

found in souce 

– Reduce: concatenates values and emits (target,list(source)) 

• Inverted index 

– Map: Emits (word,documentID) 

– Reduce: Combines these into (word,list(documentID)) 


