
CS 6423

 Scalable Computing for

Data Analytics

Lecture 11:

Overview

Prof. Gregory Provan
Department of Computer Science

University College Cork

Overview

• Computational platforms for deep learning

• Underlying computational framework

• Computation graph

• Comparison of tools

• In-depth: Caffe2

TensorFlow vs. Caffe

• Layer-wise design
A neural network is a computational graph. In caffe, each node is a layer.
In TensorFlow, each node is a tensor operation (e.g. matrix
add/multiply, convolution, etc.). A layer can be defined as a composition
of those operations. What this means is that the building brick in
TensorFlow is smaller than the building brick in caffe. That's why caffe is
not considered flexible because for new layer types (which can be
composed using existing bricks in TensorFlow), you have to define the
full forward, backward, and gradient update. You can see an already
long-list of layers implemented in (official) caffe.

• What's worse is that if you want to support both CPU and GPU, you need
to implement extra functions, e.g. Forward_gpu and Backward_gpu.

• Worse, you need to assign an int id to your layer type and add that to
the proto file. If your pull request is not merged early, you may need to
change the id because someone else already claims that. [*]

https://github.com/BVLC/caffe/tree/master/src/caffe/layers
https://github.com/BVLC/caffe/tree/master/src/caffe/layers
https://github.com/BVLC/caffe/tree/master/src/caffe/layers
https://github.com/BVLC/caffe/tree/master/src/caffe/layers
https://github.com/BVLC/caffe/tree/master/src/caffe/layers
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/cudnn_conv_layer.cu
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/cudnn_conv_layer.cu
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/cudnn_conv_layer.cu
https://github.com/BVLC/caffe/blob/master/src/caffe/layers/cudnn_conv_layer.cu
https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto#L1046

Framework Comparison

• More alike than different

• All express deep models

• All are open-source (contributions differ)

• Most include scripting for hacking and prototyping

• Many have same computational basis: computation graph

• No strict winners – experiment and choose the

framework that best fits your work

Computation Graph: Basis

• Decompose inference into elements

• Tools differ by granularity of elements

Input layer

Hidden layer 1

Hidden layer i

Output layer n

F1(x0, W1)

Fi(xi-1, Wi)

Fn(xn-1, Wn)

x0

x1

xi-1

xi

xn-1 …

…

xn

…

…

(output)

(input)

…

Examine Two Approaches
• TensorFlow

• Fine granularity: computation graph

• Caffe2

• Granularity: “level” of inference

Input

layer

Hidden layer 1

Hidden layer i

Output layer n

F1(x0, W1)

Fi(xi-1, Wi)

Fn(xn-1, Wn)

x0

x1

xi-1

xi

xn-1 …

…

xn

…

…

(output)

(input)

…

So what is Caffe?

Prototype Training Deployment

All with essentially the same code!

● Pure C++ / CUDA architecture for deep learning

o command line, Python, MATLAB interfaces

● Fast, well-tested code

● Tools, reference models, demos, and recipes

● Seamless switch between CPU and GPU
o Caffe::set_mode(Caffe::GPU);

Network: Computation Graph

name: "dummy-net"

layers { name: "data" …}

layers { name: "conv" …}

layers { name: "pool" …}

 … more layers …

layers { name: "loss" …}

● A network is a set of layers

connected as a DAG:

LogReg
↑

LeNet
→

ImageNet, Krizhevsky 2012
→

● Caffe creates and checks the net from

the definition.

● Data and derivatives flow through the

net as blobs – a an array interface

Forward / Backward
the essential Net computations

Caffe models are complete machine learning systems for inference and learning.
The computation follows from the model definition. Define the model and run.

Representing Layers

name: "conv1"

type: CONVOLUTION

bottom: "data"

top: "conv1"

convolution_param {

 num_output: 20

 kernel_size: 5

 stride: 1

 weight_filler {

 type: "xavier"

 }

}

name, type, and the

connection

structure

(input blobs and

output blobs)

layer-specific

parameters

* Nets + Layers are defined by
protobuf schema

● Every layer type
defines

- Setup
- Forward
- Backward

https://developers.google.com/protocol-buffers/

Setup: run once for initialization.

Forward: make output given input.

Backward: make gradient of output
- w.r.t. bottom
- w.r.t. parameters (if needed)

Layer Protocol

Layer Development Checklist

Model Composition
The Net forward and backward passes
are the composition the layers’.

https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers
https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers

Data
Number x K Channel x Height x Width
256 x 3 x 227 x 227 for ImageNet train input

Blobs are 4-D arrays for storing and
communicating information.
● hold data, derivatives, and parameters
● lazily allocate memory
● shuttle between CPU and GPU

Tensor Representation: Blob
name: "conv1"

type: CONVOLUTION

bottom: "data"

top: "conv1"

… definition …

top
blob

bottom
blob

Parameter: Convolution Weight
N Output x K Input x Height x Width
96 x 3 x 11 x 11 for CaffeNet conv1

Parameter: Convolution BIas
96 x 1 x 1 x 1 for CaffeNet conv1

Blobs provide a unified memory
interface.

Reshape(num, channel, height, width)
- declare dimensions
- make SyncedMem -- but only lazily
allocate

Tensor Representation: Blob

cpu_data(), mutable_cpu_data()
- host memory for CPU mode
gpu_data(), mutable_gpu_data()
- device memory for GPU mode

{cpu,gpu}_diff(), mutable_{cpu,gpu}_diff()
- derivative counterparts to data methods
- easy access to data + diff in forward /
backward

SyncedMem
allocation +

communication

A Caffe Net

Input Blob caffe::Net Output Blob

Blob: all your data, derivatives, and parameters.

● example input blob (256 images, RGB, height, width)

○ ImageNet training batches: 256 x 3 x 227 x 227

● example convolutional parameter blob

○ 96 filters with 3 input channels: 96 x 3 x 11 x 11

High-Level Representation

Tensor Representation: Blob

High-Level Representation

GPU/CPU Switch with Blob

• Use synchronized memory

• Mutable/non-mutable determines whether to

copy

Types of Layers

• Data layers

• Vision layers

• Common layers

• Activation/Neuron layers

• Loss layers

Data Layers

• Data enters through data layers -- they lie at the bottom of
nets.

• Data can come from efficient databases (LevelDB or LMDB),
directly from memory, or, when efficiency is not critical, from
files on disk in HDF5/.mat or common image formats.

• Common input preprocessing (mean subtraction, scaling, random
cropping, and mirroring) is available by specifying
TransformationParameters.

More about Layers

• Data layers

• Vision layers

• Common layers

• Activation/Neuron layers

• Loss layers

Vision Layers

• Images as input and produce other images as
output.

• Non-trivial height h>1 and width w>1.
• 2D geometry naturally lends itself to certain

decisions about how to process the input.

• In particular, most of the vision layers work by applying a
particular operation to some region of the input to
produce a corresponding region of the output.

• In contrast, other layers (with few exceptions) ignore the
spatial structure of the input, effectively treating it as
“one big vector” with dimension “chw”.

Vision Layers

• Convolution

• Pooling

• Local Response Normalization (LRN)

• Im2col -- helper

More about Layers

• Data layers

• Vision layers

• Common layers

• Activation/Neuron layers

• Loss layers

Common Layers

• INNER_PRODUCT WTx+b (fully conn)
• SPLIT

• FLATTEN

• CONCAT

• SLICE

• ELTWISE (element wise operations)
• ARGMAX

• SOFTMAX

• MVN (mean-variance normalization)

More about Layers

• Data layers

• Vision layers

• Common layers

• Activation/Neuron layers

• Loss layers

Activation/Neuron layers

• One Input Blob

• One Output Blob

• Both same size

Activation/Neuron layers

• RELU

• SIGMOID

• TANH

• ABSVAL

• POWER

• BNLL (binomial normal log likelihood)

More about Layers

• Data layers

• Vision layers

• Common layers

• Activation/Neuron layers

• Loss layers

Classification
SOFTMAX_LOSS

HINGE_LOSS

Linear Regression
EUCLIDEAN_LOSS

Attributes / Multiclassification
SIGMOID_CROSS_ENTROPY_LOSS

Others…

New Task
NEW_LOSS

Loss

What kind of model is this?

Who knows! Need a loss
function.

loss (LOSS_TYPE)

● Loss function determines the learning task.

● Given data D, a Net typically minimizes:

Loss

Data term: error
averaged over instances

Regularization
term: penalize
large weights
to improve

generalization

Loss

● The data error term is computed

by Net::Forward

● Loss is computed as the output of Layers

● Pick the loss to suit the task – many

different losses for different needs

