
Multi-Server and
Priority Queues

CS6423

1

Priority Queues

Modelling systems with customers of
different priority
 Airline check-in, computer thread scheduling

Approach
 Differentiate customer types

 Protocols
 Pre-emption vs. non-pre-emption

2

3

Reminder: Kendall’s notation

A/S/N/K gives a theoretical
description of a system

 A is the arrival process
 M = Markovian = Poisson Arrivals
 D = deterministic (constant time bet.

arrivals)
 G = general (anything else)

 S is the service process
 M,D,G same as above

 N is the number of parallel
processors

 K is the buffer size of the queues
 K term can be dropped when buffer

size is infinite

μ

K

A: 

μ μ
N

S:

4

The M/M/1 Queue (a.k.a., birth-death process)

 a.k.a., M/M/1/∞
 Poisson arrivals
 Exponential service time
 1 processor, infinite length

queue

 Can be modeled as a
Markov Chain (because of
memoryless behaviour)

 Distribution of time
spent in state n the
same for all n > 0

0 1 2 3

pkts in
system

(When > 1,
is 1 larger

than # pkts
in queue)

/(+μ) /(+μ) /(+μ) /(+μ)

μ/(+μ) μ/(+μ) μ/(+μ) μ/(+μ)

. . .

Transition probabilities

5

M/M/1 cont’d

As long as  < μ, queue
has following
steady-state
average properties

 Defs:
 ρ = /μ

 N = # pkts in system

 T = packet time in
system

 NQ = # pkts in queue

 W = waiting time in
queue

 P(N=n) = ρn(1-ρ)
 (indicates fraction of time spent w/

n pkts in queue)

 Utilization factor = 1 – P(N=0) = ρ

 ∞

 E[N] Σ n P(N=n) = ρ/(1-ρ)
 n=0

 E[T] = E[N] /  (Little’s Law) = ρ/(
(1-ρ)) = 1 / (μ - )

 ∞

 E[NQ] = Σ (n-1) P(N=n) = ρ2/(1-ρ)
 n=1

 E[W] = E[T] – 1/μ (or = E[NQ]/ by
Little’s Law) = ρ / (μ - )

6

Multi-Server (M/M/1/K) queue

Also can be modeled as a Markov Model
 requires K+1 states for a system (queue +

processor) that holds K packets (why?)

 Stay in state K upon a packet arrival

 Note: ρ ≥ 1 permitted (due to multiple servers)

0 1 2 3

1 /(+μ) /(+μ) /(+μ)

μ/(+μ) μ/(+μ) μ/(+μ) μ/(+μ)

K

/(+μ)

μ/(+μ)

. . .
/(+μ)

7

M/M/1/K properties

 ρn(1-ρ) / (1 – ρK+1), ρ≠1

 P(N=n) =

 1 / (K+1), ρ=1

 ρ/((1-ρ)(1 – ρK+1)), ρ≠1

 E[N] =

 1 / (K+1), ρ=1

 i.e., divide M/M/1 values by (1 – ρK+1)

8

Priority Queues
 Classes have different priorities
May depend on explicit marking or other

header info, eg IP source or destination, TCP
Port numbers, etc.

 Transmit a packet from the highest priority
class with a non-empty queue

9

Priority Queue Scheduling Policy

 2 versions:
 Preemptive: (postpone low-priority processing if

high-priority pkt arrives)

 non-preemptive: any packet that starts getting
processed finishes before moving on

10

Modeling priority queues as M/M/1/K

 preemptive version (K=2): assuming preempted packet
placed back into queue
 state w/ x,y indicates x priority queued, y non-priority queued
 what are the transition probabilities?
 what if preempted is discarded?

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

11

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

H H

μH μH

μH

μH μH

μH

μL

μL
L

L

H

H
H

H

 preemptive version (K=2 for each priority)
 state w/ x,y indicates x priority queued, y non-priority queued

Modeling priority queues as M/M/1/K

L

L

12

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

H H

μH μH

μH

μH μH

μH

μL

μL

L

L

H

H
H

H

 preemptive version (K=2): assuming preempted packet
placed back into queue
 state w/ x,y indicates x priority queued, y non-priority queued

M/M/1/K Priority Queue: Pre-empted
Job Discarded

L

L

L

13

Modeling priority queues as M/M/1/K

 Non-preemptive version (K=2)
 yellow (solid border) = nothing or high-priority being proc’d
 red (solid border) = low-priority being processed
 red (dashed border) = nothing/high-priority being processed
 what are the transition probabilities?

0, 0 1, 0 2, 0

0, 1 1, 1 2, 1

0, 2 1, 2 2, 2

1, 1 2, 1

1, 2 2, 2

H

H

H

μH μH

μH

μH μH

μH

μL

μL

L

L

H

H
H

H

H
L

μL

μL

14

Scheduling Policies (more)
 Round Robin:

 each flow gets its own queue
 circulate through queues, process one pkt (if queue non-

empty), then move to next queue

15

Scheduling Policies (more)

 Weighted Fair Queuing: is a generalized Round
Robin in which an attempt is made to provide a
class with a differentiated amount of service over
a given period of time

16

Weighted Fair Queue details
 Each flow, i, has a weight, Wi > 0

 A Virtual Clock is maintained: V(t) is the “clock” at
time t

 Each packet k in each flow i has
 virtual start-time: Si,k

 virtual finish-time: Fi,k

 The Virtual Clock is restarted each time the queue
is empty

 When a pkt arrives at (real) time t, it is assigned:
 Si,k = max{Fi,k-1, V(t)}
 Fi,k = Si,k + length(k) / Wi

 V(t) = V(t’) + (t-t’) / ΣWj
 B(t’,t)

• t’ = last time virtual clock was updated
• B(t’,t) = set of sessions with pkts in queue during (t’,t]

17

Scheduling And Policing Mechanisms

Scheduling: choosing the next packet for
transmission on a link can be done following a
number of policies;

 FIFO (First In First Out) a.k.a. FCFS (First Come
First Serve): in order of arrival to the queue
 packets that arrive to a full buffer are discarded
 another option: discard policy determines which packet

to discard (new arrival or something already queued)

