
Network Analysis: 
The Poisson Process 

Exponential Distribution 



Overview 

 Goal of network performance analysis 

 Poisson process 

 Exponential distribution 
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Network Performance Analysis 

 For any cloud system or network, jobs arrive 

randomly 

 We want to compute 

 Mean arrival rates 

 Mean service rates 

 Network throughput 

 Enable a revenue model 

 Revenue = income/hour – cost/hour 
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Network Metrics 

 Count arriving customers 

 Poisson distribution 

 Estimate network throughput 

 Exponential distribution 
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Statistical Modeling of Networks 
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Cloud 

Arrival 
process 
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exponential 
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 Examples: 

 - Number of requests entering a cloud system 

 - Number of calls received at a telephone exchange 

 - Number of customers arriving to a counter 

 

Definition 

 What is A Poisson Process? 

 The Poisson Process is a counting process that counts the 

number of occurrences of some specific event through time 
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The Poisson Process 

 X1, X2, … represent a sequence of +ve independent random 
variables with identical distribution 

 Xn depicts the time elapsed between the (n-1)th event and nth event 
occurrences  

 Sn depicts a random variable for the time at which the nth event 
occurs 

 Define N(t) as the number of events that have occurred up to some 
arbitrary time t. 
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The counting process { N(t), t>0 } is called a Poisson process if the 
inter-occurrence times X1, X2, … follow the exponential distribution 
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The Poisson Process: Example 

time 

X1=5 min X2=4 min 

1st Bus 
Arrival 

2nd Bus 
Arrival 

X3=7 min X4=2 min 

3rd Bus 
Arrival 

4th Bus 
Arrival 

S1 = 5 min t=0 S2 = 9 min S3 = 16 min S4 = 18 min 

Sunday 

For some reason, you decide everyday at 3:00 PM to 
go to the bus stop and count the number of buses 
that arrive. You record the number of buses that 
have passed after 10 minutes 

N (t=10 min) = 2 

http://www.wm.edu/copycenter/images/clock.gif
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The Poisson Process: Example 

Monday 

For some reason, you decide everyday at 3:00 PM to 
go to the bus stop and count the number of buses 
that arrive. You record the number of buses that 
have passed after 10 minutes 

N (t=10 min) =4 

time 

X1=1 min X2=2 min 

1st Bus 
Arrival 

2nd Bus 
Arrival 

X3=4 min 

4th Bus 
Arrival 

5th Bus 
Arrival 

S1 = 1 min t=0 S2 = 3 min S3 = 7 min S5 = 15 min 

X4=2 min 

3rd Bus 
Arrival 

S4 = 9 min 

X5=6 min 

http://www.wm.edu/copycenter/images/clock.gif
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The Poisson Process: Example 

Tuesday 

For some reason, you decide everyday at 3:00 PM to 
go to the bus stop and count the number of buses 
that arrive. You record the number of buses that 
have passed after 10 minutes 

N (t=10 min) =1 

time 

X1=10 min 

2nd Bus 
Arrival 

t=0 S1 = 10 min S2 = 16 min 

1st Bus 
Arrival 

X2=6 min 

http://www.wm.edu/copycenter/images/clock.gif
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The Poisson Process: Example 

 Given that Xi follow an exponential distribution then 

N(t=10) follows a Poisson Distribution 
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Poisson Distribution      [Discrete]  

 Poisson distribution describes many random processes 
quite well and is mathematically quite simple. 
 where a > 0, pdf  and cdf are: 

 

 

 

 

 a = t with rate   

 E(X) = a = V(X) 
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Poisson Distribution        [Discrete]  

 Example: A computer repair person is “beeped” each time 
there is a call for service.  The number of beeps per hour ~ 
Poisson (a = 2 per hour). 

 

 The probability of three beeps in the next hour: 

   p(3)  = e-223/3! = 0.18 

  also, p(3) = F(3) – F(2) = 0.857-0.677=0.18 

 

 The probability of two or more beeps in a 1-hour period: 

   p(2 or more)  = 1 – p(0) – p(1)  

     = 1 – F(1)  

     = 0.594 



14 

Poisson Process 

 Definition: N(t) is a counting function that represents 
the number of events occurred in [0,t]. 

 A counting process {N(t), t>=0} is a Poisson process 
with mean rate  if: 
 Arrivals occur one at a time 

 {N(t), t>=0} has stationary increments 

 {N(t), t>=0} has independent increments 

 Properties 

       

 
 Equal mean and variance: E[N(t)] = V[N(t)] = t 

 Stationary increment: The number of arrivals in time s to t is 
also Poisson-distributed with mean (t-s) 
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Poison Process (2) 

 Note that N(t) in the previous slide has the Poisson 

distribution with parameter a  t. 

 

 This accounts for the mean equaling the variance. 

 

 An alternative definition of a Poisson process:  

 if the interarrival times are distributed exponentially and 

independently, then the number of arrivals by time t, say N(t), 

meets the three Poisson assumptions and is therefore a Poisson 

process. 
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The Exponential Distribution 

 The exponential distribution describes a continuous 
random variable 

  λPr 1
n

x

X nF x X x e     

Cumulative Distribution Function (CDF) 
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If a Poisson process has constant average rate 𝜈, the mean after a time 𝑡 is 
𝜆 = 𝜈𝑡.  

What is the probability distribution for the time to the first event? 

⇒ Exponential distribution 

Poisson - Discrete distribution: P(number of events) 

Exponential - Continuous distribution: P(time till first event) 

Time between random events / time till first random event ? 



Exponential distribution 
 

The continuous random variable 𝑌 has the Exponential distribution, with constant rate 
parameter 𝜈 if: 

Occurrence 
  
1) Time until the failure of a part. 
  
2) Separation between randomly occurring events 

- Assuming the probability of the events is 
constant in time: 𝜈 = const 

𝑓(𝑦) 
𝜈 = 1 

𝑦 

𝑓 𝑦 =  
 𝜈𝑒−𝜈𝑦 , 𝑦 > 0
0,          𝑦 < 0

 



Relation to Poisson distribution 
 

The probability of no-occurrences in time 𝑡 is  
  

𝑃 𝑘 = 0 =
𝑒−𝜆𝜆𝑘

𝑘!
=  𝑒−𝜆 = 𝑒−𝜈𝑡. 

If 𝑓(𝑡) is the pdf for the first occurrence, then the probability of no occurrences is 

= 1 − 𝑃(first occurrence has happened 
by 𝑡) 

= 1 − 𝑓 𝑡 𝑑𝑡
𝑡

0

 

⇒ 1 − 𝑓 𝑡 𝑑𝑡
𝑡

0

 = 𝑒−𝜈𝑡 ⇒  𝑓 𝑡  𝑑𝑡 = 1 − 𝑒−𝜈𝑡
𝑡

0

 

Solve by differentiating both sides respect to 𝑡 assuming constant 𝜈,  
𝑑

𝑑𝑡
 𝑓 𝑡  𝑑𝑡 =

𝑑

𝑑𝑡
1 − 𝑒−𝜈𝑡  

𝑡

0

 

⇒  𝑓 𝑡 = 𝜈𝑒−𝜈𝑡 

The time until the first occurrence (and 
between subsequent occurrences) has the 

Exponential distribution, parameter 𝜈. 

Poisson process has constant average rate 𝜈, the mean after a time 𝑡 is 𝜆 = 𝜈𝑡.  

𝑃(no occurrence by 𝑡) 



Example 

On average lightening kills three people each year, 
𝜆 = 3. So the rate is 𝜈 = 3/year. 

 

 𝑓 𝑡 = 𝜈𝑒−𝜈𝑡 = 3 𝑒−3𝑡  

Assuming strikes occur randomly at any time during the 
year so 𝜈 is constant, time from today until the next fatality 

has pdf (using 𝑡 in years) 

𝑓(𝑡) 

𝑡 

E.g. Probability the time till 
the next death is less than one 

year?  

 𝑓 𝑡 𝑑𝑡 =  3 𝑒−3𝑡𝑑𝑡
1

0

1

0

 

=
3𝑒−3𝑡

−3
0

1

 

= −𝑒−3 + 1 ≈ 0.95 



       Example: Reliability 
 

The time till failure of an electronic component has an Exponential distribution 
and it is known that 10% of components have failed by 1000 hours. 
 
(a) What is the probability that a component is still working after 5000 hours? 
 
(b) Find the mean and standard deviation of the time till failure. 

Answer 
  

Let Y = time till failure in hours; 𝑓 𝑦 = 𝜈𝑒−𝜈𝑦 .  

𝑃 𝑌 ≤ 1000 =  𝜈𝑒−𝜈𝑦
1000

0

 (a) First we need to find 𝜈 

= −𝑒−𝜈𝑦 0
1000 = 1 − 𝑒−1000𝜈 

𝑃 𝑌 ≤ 1000 = 0.1 ⇒  1 − 𝑒−1000𝜈 = 0.1 

⇒ 𝑒−1000𝜈 = 0.9 

⇒ −1000𝜈 = ln 0.9 =  −0.10536 ⇒ 𝜈 ≈ 1.05 × 10−4 



Continuous Random Variables 

 Continuous RV 

 The values that the random variable can take are 

continuous 

 Examples:  

 The failure time of a system 

 The value of a circuit resistance 

 CDF F(X): cumulative distribution function   

 The density function f(X) is given by the 

derivative of the cumulative distribution function 

 f(X) = F’(X) 

 Example:  

“The failure time of a system is exponentially distributed” 

24 
3/11/2020 



Exponential Distribution 

 The cumulative distribution function:  

 F(X>t) = 1-F(Xt) = e-t 

 The exponential density function is     if x0 
 The parameter  is constant 

xexf  )(

25 
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tetXF  1)(

xexf  )(



Exponential CDF 

  The CDF is shown below: 

  

0 x 

FX (x) 

1 

( 1- e –x ) 



Interpretation- Exponential Distribution 

 Exponential distribution occurs in reliability work 
over and over again, in the way used as the 
distribution of the time to failure for a great number 
of electronic-system parts 

 The parameter  is constant and is usually called 
the failure rate (with the units fraction failures per 
hour) 

 The cumulative distribution function:  

 The success probability (probability of no failure): 

 expected value (Mean Time Between Failures):  1/  
(MTBF) 

 The most commonly used distribution in reliability 
and performance modeling 

tetF  )(1
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Exponential Distribution CDF 

 Problem 1: The transmission time X of messages in a 

communication system obeys the exponential law with 

parameter  ,that is P[X>x] = e-x   x > o 

 Find the cdf of X. Find P[T<X  2T], where T=1/. 

 

 Solution: The cdf of X is FX (x) = P[X   x]= 1- P[X >x]: 
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Exponential Example 
 Compute P[T < X  2T]  

 

 P[T < X  2T] = (1-e-2 ) – (1 – e-1) = e-1 – e-2 = .233 

 FX ( x) is continuous for all x. Note also that its derivative exits  

everywhere except at x=0: 
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 The time between arrivals of orders at Al’s Website  

follows an exponential  probability distribution with a 

mean time between arrivals of 3 minutes.   

 Al would like to know the probability that the time 

between two successive arrivals will be 2 minutes or 

less. 

 

  P(x < 2) = 1 - 2.71828-2/3 = 1 - .5134           

= .4866 

Example:  Al’s Website 



Example:  Al’s Website 

 Graph of the Probability Density Function 

x 

F (x ) 

.1 

.3 

.4 

.2 

 1    2    3    4    5   6    7    8    9   10 

P(x < 2) = area = .4866 



Memory-less property 

32 
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A random variable X is said to be without memory, or 
memory-less, if  

P{X>s+t|X>t} = P{X>s} for all s, t0 

If an item is alive at time t, then the distribution of the remaining amount 

of time that it survives is the same as the original lifetime distribution. 

The item does not remember that it has already been in use for a time t 



More on Memoryless Property 

P{X>s+t|X>t} = P{X>s} for all s, t0 

 

}sX{P
}tX{P

}tX,tsX{P






}tX{P}sX{P}tsX{P 

33 3/11/2020 

When X is exponentially distributed, it follows that e-(s+t)= e-se-t.  

Hence, exponentially distributed random variable are memoryless. 



Example 

 Suppose the amount of time one spends in a bank 
is exponentially distributed with mean 10 minutes, 
that is, =1/10.   
 What is the probability that a customer will spend more 

than fifteen minutes in the bank?   

 What is the probability that a customer will spend more 
than fifteen minutes in the bank given that s/he is still in 
the bank after ten minutes? 

34 3/11/2020 



Solution  

35 

1515  e}X{P

1010  e}X{P

55  e}X{P

 }X|X{P 1015

It turns out that the exponentially distribution is the unique  
distribution possessing the memory-less property  
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The Poisson Distribution 
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Mean of the Poisson Distribution 
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 On average the time between two consecutive events is 1/λ 

This means that the event occurrence rate is λ 

Consequently in time t, the expected number of events is λt 
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Variance of the Poisson Distribution 
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Moment Generating Function of Poisson Distribution 

 The Moment Generating Function of any PMF for a 

discrete random variable may be used to deduce 

different parameters and characteristics of the distribution 
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kth Event 
Occurs 

1

k

k i
i

S X

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Xk+1 is the time interval between 
the kth and k+1th arrivals 
Condition: 
T units have passed and the 
k+1th event has not occurred yet 
Question: 
Given that X*

k+1 is the remaining 
time until the k+1th event 
occurs 
What is Pr[X*

k+1≤x] 

T X*
k+1 

k+1th Event 
Occurs 

k 1 k 1

*

k 1Pr X x Pr X T x X T 
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Remaining Time of Exponential Distributions 
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Xk+1 follows an exponential Distribution, i.e.,  
Pr[Xk+1≤t]=1-e-λt
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The remaining time X*
k+1 follows an exponential distribution with the 

same mean 1/λ as that of the inter-arrival time Xk+1 

Remaining Time of Exponential Distributions 
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The Memoryless Property of Exponential Distributions 

 The Memoryless Property: 

 The waiting time until the next arrival has the same 

exponential distribution as the original inter-arrival time 

regardless of long ago the last arrival occurred 

 

 Memoryless Property of Exponential Distribution and the 

Poisson Process 

   
 

k λsλs e
Pr N u s N u k

k!



     

 In the Poisson process, the number of arrivals within any 

time interval s follows a Poisson distribution with mean λs  
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Splitting and Pooling   [Poisson Process] 

 Splitting: 
 Suppose each event of a Poisson process can be classified 

as Type I, with probability p and Type II, with probability 1-p. 

 N(t) = N1(t) + N2(t), where N1(t) and N2(t) are both Poisson 
processes with rates  p and  (1-p) 

 

 

 

 Pooling: 
 Suppose two Poisson processes are pooled together 

 N1(t) + N2(t) = N(t), where N(t) is a Poisson processes with 
rates 1 + 2 

N(t) ~ Poi() 

N1(t) ~ Poi[p] 

N2(t) ~ Poi[(1-p)] 

 
p 

(1-p) 

N(t) ~ Poi(1  2) 

N1(t) ~ Poi[1] 

N2(t) ~ Poi[2] 

1  2 

1 

2 
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Merging of Poisson Processes 

 {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are two independent Poisson 
processes with respective rates λ1 and λ2,  

 {Ni (t)} corresponds to type i arrivals.  

  The merged process N(t) = N1(t) + N2(t), t ≥ 0. Then {N(t), 
t ≥ 0} is a Poisson process with rate λ = λ1 + λ2.  

 

 Zk is the inter-arrival time between the (k − 1)th and kth 
arrival in the merged process  

 Ik= i if the kth arrival in the merged process is a type i 
arrival,  

 For any k = 1, 2, . . . , 

 P{Ik = i | Zk = t} =λi/(λ1+λ2) , i= 1, 2, independently of t . 
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Splitting of Poisson Processes 

 {N(t), t ≥ 0} is a Poisson process with rate λ.  

 Each arrival of the process is classified as being a type 1 
arrival or type 2 arrival with respective probabilities p1 and 
p2, independently of all other arrivals.  

 Ni (t) is the number of type i arrivals up to time t .  

 {N1(t)} and {N2(t)} are two independent Poisson processes 
having respective rates λp1 and λp2. 



Extra Notes: Derivations, etc. 
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Mean of the Exponential Distribution 
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Variance of the Exponential Distribution 


