Ollscoil na hÉireann The National University of Ireland

Coláiste na hOllscoile, Corcaigh University College, Cork

Mid-Term Examination 2018

CS6323 Complex Networks and Systems

M.Sc. Software and Systems for Mobile Networks M.Sc. Computer Science

> Dr. W. Scanlon, Extern Professor C. Sreenan, HoD Prof. G. Provan

Attempt all questions Total marks: 100

60 minutes

CS6323 Complex Networks and Systems Mid-Term Examination 2018

Please answer all questions Marks for each question are indicated by [xx] Total Marks: 100

1. [35] *Social Network weighting*: Consider a social network in which we want to assign weights to people based on their friend network. We define a social network as an undirected graph, G(V,E), where an edge joins *u* and *v* if they are direct friends. Indirect friends are called *k*-hop away if there are *k* edges in the shortest path between them. Each person *u* is assigned a weight *w* as follows:

$$w(u) = \sum_{v \in \Delta(u)} [1/k] w(v)$$

where $\Delta(u)$ are the nodes adjacent to *u*, and *k* is the distance of node *v* from *u*.

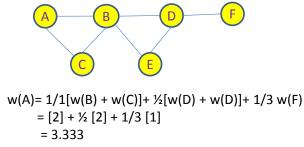


Figure 1: Friend network with computation of weight of A

Figure 1 shows the (centralized) computation of w(A), where nodes B and C are of distance 1, nodes D and E of distance 2, and node F of distance 3, and we count the weight of a neighbour as 1.

We want to use MapReduce to compute the weights assigned to each vertex in G based on friend relations.

- a. [10] Draw the MapReduce architecture for computing the friend relations weighting function when w(v)=1, i.e., we weight only presence of friends.
- b. [10] Write down the pseudo-code for computing the weighting function.
- c. **[5]** Derive an upper bound for the number of cycles of MapReduce that are required, justifying your answer.
- d. [10] Illustrate the operation of your algorithm using the example of Figure 1. Show the number of cycles of MapReduce, and the final weighting for nodes B, C, D and E.
- 2. [35] Consider a store that wants to compute the impact of having a set $S = \{S_1, ..., S_k\}$ of items on sale. Given the set $G = \{G_1, ..., G_n\}$ of goods at regular prices, the store wants to calculate the probability that a customer will buy good G_i given that they have bought sale item S_j , i.e., $P(G_i|S_j)$, over all *i* goods and *j* sale items. We call this our sale distribution. We have as input a very large collection or orders, where an order has data for sale-price and regular-price items purchased together, e.g,

	S1	S2	G1	G2	G3
O 1	1	1	1		
02		1		1	1
03	1	1	1	1	
04	1			1	
05	1	1		1	1
06		1		1	1
07	1		1		1
08	1	1	1		1

 $\{S_1,...,S_k,G_1,...,G_n\}$. Figure 2 shows an example of this data; in order O_1 , for example, a customer purchased $\{S_1, S_2, G_1\}$.

Figure 2: Data for 8 orders, with 1 indicating a purchase

- a. [10] Draw the MapReduce architecture for computing the sale distribution, assuming that we partition a set O of *m* orders into a collection of sub-orders with *q* orders per sub-order.
- b. [10] Show the pseudo-code for a MapReduce algorithm to compute the sale distribution.
- c. [5] How many MapReduce rounds will it take to compute the sale distribution?
- d. [10] Apply your algorithm for MapReduce to the data shown in Figure 2, assuming we partition the data into 2 pieces.