
Worksheet 1
CS 6421

February 5, 2020

Deep Learning: Problem Formulation

1. You have a single hidden-layer neural network for a binary classification task. The
input is X ∈ Rn×m, output ŷ ∈ R1×m and true label y ∈ R1×m. The squared-error loss
function is J . The forward propagation equations are:

z = WX +B

ŷ = σ(z)

J = (ŷ − y)2

(a) We want to compute how to change the weights W based on errors in the loss
function J . Define a partial derivative D to compute this.
Solution: We want to compute ∂J /∂W .

(b) Express D in terms of a sequence of partial derivatives in the network, i.e., includ-
ing ∂z/∂X.
Solution: To compute ∂J /∂W , we can evaluate

∂J
∂W

=
∂J
∂ŷ

∂ŷ

∂z

∂z

∂W

(c) Compute a closed-form expression for D.
Solution: We must compute each of the terms:

∂J
∂ŷ

= 2(ŷ − y)

∂ŷ

∂z
= σ(z)[1− σ(z)]

∂z

∂W
= X

This gives us 2(ŷ − y)σ(z)[1− σ(z)]X, which we can transform to

2(ŷ − y)σ(z)[1− σ(z)]X = 2X[σ(z)− y]σ(z)[1− σ(z)]
= 2Xσ(WX +B)[σ(WX +B)− y][1− σ(WX +B)]

(d) Draw the computation graph corresponding to this network.

(e) Write out the TensorFlow code for forward inference in the network.

1

Worksheet 1
CS 6421

February 5, 2020

1 # Python optimisation variables

2 learning_rate = 0.5

3 epochs = 10

4 batch_size = 100

5
6 # declare the training data placeholders

7 # input x − for 28 x 28 pixels = 784

8 x = tf.placeholder(tf.float32, [None, 784])

9 # declare the output data placeholder: 10 digits

10 y = tf.placeholder(tf.float32, [None, 10])

11
12 # now declare the weights connecting the input to the hidden layer

13 W1 = tf.Variable(tf.random_normal([784, 300], stddev=0.03), name='W1')

14 b1 = tf.Variable(tf.random_normal([300]), name='b1')

15
16 # calculate the output of the hidden layer

17 z = tf.add(tf.matmul(x, W1), b1)

18
19 # now calculate the hidden layer output − a sigmoid activated

20 # output layer

21 y_ = tf.nn.sigmoid(z)

22
23 MSE = tf.reduce_sum((y_ −y) **2))

24
25
26 # add an optimiser

27 optimiser = tf.train.GradientDescentOptimizer(learning_rate=

learning_rate).minimize(MSE)

28
29 # finally setup the initialisation operator

30 init_op = tf.global_variables_initializer()

31
32 # define an accuracy assessment operation

33 correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))

34 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

2

Worksheet 1
CS 6421

February 5, 2020

d

dx
σ(x) =

d

dx

[
1

1 + e−x

]
=

d

dx
(1 + ex)−1

= (1 + e−x)−2(e−x)

=
e−x

(1 + e−x)2

=
1

(1 + e−x)

e−x

(1 + e−x)

=
1

(1 + e−x)

(1 + e−x)− 1

(1 + e−x)

=
1

(1 + ex)

[
(1 + ex)

(1 + ex)
− 1

(1 + ex)

]
=

1

(1 + ex)

[
1− 1

(1 + ex)

]
= σ(x)(1− σ(x))

2. You are solving the binary classification task of classifying images as cat vs. non-cat.
You design a CNN with a single output neuron. Let the output of this neuron be z.
The final output of your network, ŷ is given by: ŷ = σ(ReLU(z)).

You classify all inputs with a final value ŷ ≥ 0.5 as cat images. What problem are you
going to encounter?

Solution: ReLU(z) = max(0, z) ≥ 0 ∀z.
σ(w) ≥ 0.5 ∀w ≥ 0.

Hence ŷ = σ(ReLU(z)) ≥ 0.5 ∀z for w = ReLU(z).

3. You train a simple network in which the final output of your network, ŷ is given by a
sigmoid activation function: ŷ = σ(Wx+ b).

(a) If you initialise the weights in W, b to be large numbers, show analytically that
the network will not learn for input x ≥ 0.

(b) If you initialise only the weights in b to be large numbers, will you have the same
problem? Again, show why or why not.

4. You are given the following piece of code for forward propagation through a single
hidden layer in a neural network. This layer uses the sigmoid activation. Identify and
correct the error.

3

Worksheet 1
CS 6421

February 5, 2020

1 import numpy as np

2 def forward_prop(W, a_prev, b):

3 z = W*a_prev + b

4 a = 1/(1+np.exp(−z)) #sigmoid

5 return a

Solution: z = np.matmul(W, a prev) + b OR z = np.dot(W, a prev) + b

4

