CS 6421
Worksheet 1 February 5, 2020

Deep Learning: Problem Formulation

1. You have a single hidden-layer neural network for a binary classification task. The
input is X € R™™ output § € R™™ and true label y € R™™. The squared-error loss
function is J. The forward propagation equations are:

z = WX+ B
g = o(2)
J = -y

(a) We want to compute how to change the weights W based on errors in the loss
function J. Define a partial derivative D to compute this.

Solution: We want to compute 0 /OW .

(b) Express D in terms of a sequence of partial derivatives in the network, i.e., includ-
ing 0z/0X.

Solution: To compute 0.7 /OW, we can evaluate

07 _ 979j 0z
oW 0y 0z0W

(¢) Compute a closed-form expression for D.
Solution: We must compute each of the terms:

0T ...

g

5, = ‘@l-a(2)]
0z

aw X

This gives us 2(y — y)o(2)[1 — o(2)] X, which we can transform to

20 —y)o(2)[1 —o(2)|X = 2X[o(2) —ylo(z)[1 — o(2)]
= 2Xo(WX + B)l[c(WX + B) —y][1 —o(WX + B)]

(d) Draw the computation graph corresponding to this network.

(e) Write out the TensorFlow code for forward inference in the network.
|

CS 6421
Worksheet 1 February 5, 2020

Python optimisation variables
learning_rate = 0.5

epochs = 10

batch_size = 100

declare the training data placeholders

input x — for 28 x 28 pixels = 784

x = tf.placeholder(tf.float32, [None, 784])

declare the output data placeholder: 10 digits
y = tf.placeholder(tf.float32, [None, 10])

now declare the weights connecting the input to the hidden layer
W1l = tf.Variable(tf.random_normal([784, 300], stddev=0.03), name='W1")
bl = tf.Variable(tf.random_normal([300]), name='bl"')

calculate the output of the hidden layer
z = tf.add(tf.matmul(x, W1), bl)

now calculate the hidden layer output — a sigmoid activated
output layer
y_ = tf.nn.sigmoid(z)

MSE = tf.reduce_sum((y_ —y) *x2))

add an optimiser
optimiser = tf.train.GradientDescentOptimizer(learning_rate=
learning_rate).minimize (MSE)

finally setup the initialisation operator
init_op = tf.global_variables_initializer()

define an accuracy assessment operation
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

CS 6421
Worksheet 1 February 5, 2020

d d[1
S @{He—x}
d z\—1
= (I+e ™)%™

—x

1 e ”
(I+e®)(1+e®)

1 (I+e7™)—1
(I+e®) (1+e®)
_ 1 {(1 + e”) 1 }

(I4e®) [(1+e*) (1+e7)

1 1
T Ure [1‘ <1+ef>1
— o(2)(1- o))

2. You are solving the binary classification task of classifying images as cat vs. non-cat.
You design a CNN with a single output neuron. Let the output of this neuron be z.
The final output of your network, ¢ is given by: § = o(ReLU(2)).

You classify all inputs with a final value y > 0.5 as cat images. What problem are you
going to encounter?

Solution: ReLU(z) = max(0,z) > 0 Vz.
o(w) > 0.5 Yw > 0.
Hence g = o(ReLU(z)) > 0.5 Vz for w = ReLU(z).

3. You train a simple network in which the final output of your network, g is given by a
sigmoid activation function: § = o(Wx + b).

(a) If you initialise the weights in W, b to be large numbers, show analytically that
the network will not learn for input x > 0.

(b) If you initialise only the weights in b to be large numbers, will you have the same
problem? Again, show why or why not.

4. You are given the following piece of code for forward propagation through a single
hidden layer in a neural network. This layer uses the sigmoid activation. Identify and
correct the error.

CS 6421
Worksheet 1 February 5, 2020

import numpy as np
def forward_prop(W, a_prev, b):

Zz = Wxa_prev + b

a = 1/(1+np.exp(—z)) #sigmoid
return a

Solution: z = np.matmul(W, a prev) + b OR z = np.dot(W, a prev) + b

