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Overview 

•Practical aspects of gradient descent 

• algorithm  

• Inference steps 

•Learning rate 

•Regression example 

 



GRADIENT DESCENT ALGORITHM 

• At a theoretical level, gradient descent is an algorithm that minimizes 
functions. Given a function defined by a set of parameters, gradient 
descent starts with an initial set of parameter values and iteratively 
moves toward a set of parameter values that minimize the function. 
This iterative minimization is achieved using calculus, taking steps in 
the negative direction of the function gradient. 

• Minimize cost function J 

• Gradient descent 
• Used all over machine learning for minimization 

• Start by looking at a general J() function 

• Problem 
• We have J(θ0, θ1) 

• We want to get min J(θ0, θ1) 

• Gradient descent applies to more general functions 
• J(θ0, θ1, θ2 .... θp) 

• min J(θ0, θ1, θ2 .... θp) 

 



How does it work? 

• Start with initial guesses 
• Start at 0,0 (or any other value) 

• Keeping changing θ0 and θ1 a little bit to try and 
reduce J(θ0,θ1) 

• Each time you change the parameters, you select 
the gradient which reduces J(θ0,θ1) the most 
possible  

• Repeat 

• Do so until you converge to a local minimum 

• Has an interesting property 
• Where you start can determine which minimum you 

end up 

 



  

  

Visualisation 
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STEPS: Gradient Descent Algorithm* 

• Lets now go step by step to understand the Gradient 
Descent algorithm: 

• Step 1: Initialize the weights (0 and 1) with random values 
and calculate Error (SSE) 

• Step 2: Calculate the gradient i.e. change in SSE when the 
weights (0 and 1) are changed by a very small value from 
their original randomly initialized value. This helps us move 
the values of 0 and 1 in the direction in which SSE is 
minimized. 

• Step 3: Adjust the weights with the gradients to reach the 
optimal values where SSE is minimized 

• Step 4: Use the new weights for prediction and to calculate 
the new SSE 

• Step 5: Repeat steps 2 and 3 till further adjustments to 
weights doesn’t significantly reduce the Error 

 
* https://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html  
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Gradient descent over multi-dimensional 

parameters 

•



STOCHASTIC GRADIENT DESCENT 

•



STOCHASTIC GRADIENT DESCENT 

•



LINEAR REGRESSION APPLICATION 
 

• We have some data: as we observe the independent 

variables x₁ and x₂, we observe the dependent variable 

(or response variable) y along with it. 

• In our dataset, we have 6 examples (or observations). 

      x₁ x₂    y 

1)   4  1     2 

2)   2  8 -14 

3)   1  0     1 

4)   3  2    -1 

5)   1  4    -7 

6)   6  7    -8 

(https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-

1d35b088a843 ) 
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• Basic linear deep network: 

 

 

• find the ‘best’ w and b values. 

 

• The deep learning conventions w and b, 

which stand for weights and biases 

respectively.  

 

Model 



   

Define loss function 

• Let’s say at the end of this exercised, we’ve figured 
out our model to be 

 

 

• How do we know if our model is doing well? 

• We simply compare the predicted ŷ and the 
observed y through a loss function. There are many 
ways to define the loss function but in this post, we 
define it as the squared difference between ŷ and y. 

 

 

• Generally, the smaller the L, the better. 

 

 

Loss Function 



  

• Want to minimise the difference 
between ŷ and y 

• Use stochastic gradient descent 
optimization.  
• iteratively updating the values of w₁ and w₂ using 

the value of gradient and learning rate , as in this 
equation: 

 

 

• This algorithm tries to find the right weights by 
constantly updating them, bearing in mind that 
we are seeking values that minimize the loss 
function. 

 

Weight Update equation 



  

 

• The workflow for training our model is simple: forward 

propagation (or feed-forward or forward pass) and 

backpropagation. 

 

• Training just means regularly updating the values of 

your weights 

Algorithm 



 

 

x1 x2 
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• Simple linear regression 

• orange — the placeholders 
(x₁, x₂ and y), 

• dark green — the weights 
and bias (w₁, w₂ and b), 

• light green — the operators 
*, +, -, ** 

• yellow — the model: (ŷ) , 
(ŷ-y), loss function (L). 

 

 

Computation Graph 



 

 

Simplified Computation Graph x1 x2 

* * 

w1 w2 

+ 

b 

- 

y 

** 

L= (ŷ-y)2 

ŷ 

(ŷ-y) 

Computation Graph (Simplified) 



 

 STEP 0. Build computation graph 
• To keep track of all the values, we build a ‘computation 

graph’ that comprises nodes color-coded in 

• orange — the placeholders (x₁, x₂ and y), 

• dark green — the weights and bias (w₁, w₂ and b), 

• light green — the model (ŷ) connecting w₁, w₂, b, x₁ and x₂, and 

• yellow — the loss function (L) connecting the ŷ and y. 

 

 For forward 

propagation, you 

should read this graph 

from top to bottom and 

for backpropagation 

bottom to top. 



  
STEP 1. Forward Propagation 

Initialize weights (one-time) 
• Since gradient descent is all about updating the weights, we need 

them to start with some values, known as initializing weights. 

• Here we initialized the weights and bias as follows: 

In this example, we 

initialized the weights by 

using truncated normal 

distribution and the bias 

with 0. 

Fig. 1: Weights initialized (dark green nodes) 



  
STEP 2. Forward Propagation: Feed data 

• We set the batch size to be 1 and we feed in this first batch of data. 

• Batch and batch size: We can divide our dataset into smaller groups of 

equal size. Each group is called a batch and consists of a specified 

number of examples, called batch size. If we multiply these two numbers, 

we should get back the number of observations in our data. 

• Here, our dataset consists of 6 examples and since we defined the batch 

size to be 1 in this training, we have 6 batches altogether.  

Eqn. 1: First batch of 

data fed into model 



 STEP 3. Forward Propagation 

Compute ŷ 

• Now that we have the values of x₁, 
x₂, w₁, w₂ and b ready, let’s 

compute ŷ. 

 

 
• The value of ŷ (=0.1) is reflected 

in the light green node below: 



  L computed (yellow node) 

Eqn. 2: Compute the loss 

Fig. 4.1: L computed (yellow node) 

It is a common practice to log the loss during training, 

together with other information like the epoch, batch and 

time taken. 



STEP 5: Backpropagation: Compute partial 

differentials 

 • Before we start adjusting the values of the weights and 

bias w₁, w₂ and b, let’s first compute all the partial 

differentials. These are needed later when we do the 

weight update. 

 

 

Fig. 5: Indicated partial differentials to the 

relevant edges on the graph 

• Namely, we compute all 

possible paths leading to 

every w and b  only, 

because these are the 

only variables which we 

are interested in updating.  

• From Fig. 5, we see that 

there are 4 edges that we 

labeled with the partial 

differentials. 



  

• Recall the equations for the model and loss function: 

 

• The partial differentials are as follows: 

 

L (yellow) — ŷ (light green): 

 

ŷ (light green) — b (dark green): 

 

ŷ (light green) — w₁ (dark green): 

 

ŷ (light green) — w₂ (dark green): 

 

Model 

Loss 



STEP 6. Backpropagation: Update weights 

 

• Observe the dark green nodes in Fig. 6 

below. We see three things: 

i) b changes from 0.000 to 0.212 

ii) w₁ changes from 0.017 to 0.829 

iii) w₂ changes from 0.048 to 0.164 

Fig. 6: Updating the weights and bias (dark green nodes) 



  

• This is stochastic gradient descent — updating the 
weights using backpropagation, making use of the 
respective gradient values. 

• Let’s first focus on updating b. The formula for 
updating b is 

 

 

where 

b — current value 

b’ — value after update 

η —learning rate, set to 0.05 

∂L/∂b — gradient i.e. partial differential of L w.r.t. b 

 

Stochastic gradient descent update for b 



  

• To get the gradient, we need to multiply the paths from L leading to 

b using chain rule: 

 

 

• We would require the current batch values of x, y, ŷ and the partial 

differentials so let’s just place them below for easy reference: 

Values from current batch and the predicted ŷ 



  

• Using the stochastic gradient descent equation and plucking in all 

the values gives us 

 

 

 

 

 

That’s it for updating b! We are left with updating w₁ and w₂, which 

we update in a similar fashion. 

Update weights 

 



  

•  Now we need to iterate the above-mentioned steps to the other 5 

batches, namely examples 2 to 6. 

https://cdn-images-1.medium.com/max/800/1*2gepOobVvcYRW3KEVmFCKg.gif


  
End of epoch 

• We complete 1 epoch when the model has iterated 

through all the batches once. In practice, we extend the 

epoch to more than 1. 

• One epoch is when our setup has seen all the 

observations in our dataset once. But one epoch is 

almost always never enough for the loss to converge. 

In practice, this number is manually tuned. 

• At the end of it all, you should get a final model, ready 

for inference, say: 



 Improve training 

• One epoch is never enough for a stochastic gradient 

descent optimization problems. Remember that our first 

loss value is at 4.48. If we increase the number of 

epochs, which means just increasing the number of 

times we update the weights and biases, we can 

converge it to a satisfactory low. 

• Below are the things you can improve the training: 

• Extend training to more than 1 epoch 

• Increase batch size 

• Change optimizer  

• Adjust learning rate (changing the learning rate value or using 

learning rate schedulers) 

• Hold out a train-validation-test set 


