
CS6421: Deep Neural Networks

Gregory Provan

Spring 2020

Lecture 15: Gradient Descent and Learning Rates

Overview

•Practical aspects of gradient descent

• algorithm

• Inference steps

•Learning rate

•Regression example

GRADIENT DESCENT ALGORITHM

• At a theoretical level, gradient descent is an algorithm that minimizes
functions. Given a function defined by a set of parameters, gradient
descent starts with an initial set of parameter values and iteratively
moves toward a set of parameter values that minimize the function.
This iterative minimization is achieved using calculus, taking steps in
the negative direction of the function gradient.

• Minimize cost function J

• Gradient descent
• Used all over machine learning for minimization

• Start by looking at a general J() function

• Problem
• We have J(θ0, θ1)

• We want to get min J(θ0, θ1)

• Gradient descent applies to more general functions
• J(θ0, θ1, θ2 θp)

• min J(θ0, θ1, θ2 θp)

How does it work?

• Start with initial guesses
• Start at 0,0 (or any other value)

• Keeping changing θ0 and θ1 a little bit to try and
reduce J(θ0,θ1)

• Each time you change the parameters, you select
the gradient which reduces J(θ0,θ1) the most
possible

• Repeat

• Do so until you converge to a local minimum

• Has an interesting property
• Where you start can determine which minimum you

end up

Visualisation

•

•

STEPS: Gradient Descent Algorithm*

• Lets now go step by step to understand the Gradient
Descent algorithm:

• Step 1: Initialize the weights (0 and 1) with random values
and calculate Error (SSE)

• Step 2: Calculate the gradient i.e. change in SSE when the
weights (0 and 1) are changed by a very small value from
their original randomly initialized value. This helps us move
the values of 0 and 1 in the direction in which SSE is
minimized.

• Step 3: Adjust the weights with the gradients to reach the
optimal values where SSE is minimized

• Step 4: Use the new weights for prediction and to calculate
the new SSE

• Step 5: Repeat steps 2 and 3 till further adjustments to
weights doesn’t significantly reduce the Error

* https://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html

https://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html
https://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html
https://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html
https://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html
https://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html
https://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html
https://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html
https://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html
https://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html

Gradient descent over multi-dimensional

parameters

•

STOCHASTIC GRADIENT DESCENT

•

STOCHASTIC GRADIENT DESCENT

•

LINEAR REGRESSION APPLICATION

• We have some data: as we observe the independent

variables x₁ and x₂, we observe the dependent variable

(or response variable) y along with it.

• In our dataset, we have 6 examples (or observations).

 x₁ x₂ y

1) 4 1 2

2) 2 8 -14

3) 1 0 1

4) 3 2 -1

5) 1 4 -7

6) 6 7 -8

(https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-

1d35b088a843)

https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843
https://towardsdatascience.com/step-by-step-tutorial-on-linear-regression-with-stochastic-gradient-descent-1d35b088a843

• Basic linear deep network:

• find the ‘best’ w and b values.

• The deep learning conventions w and b,

which stand for weights and biases

respectively.

Model

Define loss function

• Let’s say at the end of this exercised, we’ve figured
out our model to be

• How do we know if our model is doing well?

• We simply compare the predicted ŷ and the
observed y through a loss function. There are many
ways to define the loss function but in this post, we
define it as the squared difference between ŷ and y.

• Generally, the smaller the L, the better.

Loss Function

• Want to minimise the difference
between ŷ and y

• Use stochastic gradient descent
optimization.
• iteratively updating the values of w₁ and w₂ using

the value of gradient and learning rate , as in this
equation:

• This algorithm tries to find the right weights by
constantly updating them, bearing in mind that
we are seeking values that minimize the loss
function.

Weight Update equation

• The workflow for training our model is simple: forward

propagation (or feed-forward or forward pass) and

backpropagation.

• Training just means regularly updating the values of

your weights

Algorithm

x1 x2

* *

w1 w2

+

b

-

y

**

L= (ŷ-y)2

ŷ

(ŷ-y)

• Simple linear regression

• orange — the placeholders
(x₁, x₂ and y),

• dark green — the weights
and bias (w₁, w₂ and b),

• light green — the operators
*, +, -, **

• yellow — the model: (ŷ) ,
(ŷ-y), loss function (L).

Computation Graph

Simplified Computation Graph x1 x2

* *

w1 w2

+

b

-

y

**

L= (ŷ-y)2

ŷ

(ŷ-y)

Computation Graph (Simplified)

 STEP 0. Build computation graph
• To keep track of all the values, we build a ‘computation

graph’ that comprises nodes color-coded in

• orange — the placeholders (x₁, x₂ and y),

• dark green — the weights and bias (w₁, w₂ and b),

• light green — the model (ŷ) connecting w₁, w₂, b, x₁ and x₂, and

• yellow — the loss function (L) connecting the ŷ and y.

 For forward

propagation, you

should read this graph

from top to bottom and

for backpropagation

bottom to top.

STEP 1. Forward Propagation

Initialize weights (one-time)
• Since gradient descent is all about updating the weights, we need

them to start with some values, known as initializing weights.

• Here we initialized the weights and bias as follows:

In this example, we

initialized the weights by

using truncated normal

distribution and the bias

with 0.

Fig. 1: Weights initialized (dark green nodes)

STEP 2. Forward Propagation: Feed data

• We set the batch size to be 1 and we feed in this first batch of data.

• Batch and batch size: We can divide our dataset into smaller groups of

equal size. Each group is called a batch and consists of a specified

number of examples, called batch size. If we multiply these two numbers,

we should get back the number of observations in our data.

• Here, our dataset consists of 6 examples and since we defined the batch

size to be 1 in this training, we have 6 batches altogether.

Eqn. 1: First batch of

data fed into model

 STEP 3. Forward Propagation

Compute ŷ

• Now that we have the values of x₁,
x₂, w₁, w₂ and b ready, let’s

compute ŷ.

• The value of ŷ (=0.1) is reflected

in the light green node below:

 L computed (yellow node)

Eqn. 2: Compute the loss

Fig. 4.1: L computed (yellow node)

It is a common practice to log the loss during training,

together with other information like the epoch, batch and

time taken.

STEP 5: Backpropagation: Compute partial

differentials

 • Before we start adjusting the values of the weights and

bias w₁, w₂ and b, let’s first compute all the partial

differentials. These are needed later when we do the

weight update.

Fig. 5: Indicated partial differentials to the

relevant edges on the graph

• Namely, we compute all

possible paths leading to

every w and b only,

because these are the

only variables which we

are interested in updating.

• From Fig. 5, we see that

there are 4 edges that we

labeled with the partial

differentials.

• Recall the equations for the model and loss function:

• The partial differentials are as follows:

L (yellow) — ŷ (light green):

ŷ (light green) — b (dark green):

ŷ (light green) — w₁ (dark green):

ŷ (light green) — w₂ (dark green):

Model

Loss

STEP 6. Backpropagation: Update weights

• Observe the dark green nodes in Fig. 6

below. We see three things:

i) b changes from 0.000 to 0.212

ii) w₁ changes from 0.017 to 0.829

iii) w₂ changes from 0.048 to 0.164

Fig. 6: Updating the weights and bias (dark green nodes)

• This is stochastic gradient descent — updating the
weights using backpropagation, making use of the
respective gradient values.

• Let’s first focus on updating b. The formula for
updating b is

where

b — current value

b’ — value after update

η —learning rate, set to 0.05

∂L/∂b — gradient i.e. partial differential of L w.r.t. b

Stochastic gradient descent update for b

• To get the gradient, we need to multiply the paths from L leading to

b using chain rule:

• We would require the current batch values of x, y, ŷ and the partial

differentials so let’s just place them below for easy reference:

Values from current batch and the predicted ŷ

• Using the stochastic gradient descent equation and plucking in all

the values gives us

That’s it for updating b! We are left with updating w₁ and w₂, which

we update in a similar fashion.

Update weights

• Now we need to iterate the above-mentioned steps to the other 5

batches, namely examples 2 to 6.

https://cdn-images-1.medium.com/max/800/1*2gepOobVvcYRW3KEVmFCKg.gif

End of epoch

• We complete 1 epoch when the model has iterated

through all the batches once. In practice, we extend the

epoch to more than 1.

• One epoch is when our setup has seen all the

observations in our dataset once. But one epoch is

almost always never enough for the loss to converge.

In practice, this number is manually tuned.

• At the end of it all, you should get a final model, ready

for inference, say:

 Improve training

• One epoch is never enough for a stochastic gradient

descent optimization problems. Remember that our first

loss value is at 4.48. If we increase the number of

epochs, which means just increasing the number of

times we update the weights and biases, we can

converge it to a satisfactory low.

• Below are the things you can improve the training:

• Extend training to more than 1 epoch

• Increase batch size

• Change optimizer

• Adjust learning rate (changing the learning rate value or using

learning rate schedulers)

• Hold out a train-validation-test set

