CS6421: Deep Neural Networks

Gregory Provan

Spring 2020 Lecture xx: Convolution Neural Networks

Based on notes from John Canny, Ismini Lourentzou

Overview

- Introduction
- Applications of CNNs
- CNN Operations
 - Convolution
 - Pooling
 - Classification

Introduction to CNNs

- A CNN is a feed-forward network that can extract topological properties from an image.
- Like almost every other neural network, they are trained with a version of the back-propagation algorithm.
- Convolutional Neural Networks are designed to recognize visual patterns directly from pixel images with minimal preprocessing.
- They can recognize patterns with extreme variability (such as handwritten characters).

Classification

Architecture: Fully-Connected vs CNN

- We know it is good to learn a small model.
- From this fully connected model, do we really need all the edges?
- Can some of these be shared?

CNN Topology

Overview

Introduction

Applications of CNNs

CNN Operations

- Convolution
- Pooling
- Classification

Applications of CNNs

- Game playing
- Speech
- Text classification

AlphaGo: Playing the Game Go

19 x 19 matrix

- Black: 1
- white: -1

none: 0

Fully-connected feedforward network can be used

But CNN performs much better

CNN in speech recognition

Source of image: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.6858&rep=rep1&type=pdf

Overview

- Introduction
- Applications of CNNs
- CNN Operations
 - Convolution
 - Pooling
 - Classification

Convolutional Neural Networks

Subsampling

Convolutions

Convolutions

Image Credit: Yann LeCun, Kevin Murphy

Full connection

Full connection

Subsampling

Gaussian connections

Feature extraction layer or Convolution layer

Detect the same feature at different positions in the input image.

Feature extraction

Feature extraction

- Shared weights: all neurons in a feature share the same weights (but not the biases).
- In this way all neurons detect the same feature at different positions in the input image.
- Reduce the number of free parameters.

Feature extraction

If a neuron in the feature map fires, this corresponds to a match with the template.

Convolutional Layer

Slide Credit: Marc'Aurelio Ranzato

Convolutional Layer

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Extraction of Feature Maps at Multiple Levels

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

the subsampling layers reduce the spatial resolution of each feature map

Sy reducing the spatial resolution of the feature map, a certain degree of shift and distortion invariance is achieved.

subsampling layers reduce the spatial resolution of each feature map

Subsampling layer

weight sharing is also applied in subsampling layers.

weight sharing reduces the effect of noise and shift or distortion

Process of CNN Inference

30

Image- and Region-Specific Filters

- CNNs use specific filters
- Detect specific image properties
 - Multiple levels
 - Low-level: edge
 - Higher-level: face

Consider learning an image:

Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

CNN for Image Analysis

Same pattern appears in different places: They can be compressed! What about training a lot of such "small" detectors and each detector must "move around".

A convolutional layer

- A CNN is a neural network with some convolutional layers (and some other layers).
- A convolutional layer has a number of filters that performs a convolution operation.

What's a convolution?

Basic idea:

- Pick a 3x3 matrix F of weights
- Slide this over an image and compute the "inner product" (similarity) of F and the corresponding field of the image, and replace the pixel in the center of the field with the output of the inner product operation

• Key point:

- Different convolutions extract different types of low-level "features" from an image
- All that we need to vary to generate these different features is the weights of F

Convolving an image with an ANN

Note that the parameters in the matrix defining the convolution are **tied** across all places that it is used

input neurons

000000000000000000000000000000000000000	first hidden layer
000000	
	000000000000000000000000000000000000000
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
	000000000000000000000000000000000000000
000000000000000000000000000000000000000	000000000000000000000000000000000000000
000000000000000000000000000000000000000	

How do we do many convolutions of an image with an ANN?

 28×28 input neurons

first hidden layer: $3\times 24\times 24$ neurons

Example: 6 convolutions of a digit

http://scs.ryerson.ca/~aharley/vis/conv/

CNNs typically alternate convolutions, nonlinearity, and then downsampling

Downsampling is usually averaging or (more common in recent CNNs) max-pooling

Why do max-pooling?

- Saves space
- Reduces overfitting?

PROC. OF THE IEEE, NOVEMBER 1998

- Because I'm going to add more convolutions after it!
 - Allows the short-range convolutions to extend over larger subfields of the images
 - So we can spot larger objects
 - Eg, a long horizontal line, or a corner, or …

 $\overline{7}$

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Another CNN visualization

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Alternating Convolution and Sub-sampling

5 layers up

The subfield in a large dataset that gives the strongest output for a neuron

Convolution filters

6 x 6 image

Each filter detects a small pattern (3 x 3).

stride=1

6 x 6 image

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

-1 1 -1 -1 -1 1 -1 -1 1

Filter 1

6 x 6 image

6 x 6 image

Filter 1

 -1
 1
 -1

 -1
 1
 -1

 -1
 1
 -1

Filter 2

stride=1

6 x 6 image

Repeat this for each filter

Two 4 x 4 images Forming 2 x 4 x 4 matrix

Color image: RGB 3 channels

Convolution v.s. Fully Connected

Fullyconnected

The whole CNN

Max Pooling

Filter 1

Subsampling pixels will not change the object bird

We can subsample the pixels to make image smaller

fewer parameters to characterize the image

- A CNN compresses a fully connected network in two ways
 - Reducing number of connections
 - Shared weights on the edges
 - Max pooling further reduces the complexity

Max Pooling

6 x 6 image

2 x 2 image Each filter is a channel

Why do max-pooling?

- Saves space
- Reduces overfitting?
- Because we add more convolutions after it!
 - Allows the short-range convolutions to extend over larger subfields of the images
 - So we can spot larger objects
 - Eg, a long horizontal line, or a corner, or ...

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

PROC. OF THE IEEE, NOVEMBER 1998

Why do max-pooling (2)?

PROC. OF THE IEEE, NOVEMBER 1998

- At some point the feature maps start to get very sparse and blobby
 - indicators of some semantic property, not a recognizable transformation of the image
- Then just use them as features in a "normal" ANN

 $\overline{7}$

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Flattening

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

Only modified the *network structure* and *input format (vector -> 3-D array)*

CNN in Keras

Contents

Focus on 1 & 2-D signals but signal dimensionality is arbitrary (usually 1,2,3,4-D)

The 2-D discrete convolution of two signals *I* and *K* is defined as:

$$I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

$$=\sum_{m}\sum_{n}I(i - m, j - n)K(m, n)$$

Convolution

Image by Cmglee - Own work, CC BY-SA 3.0, https://commons.wikimedia.o rg/w/index.php?curid=20206 883

Where $-\infty \le m, n \le \infty$. Finite signals can be extended by adding zeros (more on this later)

Convolution vs Cross-correlation

$$(I * K)(i,j) =$$
$$= \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$

$$(I \star K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i+m,j+n)$$

Cross-correlation quantifies presence of I(i, j) in (shifted) K(i, j)

Most ML libraries implement convolutional layers as cross-correlation layers.

- Commutativity not important for most ConvNets
- Can avoid flipping one of the signals ⇒ easier to implement

Image by Cmglee - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=20206883
Continuous convolution

https://en.wikipedia.org/wiki/Convolution

1-D
$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$

= $\int_{-\infty}^{\infty} f(t - \tau) g(\tau) d\tau$.

Continuous convolution

https://en.wikipedia.org/wiki/Convolution

1-D
$$(f * g)(t) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$

= $\int_{-\infty}^{\infty} f(t - \tau) g(\tau) d\tau$.

