
CS6421: Deep Neural Networks

Gregory Provan

Spring 2020

Lecture xx: Practical Issues

Based on notes from John Canny, Ismini Lourentzou

Overview

• Practical Issues in Deep Networks:
Overview

• Initialisation

• Architecture

• Activation functions

• Loss functions

• Initial parameters

• Data Preprocessing

• Training

Motivation

•Building high-performance deep

networks is challenging

• Many parameters to set

• Architectures can be difficult to design

• May need data pre-processing

Practical Issues (to be addressed)

•Network initialisation

•Data pre-processing

•Network training

• Inference issues

Overview

•Practical Issues in Network

Initialisation: Overview

• Architecture

• Activation functions

• Loss functions

• Initial parameters

•Data Preprocessing

•Training

General Guidelines

• Match application to architecture
• Structured data: CNN

• Images, text, voice

• Temporal data: RNN/LSTM
• Time-series analysis (stock forecasting)

• Use appropriate activation functions at each
layer

• Weight initialisation

• Use hyper-parameter optimisation
• Number of layers, size of layers, batch size,
stride-length, etc.

Overview

•Practical Issues in Network

Initialisation: Overview

• Architecture

• Activation functions

• Loss functions

• Initial parameters

•Data Preprocessing

•Training

Slides based on cs231n by Fei-Fei Li & Andrej Karpathy & Justin Johnson

Choose the architecture

Example: start with one hidden layer of 50 neurons:

input

layer hidden layer

output layer

CIFAR-10

images, 3072

numbers

10 output

neurons, one

per class

50 hidden

neurons

weights

Activation

functions

Neural Network
9

Template

…

…

Output

Input

Hidden Layer

Network Architecture

•Map application to architecture

•Always try state-of-the-art

architectures first

• Often available

• These architectures work for good

reasons

•Example: YOLO for vision applications

Zoo of Architectures

Asimovinstitute.org

Example: CNN

•Novel CNN architecture made huge

impact

• Improved image recognition accuracy

•Nowadays almost all vision processing

is done using deep learning

13

CNN’s Topology

Feature extraction layer
Convolution layer

Shift and distortion invariance or
Subsampling layer

C

S

Feature maps

14

Feature extraction layer or Convolution layer

features

Detect the same feature at different positions in the

input image.

15

LeNet5

 Introduced by LeCun.

 raw image of 32 × 32 pixels as input.

16

LeNet5

 C1,C3,C5 : Convolutional layer.

 5 × 5 Convolution matrix.

 S2 , S4 : Subsampling layer.

 Subsampling by factor 2.

 F6 : Fully connected layer.

17

LeNet5

 All the units of the layers up to F6 have a sigmoidal acti

vation function of the type:

() tanh()j j jy v A Sv

18

0

F1

F2

F84

W1

W2

W84

Y0

LeNet5

84
2

1

() , 0,...,9j i ij

i

Y F W j

+1

+1

+1

19

LeNet5

 About 187,000 connections

 About 14,000 trainable weights

20

LeNet5

21

LeNet5

Overview

•Practical Issues in Network

Initialisation: Overview

• Architecture

• Activation functions

• Loss functions

• Initial parameters

•Data Preprocessing

•Training

Activation functions

• Function types

• Sigmoid

• Softmax

• Tanh

• ReLU

• LeakyReLU

• Properties of functions

• Implications for classification, training, etc.

23

Overview

•Practical Issues in Network

Initialisation: Overview

• Architecture

• Activation functions

• Loss functions

• Initial parameters

•Data Preprocessing

•Training

Loss functions and output
Classification Regression

Training

examples
Rn x {class_1, ..., class_n}

(one-hot encoding)
Rn x Rm

Output

Layer

Soft-max
[map Rn to a probability distribution]

Linear (Identity)

or Sigmoid

Cost (loss)

function
Cross-entropy Mean Squared Error

f(x)=x

𝐽 𝜃 = −
1

𝑛

𝑖=1

𝑛

𝑘=1

𝐾

𝑦𝑘
(𝑖)

log 𝑦𝑘
(𝑖)

+ 1 − 𝑦𝑘
(𝑖)

log 1 − 𝑦𝑘
𝑖

𝐽 𝜃 =
1

𝑛

𝑖=1

𝑛

𝑦(𝑖) − 𝑦(𝑖) 2

𝐽 𝜃 =
1

𝑛

𝑖=1

𝑛

𝑦(𝑖) − 𝑦(𝑖)

Mean Absolute Error

Overview

•Practical Issues in Network

Initialisation: Overview

• Architecture

• Activation functions

• Loss functions

• Initial parameters

•Data Preprocessing

•Training

Weight initialization

• Typically: initialize to random values
sampled from zero-mean Gaussian:
𝑤 ~ 𝒩(0, 𝜎2)
• Standard deviation matters!

• Key idea: avoid reducing or amplifying the variance of layer
responses, which would lead to vanishing or exploding
gradients

• Common heuristics:
• 𝜎 = 1/ 𝑛in, where 𝑛in is the number of inputs to a layer

• 𝜎 = 2/ 𝑛in + 𝑛out (Glorot and Bengio, 2010)

• 𝜎 = 2/𝑛in for ReLU (He et al., 2015)

• Initializing biases: just set them to 0

More details: http://cs231n.github.io/neural-networks-2/#init

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
http://cs231n.github.io/neural-networks-2/#init

Overview

•Practical Issues in Network

Initialisation: Overview

• Architecture

• Activation functions

• Loss functions

• Initial parameters

•Data Preprocessing

•Training

Data PreProcessing

•May need to preprocess data

• Insufficient data of particular types

• Augmentation

• Zero centering

• Missing data

• Etc.

Data augmentation

• Introduce transformations not adequately

sampled in the training data

• Limited only by your imagination and

time/memory constraints!

• Avoid introducing obvious artifacts

Image source

https://medium.com/@thimblot/data-augmentation-boost-your-image-dataset-with-few-lines-of-python-155c2dc1baec

Overview

•Practical Issues in Network

Initialisation: Overview

• Architecture

• Activation functions

• Loss functions

• Initial parameters

•Data Preprocessing

•Training

Training: Many Issues to Consider

• Training is non-linear optimisation

• Training is extremely complex process

• Tools exist to assist in training

• Hyper-parameter optimisation

• Define hyper-parameters

• Monitor and optimise over training process

• Overfitting

=arg min 𝑥,𝑦 ∈(𝑋,𝑌) 𝐽[𝑦, 𝑓𝐿 𝑥, 1, … 𝐿]

Training: optimize network parameters to minimise loss over training set

How to choose hyper-parameters?

•The learning rate h

•Mini-batch size m

•Early stopping

•Learning rate schedules

•Regularization parameter l

•Grid search and the automated

technique

33

Overfitting

Learned hypothesis may fit the

training data very well, even

outliers (noise) but fail to

generalize to new examples (test

data)

http://wiki.bethanycrane.com/overfitting-of-data

https://www.neuraldesigner.com/images/learning/selection_error.svg

Regularisation

•Trading off performance vs.

size/parameter-space of network

• Bias/variance trade-off

•Regularisation parameter λ

𝐽𝑟𝑒𝑔 𝜃 = 𝐽 𝜃 + 𝜆 𝑘 𝜃𝑘
2

Regularization methods

•Address problem of overfitting

•Methods

• Weight decay

• L2 normalization

• L1 normalization

• Dropout

• Artificial expansion of the training data

36

L2 = weight decay

• Regularization term that penalizes big weights, added to

the objective

• Weight decay value determines how dominant regularization is

during gradient computation

• Big weight decay coefficient big penalty for big weights

Regularization

Dropout

• Randomly drop units (along with their

connections) during training

• Each unit retained with fixed probability p,

independent of other units

• Hyper-parameter p to be chosen (tuned)

𝐽𝑟𝑒𝑔 𝜃 = 𝐽 𝜃 + 𝜆

𝑘

𝜃𝑘
2

Early-stopping

• Use validation error to decide when to stop training

• Stop when monitored quantity has not improved after n subsequent epochs

• n is called patience

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural

networks from overfitting." Journal of machine learning research (2014)

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Tuning hyper-parameters

“Grid and random search of 9 trials for optimizing function g(x) ≈ g(x) + h(y)

With grid search, nine trials only test g(x) in three distinct places.

With random search, all nine trials explore distinct values of g. ”

Both try configurations randomly and blindly

Next trial is independent to all the trials done before

Bayesian optimization for hyper-parameter tuning:

Make smarter choice for the next trial, minimize the number of trials

1. Collect the performance at several configurations

2. Make inference and decide what configuration to try next

g(x) ≈ g(x) + h(y)

g(x) shown in green

h(y) is shown in yellow

Bergstra, James, and Yoshua Bengio. "Random

search for hyper-parameter optimization." Journal

of Machine Learning Research, Feb (2012)

Library available!

https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/
http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf
https://github.com/hyperopt/hyperopt

Learning rates

•Always use smaller rates

39

From [Duda&Hart:2001]

Summary

•Overview of Practical Issues in Deep

Networks

•Key issues

• Initialisation

• Data Preprocessing

• Training

•Will examine each major issue

