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Overview 

•Computational platforms for deep 

learning 

•Underlying computational framework 

• Computation graph 

•Comparison of tools 

• In-depth: TensorFlow 



Deep Learning Frameworks 

• TensorFlow/Keras 

• scientific computing framework in Python 

• symbolic computation and automatic differentiation 

• Supported by Google 

• PyTorch 

• scientific computing framework (originally in Lua) 

• supported by Facebook 

• Caffe2 

• supported by Facebook 

• CNTK 

• Microsoft product 

• Support for Windows/Linux, command line only. GPU support. 



Framework Comparison 

• More alike than different 

• All express deep models 

• Many have same computational basis: computation 

graph 

• All are open-source (contributions differ) 

• Most include scripting for hacking and prototyping 

 

• No strict winners – experiment and choose the 

framework that best fits your work 
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Computation Graph: Basis 

•Structural view of network: CNN 



Computation Graph: Basis 

•Decompose inference into elements 

•Tools differ by granularity of elements 
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Examine Two Approaches 

• TensorFlow 

• Fine granularity: computation graph 

• Caffe2 

• Granularity: “level” of inference  
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Network: Computation Graph 

name: "dummy-net" 

layers { name: "data" …} 

layers { name: "conv" …} 

layers { name: "pool" …} 

    … more layers … 

layers { name: "loss" …} 

● A network is a set of layers 

connected as a DAG: 

LogReg ↑ 

LeNet → 

ImageNet, Krizhevsky 2012 → 



Forward / Backward the essential Net computations 



TensorFlow 

• TensorFlow is an open source software library, 

originally developed by the Google Brain team, 

for machine learning in various kinds of tasks.  

• TensorFlow Homepage 

• TensorFlow Install 

• TensorFlow API (Version 1.10 for Python)  

• TensorFlow is a low-level mathematics API, 

similar to Numpy. However, unlike Numpy, 

TensorFlow is built for deep learning. 
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What is TensorFlow? 

• Open source library for numerical computation using data flow graphs 

 

• Developed by Google Brain Team to conduct machine learning research 
• Based on DisBelief used internally at Google since 2011  

 

• “TensorFlow is an interface for expressing machine learning algorithms, 

and an implementation for executing such algorithms” 



What is TensorFlow 

•Key idea: express a numeric 

computation as a graph 

 

•Graph nodes are operations with any 

number of inputs and outputs 

 

•Graph edges are tensors which flow 

between nodes 

 



Design Principles 

• Dataflow graphs of primitive operators 
 

• Deferred execution (two phases) 
1. Define program i.e., symbolic dataflow graph w/ 

placeholders 

2. Executes optimized version of program on set of 
available devices 

 

• Common abstraction for heterogeneous 
accelerators 

1. Issue a kernel for execution 

2. Allocate memory for inputs and outputs 

3. Transfer buffers to and from host memory 



TensorFlow Entities 

•Computation graph 

•Nodes:  

• computation units 

•Edges:  

• flow of Tensors (multidimensional arrays) 



TensorBoard: Visualisation 

 



Tensors: Multidimensional arrays 

•Forward: data 

•Backward: derivatives 

• Jacobian 



TensorFlow 

•Low-level computation library 

• Can use simple operators in order to 
implement an algorithm 

• Examples:  

• ‘add’ (element-wise addition of two matrices) 

• ‘matmul’ (matrix multiplication) 

•Extensive suite of functions and 
classes 

• allow users to build models from scratch. 

 



Low-Level Library 

•Forward operations 

• Tensor operations 

• Matrix multiplication 

• Vector addition 

•Backward operations 

• Derivative of any operator 



Forward (Low-Level) Operation 

•Each node defines an operation  

• Perform operation on inputs: e.g., M  b 

•Lazy programming 

• computations are scheduled only when 

necessary 



Backward Operation: Automatic Differentiation 

•TensorFlow calculates derivatives from 
the computation graph 

• chain rule 

•Every node has attached gradient 
operation 

• calculates derivatives of input with respect 
to output 

• calculates gradients with respect to 
parameters during backpropagation 

 



• A non-square matrix in general 

• Suppose you have a vector-valued function 

• Let the gradient operator be the vector of (first-order) 

partial derivatives 

• Then, the Jacobian matrix is defined as 

Jacobian Matrix 



• It’s the orientation of the tangent plane to the vector- 

valued function at a given point 

• Generalizes the gradient of a scalar valued function 

• Used for backprop error propagation... 

Visualisation of Jacobian 



TensorFlow: Solution Strategy 

1.Execution Flexibility via DataFlow abstraction 
a. Makes it easy to extract the parallelism 
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TensorFlow: Solution Strategy 

1.Execution Flexibility via DataFlow abstraction 
a. Makes it easy to extract the parallelism 

2.Provides DFGs for primitive operators 
a. Softmax, convolution, MM, … 

b. Makes it easy to experiment with novel layers 

c. Automatic gradient calculation 
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3.Deferred execution 
a. Offload the larger chunks where possible... 
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TensorFlow: Solution Strategy 

1.Execution Flexibility via DataFlow 

abstraction 
a. Makes it easy to extract the parallelism 

2.Provides CGs for primitive operators 
a. Softmax, convolution, MM, … 

b. Makes it easy to experiment with novel layers 

c. Automatic gradient calculation 

3.Deferred execution 
a. Offload the larger chunks where possible... 

4.Common Abstraction for Accelerators 
a. Easy to integrate new accelerators into the 

fold 

b. The operators are specialized for different 

devices 

5.Common data primitive : Tensor 
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Gradient computation: Backpropagation 

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy) 

 

tf.train.GradientDescentOptimizer is an Optimizer object 

 
tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy) 

adds optimization operation to computation graph 

 

TensorFlow graph nodes have attached gradient operations 

Gradient with respect to parameters computed with 

backpropagation … automatically 



TensorFlow high-level architecture 

• Core in C++ 
• Very low overhead 

• Different front ends for specifying/driving the computation  
• Python and C++ today, easy to add more 

From: http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdf 



TensorFlow architecture 

• Core in C++ 
• Very low overhead 

• Different front ends for specifying/driving the computation  
• Python and C++ today, easy to add more 

From: http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdf 



TensorFlow Architecture 

Source: www.tensorflow.org/extend/architecture 

 



HDFS Data 

TensorFlow with Spark 
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Execution Model 

• Single DFG represents all computation and state for ML 

algorithm 
• Input preprocessing, mathematical operators,  parameters, 

parameter update rules 

• Communication explicit, simplifying scheduling and partitioning 
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Computation Graph 
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Execution Model 

• Single CG represents all computation and state for ML 

algorithm 
• Input preprocessing, mathematical operators,  parameters, 

parameter update rules 

• Communication explicit, simplifying scheduling and partitioning 

•  Differences with existing systems: 
• Concurrent execution on overlapping subgraphs supported 

• Individual vertices contain sharable, mutable state 
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