
CS6421: Deep Neural Networks

Gregory Provan

Spring 2020

Lecture 7: Computational Platforms

Based on notes from Jeff Heaton,

T81-558: Applications of Deep Neural Networks)

https://sites.wustl.edu/jeffheaton/
https://sites.wustl.edu/jeffheaton/t81-558/
https://sites.wustl.edu/jeffheaton/t81-558/
https://sites.wustl.edu/jeffheaton/t81-558/

Overview

•Computational platforms for deep

learning

•Underlying computational framework

• Computation graph

•Comparison of tools

• In-depth: TensorFlow

Deep Learning Frameworks

• TensorFlow/Keras

• scientific computing framework in Python

• symbolic computation and automatic differentiation

• Supported by Google

• PyTorch

• scientific computing framework (originally in Lua)

• supported by Facebook

• Caffe2

• supported by Facebook

• CNTK

• Microsoft product

• Support for Windows/Linux, command line only. GPU support.

Framework Comparison

• More alike than different

• All express deep models

• Many have same computational basis: computation

graph

• All are open-source (contributions differ)

• Most include scripting for hacking and prototyping

• No strict winners – experiment and choose the

framework that best fits your work

5

Computation Graph: Basis

•Structural view of network: CNN

Computation Graph: Basis

•Decompose inference into elements

•Tools differ by granularity of elements

Input layer

Hidden layer 1

Hidden layer i

Output layer n

F1(x0, W1)

Fi(xi-1, Wi)

Fn(xn-1, Wn)

x0

x1

xi-1

xi

xn-1 …

…

xn

…

…

(output)

(input)

…

Examine Two Approaches

• TensorFlow

• Fine granularity: computation graph

• Caffe2

• Granularity: “level” of inference

Input layer

Hidden layer 1

Hidden layer i

Output layer n

F1(x0, W1)

Fi(xi-1, Wi)

Fn(xn-1, Wn)

x0

x1

xi-1

xi

xn-1 …

…

xn

…

…

(output)

(input)

…

Network: Computation Graph

name: "dummy-net"

layers { name: "data" …}

layers { name: "conv" …}

layers { name: "pool" …}

 … more layers …

layers { name: "loss" …}

● A network is a set of layers

connected as a DAG:

LogReg ↑

LeNet →

ImageNet, Krizhevsky 2012 →

Forward / Backward the essential Net computations

TensorFlow

• TensorFlow is an open source software library,

originally developed by the Google Brain team,

for machine learning in various kinds of tasks.

• TensorFlow Homepage

• TensorFlow Install

• TensorFlow API (Version 1.10 for Python)

• TensorFlow is a low-level mathematics API,

similar to Numpy. However, unlike Numpy,

TensorFlow is built for deep learning.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/install/
https://www.tensorflow.org/api_docs/python/tf
https://www.tensorflow.org/api_docs/python/tf
https://www.tensorflow.org/api_docs/python/tf

What is TensorFlow?

• Open source library for numerical computation using data flow graphs

• Developed by Google Brain Team to conduct machine learning research
• Based on DisBelief used internally at Google since 2011

• “TensorFlow is an interface for expressing machine learning algorithms,

and an implementation for executing such algorithms”

What is TensorFlow

•Key idea: express a numeric

computation as a graph

•Graph nodes are operations with any

number of inputs and outputs

•Graph edges are tensors which flow

between nodes

Design Principles

• Dataflow graphs of primitive operators

• Deferred execution (two phases)
1. Define program i.e., symbolic dataflow graph w/

placeholders

2. Executes optimized version of program on set of
available devices

• Common abstraction for heterogeneous
accelerators

1. Issue a kernel for execution

2. Allocate memory for inputs and outputs

3. Transfer buffers to and from host memory

TensorFlow Entities

•Computation graph

•Nodes:

• computation units

•Edges:

• flow of Tensors (multidimensional arrays)

TensorBoard: Visualisation

Tensors: Multidimensional arrays

•Forward: data

•Backward: derivatives

• Jacobian

TensorFlow

•Low-level computation library

• Can use simple operators in order to
implement an algorithm

• Examples:

• ‘add’ (element-wise addition of two matrices)

• ‘matmul’ (matrix multiplication)

•Extensive suite of functions and
classes

• allow users to build models from scratch.

Low-Level Library

•Forward operations

• Tensor operations

• Matrix multiplication

• Vector addition

•Backward operations

• Derivative of any operator

Forward (Low-Level) Operation

•Each node defines an operation 

• Perform operation on inputs: e.g., M  b

•Lazy programming

• computations are scheduled only when

necessary

Backward Operation: Automatic Differentiation

•TensorFlow calculates derivatives from
the computation graph

• chain rule

•Every node has attached gradient
operation

• calculates derivatives of input with respect
to output

• calculates gradients with respect to
parameters during backpropagation

• A non-square matrix in general

• Suppose you have a vector-valued function

• Let the gradient operator be the vector of (first-order)

partial derivatives

• Then, the Jacobian matrix is defined as

Jacobian Matrix

• It’s the orientation of the tangent plane to the vector-

valued function at a given point

• Generalizes the gradient of a scalar valued function

• Used for backprop error propagation...

Visualisation of Jacobian

TensorFlow: Solution Strategy

1.Execution Flexibility via DataFlow abstraction
a. Makes it easy to extract the parallelism

23

TensorFlow: Solution Strategy

1.Execution Flexibility via DataFlow abstraction
a. Makes it easy to extract the parallelism

2.Provides DFGs for primitive operators
a. Softmax, convolution, MM, …

b. Makes it easy to experiment with novel layers

c. Automatic gradient calculation

24

TensorFlow: Solution Strategy

1.Execution Flexibility via DataFlow abstraction
a. Makes it easy to extract the parallelism

2.Provides DFGs for primitive operators
a. Softmax, convolution, MM, …

b. Makes it easy to experiment with novel layers

c. Automatic gradient calculation

3.Deferred execution
a. Offload the larger chunks where possible...

25

TensorFlow: Solution Strategy

1.Execution Flexibility via DataFlow

abstraction
a. Makes it easy to extract the parallelism

2.Provides CGs for primitive operators
a. Softmax, convolution, MM, …

b. Makes it easy to experiment with novel layers

c. Automatic gradient calculation

3.Deferred execution
a. Offload the larger chunks where possible...

4.Common Abstraction for Accelerators
a. Easy to integrate new accelerators into the

fold

b. The operators are specialized for different

devices

5.Common data primitive : Tensor
26

Gradient computation: Backpropagation

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

tf.train.GradientDescentOptimizer is an Optimizer object

tf.train.GradientDescentOptimizer(lr).minimize(cross_entropy)

adds optimization operation to computation graph

TensorFlow graph nodes have attached gradient operations

Gradient with respect to parameters computed with

backpropagation … automatically

TensorFlow high-level architecture

• Core in C++
• Very low overhead

• Different front ends for specifying/driving the computation
• Python and C++ today, easy to add more

From: http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdf

TensorFlow architecture

• Core in C++
• Very low overhead

• Different front ends for specifying/driving the computation
• Python and C++ today, easy to add more

From: http://www.wsdm-conference.org/2016/slides/WSDM2016-Jeff-Dean.pdf

TensorFlow Architecture

Source: www.tensorflow.org/extend/architecture

HDFS Data

TensorFlow with Spark

Spark Driver

Spark Executor

Parameter Server

TensorFlow Core

GPU

Spark Executor

TensorFlow Algo

TensorFlow Core

GPU

Spark Executor

TensorFlow Algo

TensorFlow Core

GPU

Execution Model

• Single DFG represents all computation and state for ML

algorithm
• Input preprocessing, mathematical operators, parameters,

parameter update rules

• Communication explicit, simplifying scheduling and partitioning

32

Computation Graph

33

Execution Model

• Single CG represents all computation and state for ML

algorithm
• Input preprocessing, mathematical operators, parameters,

parameter update rules

• Communication explicit, simplifying scheduling and partitioning

• Differences with existing systems:
• Concurrent execution on overlapping subgraphs supported

• Individual vertices contain sharable, mutable state

34

