
CS6421: Deep Neural Networks

Gregory Provan

Spring 2020

Lecture 3: Modularity and Network Architectures

Based on notes from E. Gavves

Overview

•Modularity in Deep Learning

•Popular Deep Learning modules

•Significance of Modularity

𝒉 = 𝝈(𝐖𝟏𝒙 + 𝒃𝟏)

𝒚 = 𝝈(𝑾𝟐𝒉 + 𝒃𝟐)

𝒉

𝒚

𝒙

Weights

Activation functions

Neural Network: Definition

Deep Network Representation
Input Output Layer 1 Layer 2 ……..

…….. x y1 y2

y2 =f2(y1, 2)
y1 =f1(x, 1)

y2 =f2(f1(x, 1), 1)

What do the symbols mean?

• fi: arbitrary functions (activation functions)

• i: parameters

We choose the fi and learn the i

• Structure

• Functions

• Parameters

Deep Network Structure
Input Output Layer 1 Layer 2 ……..

…….. x y1 y2

y2 =f2(y1, 2)
y1 =f1(x, 1)

y2 =f2(f1(x, 1), 1)

Each layer: matrix/vector

• yi: matrix/vector of outputs

• x: input matrix/vector

Must use linear algebra for DL operations

Summary: Deep Network
Input Output Layer 1 Layer 2 ……..

…….. x a1 a2

a2 =h2(y1, w2)
a1 =h1(x, w1)

a2 =h2(h1(x, w1), w1)

aN(x, w1, w2 ,… wN)= h N(h N-1(…(h1(x, w1), wN-1), wN)

w=arg minw 𝐽[𝑎, ℎ𝐿 𝑥,w1, … 𝐿]𝑥,𝑦 ⊆(𝑋,𝑌)

Deep Network: family of parametric, non-linear, hierarchical representations

Training: optimize network parameters to minimise loss over training set

Neural Network: Definition

• A family of parametric, non-linear and hierarchical
representation learning functions
• massively optimized with stochastic gradient descent to

encode domain knowledge, i.e. domain invariances,
stationarity.

• 𝑎𝐿 (𝑥;𝑤1,…,𝑤𝐿)=ℎ𝐿 (ℎ𝐿-1…ℎ 1(𝑥,𝑤 1),𝑤𝐿-1),𝑤𝐿)
• 𝑥:input,

• 𝑤𝑙: parameters for layer 𝑙,
• 𝑎𝑙=ℎ𝑙 (𝑥,𝑤𝑙): (non-) linear function

• Given training corpus {𝑋,𝑌} find optimal parameters
• w∗←argmin𝑤 𝐿(𝑦, 𝑎𝐿 𝑥)𝑥,𝑦 ⊆(𝑋,𝑌)

Architectural View of Deep Networks

•A neural network model is a series of

hierarchically connected functions

•This hierarchies can be very complex

Abstract Architecture

•DAG structure

• Directed acyclic graph

Example: RNN Architecture

• Want to capture temporal dependencies

Modular Structure Determines Function

Module

• A module is a building block for our network

• Each module is an object/function 𝑎=ℎ(𝑥;𝑤)
that
• Contains trainable parameters w

• Receives as an argument an input 𝑥

• Returns an output 𝑎 based on the activation
function ℎ(…)

• The activation function should be (at least)
first-order differentiable (almost)
everywhere
• Required for BackPropagation

• For easier/more efficient backpropagation
 store module input
• easy to get module output fast

• easy to compute derivatives

Modular Composition

• A neural network is a composition of
modules (building blocks)

• Any architecture works (in theory)

• If the architecture is a feedforward
cascade, no special care needed

• If acyclic, there is right order of computing
the forward computations

• If there are loops, these form recurrent
connections (studied later)

Forward Computations

• Simply compute the activation of each
module in the network

• 𝑎𝑙=ℎ𝑙(𝑥𝑙;𝑤), where 𝑎𝑙=𝑥𝑙+1

• Must know the precise function behind each
module ℎ 𝑙(…)

• Recursive operations
• One module’s output is another’s input

• Steps
• Visit modules one by one starting from the data input

• Some modules might have several inputs from multiple
modules

• Compute modules activations with the right
order
• Make sure all the inputs computed at the right time

Why is Differentiability Important?

•Modules must work

with Backpropagation

•Use partial derivatives

to backpropagate

errors

Must use “Good” Functions in Modules

•Some functions perform better than

others in particular roles

• E.g., sigmoid vs. ReLU as activation

• Loss: squared-error vs. cross-entropy

•Must understand functional properties

to build high-performance Deep-

Networks

Examples of Functional Modules

•Sigmoid

• tanh

•ReLU

+ Nice interpretation as the firing rate of a neuron

• 0 = not firing at all

• 1 = fully firing

- Sigmoid neurons saturate and kill gradients, thus NN will barely learn

• when the neuron’s activation are 0 or 1 (saturate)

• gradient at these regions almost zero

• almost no signal will flow to its weights

• if initial weights are too large then most neurons would saturate

Takes a real-valued number and

“squashes” it into range between 0

and 1.

 𝑅𝑛 → 0,1

http://adilmoujahid.com/images/activation.png

Sigmoid Module

- Like sigmoid, tanh neurons saturate

- Unlike sigmoid, output is zero-centered

- Tanh is a scaled sigmoid: tanh 𝑥 = 2𝑠𝑖𝑔𝑚𝑎 2𝑥 − 1

Takes a real-valued number and

“squashes” it into range between -1

and 1.

 𝑅𝑛 → −1,1

http://adilmoujahid.com/images/activation.png

Tanh Module

Takes a real-valued number and

thresholds it at zero

𝑅𝑛 → 𝑅+
𝑛

Most Deep Networks use ReLU nowadays

• Trains much faster

• accelerates the convergence of SGD

• due to linear, non-saturating form

• Less expensive operations

• compared to sigmoid/tanh (exponentials etc.)

• implemented by simply thresholding a matrix at zero

• More expressive

• Prevents the gradient vanishing problem

f 𝑥 = max (0, 𝑥)

http://adilmoujahid.com/images/activation.png

ReLU Module

Centered Non-Linearities

• Remember: a deep network is a hierarchy of similar modules
• One ReLU is the input to the next ReLU

• Consistent behaviour  input/output distributions must
match
• Otherwise, you will soon have inconsistent behaviour

• If ReLU-1 returns always highly positive numbers, e.g. ~10,000
• the next ReLU-2 biased towards highly positive or highly negative

values (depending on the weight 𝑤)

• ReLU (2) essentially becomes a linear unit.

• We want our non-linearities to be mostly activated around
the origin (centred activations)
• the only way to encourage consistent behaviour without

constraining the architecture

New Modules

• Everything can be a module, given some
ground rules

• How to make our own module?
• Write a function that follows the ground rules

• Needs to be (at least) first-order differentiable
(almost) everywhere

• Hence, we need to be able to compute
the partial derivatives
• 𝜕𝑎(𝑥;𝜃)/𝜕𝑥 and 𝜕𝑎(𝑥;𝜃)/𝜕𝜃

Module of Modules

•As everything can be a module, a

module of modules could also be a

module

•Can make new building blocks as we

please, if we expect them to be used

frequently

•The same rules for eligibility of

modules still apply

1 sigmoid  2 modules

• Assume the sigmoid 𝜎(…)operating on
top of 𝑤𝑥

• 𝑎=𝜎(𝑤𝑥)

• Directly computing it

• complicated backpropagation equations

• Since everything is a module, we can
decompose this to 2 modules

• 𝑎1=𝑤𝑥  𝑎2 =𝜎(𝑎1)

1 sigmoid  2 modules

•Two backpropagation steps instead of

one

•Gradients are simpler

• Algorithmic way of computing gradients

• Avoid taking more gradients than needed

in a (complex) non-linearity

 𝑎1=𝑤𝑥  𝑎2 =𝜎(𝑎1)

Many Modules are Possible

• Many will work comparably to existing ones
• Not interesting, unless they work consistently
better and there is a reason

• Regularization modules
• Dropout

• Normalization modules
• ℓ2-normalization, ℓ1-normalization

• Loss modules
• Hinge loss

• Most concepts discussed in the course can
be defined as modules

Deep Network Architectures

•Architecture

• Modular structure of a deep network

•Architecture is critical to good
performance

• Arbitrary structure may work, but be
inefficient

•Architecture is application-specific

• Network classes have particular “base”
architectures

Zoo of Architectures

Asimovinstitute.org

Deep FeedForward Architecture

Convolution Network Architecture

• Architecture designed for structured inputs

• Two main sub-structures
• Convolution

• Decision

input Convolution

layers
Decision

layers

Temporal Architectures

LSTM Structure (Temporal)

Many Application-Specific Architectures

•SSD

•YOLO

Summary

• Module

• Captures functionality in a deep network

• Key modules exist

• Sigmoid, tanh, convolution, etc.

• Architecture

• Structural principle for modular composition

• Must match architecture to application

More Formally: Empirical Risk Minimization

(loss function also called “cost function”

denoted J(θ))

Any interesting cost function is complicated and non-convex

Solving the Risk (Cost) Minimization Problem

Gradient Descent – Basic Idea

Gradient Descent Intuition 1:

Convex Cost Function

One of the many nice properties of

convexity is that any local minimum

is also a global minimum

Gradient Decent Intuition 2

Unfortunately, any interesting cost function is likely non-convex

Can get stuck here if unlucky/start

at the wrong place

Solving the Optimization Problem

Gradient Descent for Linear Regression

The big breakthrough came from the Hinton lab at UToronto in the mid 80’s where

the back propagation algorithm was discovered (or perhaps re-discovered).

“Backprop” is a simple way of computing the gradient of the loss function with respect

to the model parameters θ

Summary: Supervised Learning Process

Training

Sample

labeled data

(batch)

Forward it
through the

network, get

predictions

Back-

propagate

the errors

Update the

network

weights

Optimize (min. or max.) objective/cost function 𝑱(𝜽)
Generate error signal that measures difference

between predictions and target values

Use error signal to change the weights and get more

accurate predictions

Subtracting a fraction of the gradient moves you

towards the (local) minimum of the cost function

https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39

learning rate

Gradient Descent

objective/cost function 𝑱(𝜽)

𝜃𝑗
𝑛𝑒𝑤 = 𝜃𝑗

𝑜𝑙𝑑 − 𝛼
ⅆ

ⅆ𝜃𝑗
𝑜𝑙𝑑 𝐽(𝜃) Update each element of θ

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑 − 𝛼𝛻𝜃𝐽(𝜃) Matrix notation for all parameters

Recursively apply chain rule though each node

Review of backpropagation

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-gradient-notes.pdf

One forward pass

0.1

0.2

0.3

0.2 -0.5 0.1

2.0 1.5 1.3

0.5 0.0 0.25

-0.3 2.0 0.0

0.95

3.89

0.15

0.37

1.0

3.0

0.025

0.0

𝐖 𝒃 𝝈(𝒙𝒊;𝑾, 𝒃) 𝒙𝒊

Text (input) representation

TFIDF

Word embeddings

….

very positive

positive

very negative

negative

Non-linearities needed to learn complex (non-linear) representations of data,

otherwise the NN would be just a linear function

More layers and neurons can approximate more complex functions

Activation functions

W1W2𝑥 = 𝑊𝑥

Full list: https://en.wikipedia.org/wiki/Activation_function

http://cs231n.github.io/assets/nn1/layer_sizes.jpeg

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function

Overfitting

Learned hypothesis may fit the

training data very well, even

outliers (noise) but fail to

generalize to new examples (test

data)

http://wiki.bethanycrane.com/overfitting-of-data

https://www.neuraldesigner.com/images/learning/selection_error.svg

L2 = weight decay

• Regularization term that penalizes big weights, added to

the objective

• Weight decay value determines how dominant regularization is

during gradient computation

• Big weight decay coefficient  big penalty for big weights

Regularization

Dropout

• Randomly drop units (along with their

connections) during training

• Each unit retained with fixed probability p,

independent of other units

• Hyper-parameter p to be chosen (tuned)

𝐽𝑟𝑒𝑔 𝜃 = 𝐽 𝜃 + 𝜆 𝜃𝑘
2

𝑘

Early-stopping

• Use validation error to decide when to stop training

• Stop when monitored quantity has not improved after n subsequent epochs

• n is called patience

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural

networks from overfitting." Journal of machine learning research (2014)

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Tuning hyper-parameters

“Grid and random search of 9 trials for optimizing function g(x) ≈ g(x) + h(y)

With grid search, nine trials only test g(x) in three distinct places.

With random search, all nine trials explore distinct values of g. ”

Both try configurations randomly and blindly

Next trial is independent to all the trials done before

Bayesian optimization for hyper-parameter tuning:

Make smarter choice for the next trial, minimize the number of trials

1. Collect the performance at several configurations

2. Make inference and decide what configuration to try next

g(x) ≈ g(x) + h(y)

g(x) shown in green

h(y) is shown in yellow

Bergstra, James, and Yoshua Bengio. "Random

search for hyper-parameter optimization." Journal

of Machine Learning Research, Feb (2012)

Library available!

https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/
https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/
https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/
http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf
http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf
http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf
http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf
https://github.com/hyperopt/hyperopt

Loss functions and output
Classification Regression

Training

examples
Rn x {class_1, ..., class_n}

(one-hot encoding)
Rn x Rm

Output

Layer

Soft-max
 [map Rn to a probability distribution]

Linear (Identity)

or Sigmoid

Cost (loss)

function
Cross-entropy Mean Squared Error

f(x)=x

List of loss functions

𝐽 𝜃 = −
1

𝑛
 𝑦𝑘

(𝑖)
log 𝑦 𝑘

(𝑖)
+ 1 − 𝑦𝑘

(𝑖)
 log 1 − 𝑦 𝑘

𝑖

𝐾

𝑘=1

𝑛

𝑖=1

𝐽 𝜃 =
1

𝑛
 𝑦(𝑖) − 𝑦 (𝑖)

2
𝑛

𝑖=1

𝐽 𝜃 =
1

𝑛
 𝑦(𝑖) − 𝑦 (𝑖)

𝑛

𝑖=1

Mean Absolute Error

https://isaacchanghau.github.io/2017/06/07/Loss-Functions-in-Artificial-Neural-Networks/
https://isaacchanghau.github.io/2017/06/07/Loss-Functions-in-Artificial-Neural-Networks/

