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Overview 

 

•Modularity in Deep Learning 

•Popular Deep Learning modules 

•Significance of Modularity 

 



𝒉 =   𝝈(𝐖𝟏𝒙 + 𝒃𝟏) 

𝒚 = 𝝈(𝑾𝟐𝒉 + 𝒃𝟐) 

𝒉 

𝒚 

𝒙 

Weights 

Activation functions 

Neural Network: Definition 



Deep Network Representation 
Input Output Layer 1 Layer 2 …….. 

…….. x y1 y2 

y2 =f2(y1, 2) 
y1 =f1(x, 1) 

y2 =f2(f1(x, 1), 1) 

What do the symbols mean? 

•   fi: arbitrary functions (activation functions) 

• i: parameters 

We choose the fi and learn the i 

• Structure 

• Functions  

• Parameters  



Deep Network Structure 
Input Output Layer 1 Layer 2 …….. 

…….. x y1 y2 

y2 =f2(y1, 2) 
y1 =f1(x, 1) 

y2 =f2(f1(x, 1), 1) 

Each layer: matrix/vector 

•   yi: matrix/vector of outputs 

• x: input matrix/vector 

Must use linear algebra for DL operations 



Summary: Deep Network 
Input Output Layer 1 Layer 2 …….. 

…….. x a1 a2 

a2 =h2(y1, w2) 
a1 =h1(x, w1) 

a2 =h2(h1(x, w1), w1) 

aN(x, w1, w2 ,… wN)= h N(h N-1(…(h1(x, w1),  wN-1), wN) 

 

w=arg minw   𝐽[𝑎, ℎ𝐿 𝑥,w1, … 𝐿 ]𝑥,𝑦 ⊆(𝑋,𝑌)  

Deep Network: family of parametric, non-linear, hierarchical representations 

Training: optimize network parameters to minimise loss over training set 



Neural Network: Definition 

 

• A family of parametric, non-linear and hierarchical 
representation learning functions  
• massively optimized with stochastic gradient descent to 

encode domain knowledge, i.e. domain invariances, 
stationarity. 

• 𝑎𝐿 (𝑥;𝑤1,…,𝑤𝐿)=ℎ𝐿 (ℎ𝐿-1…ℎ 1(𝑥,𝑤 1),𝑤𝐿-1),𝑤𝐿) 
• 𝑥:input,  

• 𝑤𝑙: parameters for layer 𝑙,  
• 𝑎𝑙=ℎ𝑙 (𝑥,𝑤𝑙): (non-) linear function 

• Given training corpus {𝑋,𝑌} find optimal parameters 
• w∗←argmin𝑤  𝐿(𝑦, 𝑎𝐿 𝑥 )𝑥,𝑦 ⊆(𝑋,𝑌)  



Architectural View of Deep Networks 

•A neural network model is a series of 

hierarchically connected functions 

•This hierarchies can be very complex 

 



Abstract Architecture 

•DAG structure 

• Directed acyclic graph 



Example: RNN Architecture 

• Want to capture temporal dependencies 



Modular Structure Determines Function 



Module 

 

• A module is a building block for our network 

• Each module is an object/function 𝑎=ℎ(𝑥;𝑤) 
that 
• Contains trainable parameters w 

• Receives as an argument an input 𝑥 

• Returns an output 𝑎 based on the activation 
function ℎ(…) 

• The activation function should be (at least) 
first-order differentiable (almost) 
everywhere 
• Required for BackPropagation 

• For easier/more efficient backpropagation 
 store module input 
• easy to get module output fast 

• easy to compute derivatives 

 



Modular Composition 

 

• A neural network is a composition of 
modules (building blocks) 

• Any architecture works (in theory) 

• If the architecture is a feedforward 
cascade, no special care needed 

• If acyclic, there is right order of computing 
the forward computations 

• If there are loops, these form recurrent 
connections (studied later) 

 



Forward Computations 

 

• Simply compute the activation of each 
module in the network 

• 𝑎𝑙=ℎ𝑙(𝑥𝑙;𝑤), where 𝑎𝑙=𝑥𝑙+1 

• Must know the precise function behind each 
module ℎ 𝑙(…) 

• Recursive operations 
• One module’s output is another’s input 

• Steps 
• Visit modules one by one starting from the data input 

• Some modules might have several inputs from multiple 
modules  

• Compute modules activations with the right 
order 
• Make sure all the inputs computed at the right time 

 



Why is Differentiability Important? 

•Modules must work 

with Backpropagation 

•Use partial derivatives 

to backpropagate 

errors 



Must use “Good” Functions in Modules 

•Some functions perform better than 

others in particular roles 

• E.g., sigmoid vs. ReLU as activation 

• Loss: squared-error vs. cross-entropy 

•Must understand functional properties 

to build high-performance Deep-

Networks 



Examples of Functional Modules 

•Sigmoid  

• tanh 

•ReLU 



+ Nice interpretation as the firing rate of a neuron 

• 0 = not firing at all  

• 1 = fully firing 

 

- Sigmoid neurons saturate and kill gradients, thus NN will barely learn 

• when the neuron’s activation are 0 or 1 (saturate) 

• gradient at these regions almost zero  

• almost no signal will flow to its weights  

• if initial weights are too large then most neurons would saturate 

Takes a real-valued number and 

“squashes” it into range between 0 

and 1.  

 𝑅𝑛 → 0,1  

http://adilmoujahid.com/images/activation.png 

Sigmoid Module 



- Like sigmoid, tanh neurons saturate 

- Unlike sigmoid, output is zero-centered 

- Tanh is a scaled sigmoid: tanh 𝑥 = 2𝑠𝑖𝑔𝑚𝑎 2𝑥 − 1 

Takes a real-valued number and 

“squashes” it into range between -1 

and 1.  

 𝑅𝑛 → −1,1  

http://adilmoujahid.com/images/activation.png 

Tanh Module 



Takes a real-valued number and 

thresholds it at zero 

 

𝑅𝑛 → 𝑅+
𝑛 

Most Deep Networks use ReLU nowadays  

 

• Trains much faster 

• accelerates the convergence of SGD 

• due to linear, non-saturating form  

• Less expensive operations 

• compared to sigmoid/tanh (exponentials etc.) 

• implemented by simply thresholding a matrix at zero 

• More expressive  

• Prevents the gradient vanishing problem 

f 𝑥 =  max (0, 𝑥) 

http://adilmoujahid.com/images/activation.png 

ReLU Module 



Centered Non-Linearities 

 

• Remember: a deep network is a hierarchy of similar modules 
• One ReLU is the input to the next ReLU 

• Consistent behaviour  input/output distributions must 
match 
• Otherwise, you will soon have inconsistent behaviour 

• If ReLU-1 returns always highly positive numbers, e.g. ~10,000 
• the next ReLU-2 biased towards highly positive or highly negative 

values (depending on the weight 𝑤) 

• ReLU (2) essentially becomes a linear unit. 

• We want our non-linearities to be mostly activated around 
the origin (centred activations) 
• the only way to encourage consistent behaviour without 

constraining the architecture 

 



New Modules 

 

• Everything can be a module, given some 
ground rules 

• How to make our own module? 
• Write a function that follows the ground rules 

• Needs to be (at least) first-order differentiable 
(almost) everywhere 

• Hence, we need to be able to compute 
the partial derivatives 
• 𝜕𝑎(𝑥;𝜃)/𝜕𝑥 and 𝜕𝑎(𝑥;𝜃)/𝜕𝜃 



Module of Modules 

•As everything can be a module, a 

module of modules could also be a 

module 

•Can make new building blocks as we 

please, if we expect them to be used 

frequently 

•The same rules for eligibility of 

modules still apply 

 



1 sigmoid  2 modules 

 

• Assume the sigmoid 𝜎(…)operating on 
top of 𝑤𝑥 

• 𝑎=𝜎(𝑤𝑥) 

• Directly computing it  

• complicated backpropagation equations 

• Since everything is a module, we can 
decompose this to 2 modules 

•  𝑎1=𝑤𝑥     𝑎2 =𝜎(𝑎1)  

 



1 sigmoid  2 modules 

•Two backpropagation steps instead of 

one 

•Gradients are simpler 

• Algorithmic way of computing gradients 

• Avoid taking more gradients than needed 

in a (complex) non-linearity 

 𝑎1=𝑤𝑥     𝑎2 =𝜎(𝑎1)  



Many Modules are Possible 

• Many will work comparably to existing ones 
• Not interesting, unless they work consistently 
better and there is a reason 

• Regularization modules 
• Dropout 

• Normalization modules 
• ℓ2-normalization, ℓ1-normalization 

• Loss modules 
• Hinge loss 

• Most concepts discussed in the course can 
be defined as modules 

 



Deep Network Architectures 

•Architecture 

• Modular structure of a deep network 

•Architecture is critical to good 
performance 

• Arbitrary structure may work, but be 
inefficient 

•Architecture is application-specific 

• Network classes have particular “base” 
architectures 



Zoo of Architectures 

Asimovinstitute.org 



Deep FeedForward Architecture 



Convolution Network Architecture 

• Architecture designed for structured inputs 

• Two main sub-structures 
• Convolution 

• Decision  

input Convolution 

layers 
Decision 

layers 



Temporal Architectures 



LSTM Structure (Temporal) 



Many Application-Specific Architectures 

•SSD 

 

 

 

 

•YOLO 



Summary 

• Module 

• Captures functionality in a deep network 

• Key modules exist 

• Sigmoid, tanh, convolution, etc. 

• Architecture  

• Structural principle for modular composition 

• Must match architecture to application 





More Formally: Empirical Risk Minimization 

(loss function also called “cost function”  

denoted J(θ)) 

Any interesting cost function is complicated and non-convex 



Solving the Risk (Cost) Minimization Problem 

Gradient Descent – Basic Idea 



Gradient Descent Intuition 1: 

Convex Cost Function 

One of the many nice properties of 

convexity is that any local minimum 

is also a global minimum  



Gradient Decent Intuition 2 

Unfortunately, any interesting cost function is likely non-convex 

Can get stuck here if unlucky/start  

at the wrong place 



Solving the Optimization Problem 

Gradient Descent for Linear Regression 

The big breakthrough came from the Hinton lab at UToronto in the mid 80’s where 

the  back propagation algorithm was discovered (or perhaps re-discovered).  

“Backprop” is a simple way of computing the gradient of the loss function with respect  

to the model parameters θ 



Summary: Supervised Learning Process 



Training 

Sample 

labeled data 

(batch) 

Forward it 
through the 

network, get 

predictions 

Back-

propagate 

the errors 

Update the 

network 

weights 

Optimize (min. or max.) objective/cost function 𝑱(𝜽) 
Generate error signal that measures difference 

between predictions and target values 

Use error signal to change the weights and get more 

accurate predictions  

Subtracting a fraction of the gradient moves you 

towards the (local) minimum of the cost function 

 
https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39 



learning rate 

Gradient Descent 

objective/cost function 𝑱(𝜽) 

𝜃𝑗
𝑛𝑒𝑤 = 𝜃𝑗

𝑜𝑙𝑑  − 𝛼
ⅆ

ⅆ𝜃𝑗
𝑜𝑙𝑑 𝐽(𝜃) Update each element of θ 

𝜃𝑛𝑒𝑤 = 𝜃𝑜𝑙𝑑  − 𝛼𝛻𝜃𝐽(𝜃) Matrix notation for all parameters 

Recursively apply chain rule though each node 

Review of backpropagation 

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-gradient-notes.pdf


One forward pass 
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𝐖 𝒃 𝝈(𝒙𝒊;𝑾, 𝒃) 𝒙𝒊 

Text (input) representation 

TFIDF 

Word embeddings 

…. 

very positive 

positive 

very negative 

negative 



Non-linearities needed to learn complex (non-linear) representations of data, 

otherwise the NN would be just a linear function  

 

 

 

 

 

 

 

 

 

 

 

More layers and neurons can approximate more complex functions 

Activation functions 

W1W2𝑥 = 𝑊𝑥  

Full list: https://en.wikipedia.org/wiki/Activation_function  

http://cs231n.github.io/assets/nn1/layer_sizes.jpeg 

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Activation_function


Overfitting 

Learned hypothesis may fit the 

training data very well, even 

outliers (noise) but fail to 

generalize to new examples (test 

data) 

http://wiki.bethanycrane.com/overfitting-of-data 

https://www.neuraldesigner.com/images/learning/selection_error.svg 



L2 = weight decay 

• Regularization term that penalizes big weights,               added to 

the objective 

• Weight decay value determines how dominant regularization is 

during gradient computation 

• Big weight decay coefficient  big penalty for big weights 

Regularization 

Dropout 

• Randomly drop units (along with their 

connections) during training 

• Each unit retained with fixed probability p, 

independent of other units  

• Hyper-parameter p to be chosen (tuned) 

𝐽𝑟𝑒𝑔 𝜃 =  𝐽 𝜃 + 𝜆 𝜃𝑘
2

𝑘

 

Early-stopping 

• Use validation error to decide when to stop training 

• Stop when monitored quantity has not improved after n subsequent epochs 

• n is called patience  

 

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural 

networks from overfitting." Journal of machine learning research (2014) 

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf


Tuning hyper-parameters 

“Grid and random search of 9 trials for optimizing function g(x) ≈ g(x) + h(y) 

With grid search, nine trials only test g(x) in three distinct places.  

With random search, all nine trials explore distinct values of g. ” 

 

Both try configurations randomly and blindly 

Next trial is independent to all the trials done before 

 

Bayesian optimization for hyper-parameter tuning: 

Make smarter choice for the next trial, minimize the number of trials 

1. Collect the performance at several configurations 

2. Make inference and decide what configuration to try next 

g(x) ≈ g(x) + h(y) 

 

g(x) shown in green 

h(y) is shown in yellow 

Bergstra, James, and Yoshua Bengio. "Random 

search for hyper-parameter optimization." Journal 

of Machine Learning Research, Feb (2012) 

Library available! 

https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/
https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/
https://arimo.com/data-science/2016/bayesian-optimization-hyperparameter-tuning/
http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf
http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf
http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf
http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf
https://github.com/hyperopt/hyperopt


Loss functions and output 
Classification Regression 

Training  

examples 
Rn x {class_1, ..., class_n}  

(one-hot encoding) 
Rn x Rm 

Output  

Layer 

Soft-max 
 [map Rn to a probability distribution] 

Linear (Identity)  

or Sigmoid 

Cost (loss) 

function 
Cross-entropy Mean Squared Error 

f(x)=x 

List of loss functions 

𝐽 𝜃 = −
1

𝑛
  𝑦𝑘

(𝑖)
log 𝑦 𝑘

(𝑖)
+ 1 − 𝑦𝑘

(𝑖)
 log 1 − 𝑦 𝑘

𝑖

𝐾

𝑘=1

𝑛

𝑖=1

 

𝐽 𝜃 =  
1

𝑛
 𝑦(𝑖) − 𝑦 (𝑖)

2
𝑛

𝑖=1

 

𝐽 𝜃 =  
1

𝑛
 𝑦(𝑖) − 𝑦 (𝑖)

𝑛

𝑖=1

 

Mean Absolute Error 

https://isaacchanghau.github.io/2017/06/07/Loss-Functions-in-Artificial-Neural-Networks/
https://isaacchanghau.github.io/2017/06/07/Loss-Functions-in-Artificial-Neural-Networks/

