
CS6421: Deep Neural Networks

Gregory Provan

Spring 2020

Lecture 2: Classification and Learning

Based on notes from John Canny, Ismini Lourentzou

Overview

•Machine Learning Basics

•Key tasks of Deep Learning network

• Classification

• Learning

•Classification in DN

•Learning in DN

• Backpropagation

Machine learning is a field of computer science that gives computers the

ability to learn without being explicitly programmed

Methods that can learn from and make predictions on data

Labeled Data

Labeled Data

Machine Learning

algorithm

Learned model Prediction

Training

Prediction

Machine Learning Basics

Training and testing: Supervised Case

Training

set

Universal set

Testing set

Data

acquisition

Practical

usage

• Training is the process of making the system able to learn.

• No free lunch rule:

• Training set and testing set come from the same distribution

• Adequacy of functional approximation

Assumptions

• There are several factors affecting the performance:

• Types of training provided

• The form and extent of any initial background knowledge

• The type of feedback provided

• The learning algorithms used

• Two important factors:

• Modeling

• Optimization

Performance

• The success of machine learning system also depends on

the algorithms.

• The algorithms control the search to find and build the

knowledge structures.

• The learning algorithms should extract useful information

from training examples.

Algorithms

Regression

Supervised: Learning labels y with a labeled training set x

Example: email classification with already labeled emails

Unsupervised: Discover patterns in unlabeled data x

Example: cluster similar documents based on text

Reinforcement learning: learn to act based on feedback/reward z

Example: learn to play Go, reward: win or lose

Types of Learning

class A

class A

Classification

Anomaly Detection

Sequence labeling

…

Clustering

http://mbjoseph.github.io/2013/11/27/measure.html

y=f(x)

f(x)

y=f(x)

z

• Supervised learning ()

• Prediction

• Classification (discrete labels), Regression (real values)

• Unsupervised learning ()

• Clustering

• Probability distribution estimation

• Finding association (in features)

• Dimension reduction

• Semi-supervised learning

• Reinforcement learning

• Decision making (robot, chess machine)

Tasks of Different Approaches

Visualisation of Approaches

Supervised

learning

Unsupervised

learning

Semi-supervised learning

• Supervised learning

Machine Learning Methodology

• Unsupervised learning

Machine Learning Methodology

• Supervised: Low Eout or maximize probabilistic terms

• Unsupervised: Minimum quantization error, Minimum

distance, MAP, MLE(maximum likelihood estimation)

Objectives (Examples)

Ein: for training set

Eout: for testing set

 Under-fitting VS. Over-fitting (fixed N)

What are we seeking?

error

(model = hypothesis + loss

functions)

• Supervised learning representations

• Linear classifier (numerical functions)

• Parametric (Probabilistic functions)

• Naïve Bayes, Gaussian discriminant analysis (GDA), Hidden

Markov models (HMM), Probabilistic graphical models

• Non-parametric (Instance-based functions)

• K-nearest neighbors, Kernel regression, Kernel density

estimation, Local regression

• Non-metric (Symbolic functions)

• Classification and regression tree (CART), decision tree

• Aggregation

• Bagging (bootstrap + aggregation), Adaboost, Random forest

Learning Representations

• Techniques:

• Perceptron

• Logistic regression

• Support vector machine (SVM)

• Ada-line

• Multi-layer perceptron (MLP)

Linear Classifiers

 where w is an d-dim vector (learned)

• Linear classifier

Linear Classification using NN

Using perceptron learning algorithm(PLA)

Training Testing

Error rate: 0.10 Error rate: 0.156

Using logistic regression

Training Testing

Error rate: 0.11 Error rate: 0.145

Linear Classification using Regression

• Support vector machine (SVM):

• Linear to nonlinear: Feature transform and kernel function

Non-Linear Classification

• Non-linear case

Deep Learning Representation

•Functional approximation

• NN is a universal function approximator

• Can approximate an arbitrary non-linear

function

•We focus on supervised learning

Neural Network Basics

•Two main operations

• Forward propagation

• Backward propagation

(weight adjustment)

Forward Propagation

W1

W2

W3

f(x)

1.4

-2.5

-0.06

Example

2.7

-8.6

0.002

f(x)

1.4

-2.5

-0.06

x = -0.06×2.7 + 2.5×8.6 + 1.4×0.002 = 21.34

Example

f(x) = (1+ e-21.34)-1

General View: Forward Propagation

• An Artificial Neuron is a non-linear

parameterized function with restricted output

range

y = f w0 + wixi
i=1

n-1

å
æ

è
ç

ö

ø
÷

x1 x2 x3

w0

y

w0 also called a bias term (bi)

Multiple Layers: Artificial neuron

Input Hidden Output

x y1 y2

W1

W2

b1

b2

y1 =f1(W1 x + b1)
y2 =f2(W2 y1 + b2)

VECTORS

Training: Deep Network

Input Output Layer 1 Layer 2 ……..

…….. x y1 y2

y2 =f2(y1, 2)
y1 =f1(x, 1)

y2 =f2(f1(x, 1), 1)

yN(x, 1, 2 ,… N)= f N(f N-1(…(f1(x, 1), N-1), N)

=arg min 𝐽[𝑦, 𝑓𝐿 𝑥, 1, … 𝐿]𝑥,𝑦 ⊆(𝑋,𝑌)

Loss (cost) function

Summary: Deep Network
Input Output Layer 1 Layer 2 ……..

…….. x y1 y2

y2 =f2(y1, 2)
y1 =f1(x, 1)

y2 =f2(f1(x, 1), 1)

yN(x, 1, 2 ,… N)= f N(f N-1(…(f1(x, 1), N-1), N)

=arg min 𝐽[𝑦, 𝑓𝐿 𝑥, 1, … 𝐿]𝑥,𝑦 ⊆(𝑋,𝑌)

Deep Network: family of parametric, non-linear, hierarchical representations

Training: optimize network parameters to minimise loss over training set

Deep Feed Forward Neural Nets (in 1 Slide ())

So what then is learning?

hθ(x
(i))

hypothesis

(x(i),y(i))

Forward Propagation

Learning is the adjusting of the weights wi,j such that

the cost function J(θ) is minimized (a form of Hebbian

learning).

Simple learning procedure: Back Propagation (of the error signal)

Supervised Training of Neural Networks

•Use set of training data D

•Adjust weights to optimize

classification performance over D

A dataset

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Example

Training the neural network

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Example

Training data

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Initialise with random weights

Example

Training data

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Present a training pattern

1.4

2.7

1.9

Example

Training data

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Feed it through to get output

1.4

2.7 0.8

1.9

Example

Training data

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Compare with target output

1.4

2.7 0.8

 0
1.9 error 0.8

Example

Training data

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Adjust weights based on error

1.4

2.7

 0
1.9 error 0.8

0.8

Example

Training data

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Present a training pattern

6.4

2.8

1.7

Example

Training data

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Feed it through to get output

6.4

2.8 0.9

1.7

Example

Training data

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Compare with target output

6.4

2.8 0.9

 1
1.7 error -0.1

Example

Training data

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

Adjust weights based on error

6.4

2.8 0.9

 1
1.7 error -0.1

Example

Training data

Fields class

1.4 2.7 1.9 0

3.8 3.4 3.2 0

6.4 2.8 1.7 1

4.1 0.1 0.2 0

etc …

And so on ….

6.4

2.8 0.9

 1
1.7 error -0.1

Repeat this thousands, maybe millions of times – each time

taking a random training instance, and making slight

weight adjustments

 Algorithms for weight adjustment are designed to make

changes that will reduce the error

Example

The decision boundary perspective…

Initial random weights

The decision boundary perspective…

Present a training instance / adjust the weights

The decision boundary perspective…

Present a training instance / adjust the weights

The decision boundary perspective…

Present a training instance / adjust the weights

The decision boundary perspective…

Present a training instance / adjust the weights

The decision boundary perspective…

Eventually ….

Training: Summary

Sample

labeled data

(batch)

Forward it
through the

network, get

predictions

Back-

propagate

the errors

Update the

network

weights

Optimize (min. or max.) objective/cost function 𝒆(𝜽)
Generate error signal that measures difference

between predictions and target values

Use error signal to change the weights and get more

accurate predictions

Subtracting a fraction of the gradient moves you

towards the (local) minimum of the cost function

https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39

