CS6421: Deep Neural Networks

Gregory Provan
Spring 2020
Lecture 2: Classification and Learning

Based on notes from John Canny, Ismini Lourentzou



Overview

-Machine Learning Basics

-Key tasks of Deep Learning network
- Classification
- Learning

- Classification in DN
-Learning in DN
- Backpropagation



Machine Learning Basics

Machine learning is a field of computer science that gives computers the
ability to learn without being explicitly programmed

Machine Learning
Labeled Data algorithm

Training

Prediction

| abeled Data Learned model Prediction

Methods that can learn from and make predictions on data



Training and testing: Supervised Case
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Assumptions

- Training Is the process of making the system able to learn.

- No free lunch rule:
- Training set and testing set come from the same distribution

- Adequacy of functional approximation
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Performance

- There are several factors affecting the performance:
- Types of training provided
- The form and extent of any initial background knowledge
- The type of feedback provided
- The learning algorithms used

- Two important factors:
- Modeling
- Optimization



Algorithms

- The success of machine learning system also depends on
the algorithms.

- The algorithms control the search to find and build the
knowledge structures.

- The learning algorithms should extract useful information
from training examples.



Types of Learning

Supervised: Learning labels y with a labeled training set x _
= - AN . =)
Example: email classification with already labeled emails

Unsupervised: Discover patterns in unlabeled data x )
Example: cluster similar documents based on text

Reinforcement learning: learn to act based on feedback/reward z y=f(x)
Example: learn to play Go, reward: win or lose z
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Classification Regression Clustering

Anomaly Detection
Sequence labeling

http://mbjoseph.github.io/2013/11/27/measure.html



Tasks of Different Approaches

- Supervised learning ( {x, € R%,y, eR¥_, )

- Prediction

- Classification (discrete labels), Regression (real values)
- Unsupervised learning ( {x, € RUIN_. )

- Clustering

- Probabillity distribution estimation

- Finding association (in features)

- Dimension reduction

- Semi-supervised learning

- Reinforcement learning
- Decision making (robot, chess machine)
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Unsupervised
learning

Supervised
learning

Semi-supervised learning



Machine Learning Methodology

- Supervised learning
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Machine Learning Methodology

- Unsupervised learning
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Objectives (Examples)

- Supervised: Low Eout or maximize probabilistic terms

N
1
error = N Z v, = g(x,,)]
n=1

Ein: for training set
Eout: for testing set

d
Eout(g) < Ein(g) £ O J%ZRN

- Unsupervised: Minimum quantization error, Minimum
distance, MAP, MLE(maximum likelihood estimation)



What are we seeking?

Under-fitting VS. Over-fitting (fixed N)

A / \
error

Eout

Model complexity

- ____.<_________




Learning Representations

- Supervised learning representations
- Linear classifier (numerical functions)
- Parametric (Probabilistic functions)

- Naive Bayes, Gaussian discriminant analysis (GDA), Hidden
Markov models (HMM), Probabilistic graphical models

- Non-parametric (Instance-based functions)

- K-nearest neighbors, Kernel regression, Kernel density
estimation, Local regression

- Non-metric (Symbolic functions)
- Classification and regression tree (CART), decision tree
- Aggregation
- Bagging (bootstrap + aggregation), Adaboost, Random forest



* Linear classifier
g(x,) = sign(w'x,,)
where w is an d-dim vector (learned)

- Techniques:
- Perceptron
- Logistic regression
- Support vector machine (SVM)
- Ada-line
- Multi-layer perceptron (MLP)



Linear Classification using NN

Using perceptron learning algorithm(PLA)
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Linear Classification using Regression

Using logistic regression

. Figure 1
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Non-Linear Classification

* Non-linear case

8 x’& 8 // :{n = [:{HIJ:{HZ]
7 N
879 o0\ &%
Xn2 8 l o /0 *
1000 ¢!
g/\g..././x Xn = [xnll' Xn2, Xpq * xnzjxnlzijZZ]
Xn1

- Support vector machine (SVM):
- Linear to nonlinear: Feature transform and kernel function



Deep Learning Representation

- Functional approximation

-NN Is a universal function approximator

- Can approximate an arbitrary non-linear
function

-We focus on supervised learning



- Two main operations
- Forward propagation

- Backward propagation
(weight adjustment)




Forward Propagation

* Forward Propagation :
— Sum inputs, produce activation, feed-forward
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1 ' T

fl)= l+e " /

X = -0.06%2.7 + 2.5%8.6 + 1.4x0.002 =21.34

1.4 f(x) = (1+ e21.34)1



General View: Forward Propagation

- An Artificial Neuron is a non-linear
parameterized function with restricted output
range



Multiple Layers: Artificial neuron

Input

Hidden

Y1

Output

Yo VECTORS

y1=f;(Wy X +b,)

Yo=fy(W, y; + b))




Training: Deep Network

Input Layer 1 Layer2 :==-----

Y2 =f,(f,(x, 0,), 0,)

Yn(Xs 01, 0 5--0 O)= F(F g (- (F1(X, 61), Ong)s Oy)

Loss (cost) function




Summary: Deep Network

Y1 =f,(x, 0,) Y2 =fy(y1, 65)

Y2 =f2(fl(X1 91), 91)

Deep Network: family of parametric, non-linear, hierarchical representations
YN(X, 01, 05 5000 O)= i (F g (- (FL(X, 04), Oy.1), By)

Training: optimize network parameters to minimise loss over training set




Input Hidden Hidden Output

Layer Layer #1 Layer #2 Layer Bas | 1
Neurons Neurons x! Activation function
Xo ™ Wijk (mare on this later)
A ZD\% (x,y )
Neuron
X % Inputs —
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Learning is the adjusting of the weights w;; such that Sl N
the cost function J(8) is minimized (a form of Hebbian i ——
learning). 5 e

Simple learning procedure: Back Propagation (of the error signal)



-Use set of training data D

- Adjust weights to optimize
classification performance over D



A dataset

Fields class
1.4 27 19 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
41 0.1 0.2 0

etc ...




Training the neural network

Fields class
1.4 27 19 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
41 0.1 0.2 0

etc ...




Training data

Initialise with random weights

Fields class
1.4 27 19 0
3.8 34 3.2 0
6.4 2.8 1.7 1
41 0.1 0.2 0

etc ...




Training data .
ields Present a training pattern

1.4 2.7 1.9
3.8 34 3.2

6.4 2.8 1.7
4.1 0.1 0.2 1.4
etc ...
2.1
1.9

2
on—\oo@



Training data

S
1.4 2.7 1.9

3.8 34 3.2
6.4 2.8 1.7
41 0.1 0.2

etc ...

Feed it through to get output
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Training data

S
1.4 2.7 1.9

3.8 34 3.2
6.4 28 1.7
4.1 01 0.2

etc ...

Compare with target output
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Training data

S
1.4 2.7 1.9

3.8 34 3.2
6.4 28 1.7
41 01 0.2

etc ..

Adjust weights based on error
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Training data -
Fields ~ class
14 27 19 0
8 34 3.2

6.4 28 1.7 1
41 0.1 0.2 0
etc ...




Training data :
Fields class Feed it through to get output
1.4 27 1.9 0
8 34 3.2

6.4 2.8 1.7 1
41 0.1 0.2 0
etc ...




Training data :
Fields class Compare with target output

1.4 2.7 1.9 0

8 34 3.2
6.4 28 1.7 1
41 01 0.2 0 6.4

etc ..

2.8 0.9

1
error -0.1

1.7



Training data

Fields class Adjust weights based on error
1.4 27 1.9 0
8 34 3.2
6.4 2.8 1.7 1
41 0.1 0.2 0 6.4 .\
etc ...
2.8 | — 0.9

1

1.7 error -0.1



Training data
Fields class
1.4 27 1.9 0

3.8 34 3.2 0
l 6.4 28 1.7 1 I 6.4 .§
41 0.1 0.2 0

etc ... 28

1.7 error -0.1

Repeat this thousands, maybe millions of times — each time
taking a random training instance, and making slight
weight adjustments




The decision boundary perspective...

Initial random weights




The decision boundary perspective...

Present a training instance / adjust the weights




The decision boundary perspective...

Present a training instance / adjust the weights




The decision boundary perspective...

Present a training instance / adjust the weights




The decision boundary perspective...

Present a training instance / adjust the weights




The decision boundary perspective...

Eventually ....




Training: Summary

Forward it

Back-
through the o8
network, get
predictions

Update the
propagate pmmsd  network
the errors weights

labeled data [

SGD
Momentum
NAG
Adagrad

- Adadelta
Rmsprop

o

Optimize (min. or max.) objective/cost function e(0)
Generate error signal that measures difference
between predictions and target values
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0.5 -1.0
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Use error signal to change the weights and get more
accurate predictions

Subtracting a fraction of the gradient moves you
towards the (local) minimum of the cost function

https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39



