CS6421: Deep Neural Networks

Gregory Provan
Spring 2020
Lecture 2: Classification and Learning

Based on notes from John Canny, Ismini Lourentzou

Overview

-Machine Learning Basics

-Key tasks of Deep Learning network
- Classification
- Learning

- Classification in DN
-Learning in DN
- Backpropagation

Machine Learning Basics

Machine learning is a field of computer science that gives computers the
ability to learn without being explicitly programmed

Machine Learning
Labeled Data algorithm

Training

Prediction

| abeled Data Learned model Prediction

Methods that can learn from and make predictions on data

Training and testing: Supervised Case

Data
acquisition

8 O
R % .
R e

7’
4

\

/I{l ®
// . . .
’ ' 0.0

\

7

4

Training
set

Universal set

Practical
usage

Testing set

Assumptions

- Training Is the process of making the system able to learn.

- No free lunch rule:
- Training set and testing set come from the same distribution

- Adequacy of functional approximation

"N

K PETN
%
® °
® P
oo ®
° ®

Performance

- There are several factors affecting the performance:
- Types of training provided
- The form and extent of any initial background knowledge
- The type of feedback provided
- The learning algorithms used

- Two important factors:
- Modeling
- Optimization

Algorithms

- The success of machine learning system also depends on
the algorithms.

- The algorithms control the search to find and build the
knowledge structures.

- The learning algorithms should extract useful information
from training examples.

Types of Learning

Supervised: Learning labels y with a labeled training set x _
= - AN . =)
Example: email classification with already labeled emails

Unsupervised: Discover patterns in unlabeled data x)
Example: cluster similar documents based on text

Reinforcement learning: learn to act based on feedback/reward z y=f(x)
Example: learn to play Go, reward: win or lose z

) H Em
z o O []
— :W . ",
— |
— | mg " =
Classification Regression Clustering

Anomaly Detection
Sequence labeling

http://mbjoseph.github.io/2013/11/27/measure.html

Tasks of Different Approaches

- Supervised learning ({x, € R%,y, eR¥_,)

- Prediction

- Classification (discrete labels), Regression (real values)
- Unsupervised learning ({x, € RUIN_.)

- Clustering

- Probabillity distribution estimation

- Finding association (in features)

- Dimension reduction

- Semi-supervised learning

- Reinforcement learning
- Decision making (robot, chess machine)

7))
D
o
O
©
@
-
Q.
@N
<
(-
@
-
O
I
%
s
-
D
S

Unsupervised
learning

Supervised
learning

Semi-supervised learning

Machine Learning Methodology

- Supervised learning

—| Training]
Documents,

Images,

Sounds... ‘ -

n Machine
|| Learning
Algorithm
E Labels .

New
Text features

Document, - vector - Predictive - Expected
Image, Model Label

Sound

Machine Learning Methodology

- Unsupervised learning

—| Training |
loodsin | | e
Documents,

|maggsl Machine

Sounds... - ‘ Learning
| - Algorithm
|

ﬁag Likelihood
e features or
Document, - vector - - Cluster Id
£ag:’ Model or
und... Better
— representation

Objectives (Examples)

- Supervised: Low Eout or maximize probabilistic terms

N
1
error = N Z v, = g(x,,)]
n=1

Ein: for training set
Eout: for testing set

d
Eout(g) < Ein(g) £ O J%ZRN

- Unsupervised: Minimum quantization error, Minimum
distance, MAP, MLE(maximum likelihood estimation)

What are we seeking?

Under-fitting VS. Over-fitting (fixed N)

A / \
error

Eout

Model complexity

- ____.<_________

Learning Representations

- Supervised learning representations
- Linear classifier (numerical functions)
- Parametric (Probabilistic functions)

- Naive Bayes, Gaussian discriminant analysis (GDA), Hidden
Markov models (HMM), Probabilistic graphical models

- Non-parametric (Instance-based functions)

- K-nearest neighbors, Kernel regression, Kernel density
estimation, Local regression

- Non-metric (Symbolic functions)
- Classification and regression tree (CART), decision tree
- Aggregation
- Bagging (bootstrap + aggregation), Adaboost, Random forest

* Linear classifier
g(x,) = sign(w'x,,)
where w is an d-dim vector (learned)

- Techniques:
- Perceptron
- Logistic regression
- Support vector machine (SVM)
- Ada-line
- Multi-layer perceptron (MLP)

Linear Classification using NN

Using perceptron learning algorithm(PLA)

Bl Figure 1 (= =]=] Bl Figure 2 (= =]=]
File Edit View Insert Tools Desktop WWindow Help L File Edit View Insert Tools Desktop ‘Window Help L]
REFEIDNEE R FAREELE NEEL b AAUDRL- 3| 0H 8D
@ MNote new toolbar buttons: data brushing & linked plots g% [, Playvideo X @ Note newtoclbar buttons: data brushing & linked plots g% (55 Playvideo X
1 1?‘)22;)(’)&*5?23&)()gecgg&x% %XXOXXXGX C'f)x G xxxx
>S§>< 'S FECE S e 4 &%ix “
0.9 0.9% 3§§<§><>< o R B)
><><>><< xxx;kx F %
0.8 o_ng%? i
%;ii‘ 7 85
0.7 07 F g
o B
06 06 0%
H Xx
05 05F " *
® {})CXX
04 04l x
#
0.3 0377 &
®
0.2 0.2}
o] 0@
01 01F f) oy
« b
0 0 5 -
0 01) ! ' 05 06 07

Error rate: 0.10 Error rate: 0.156

Linear Classification using Regression

Using logistic regression

. Figure 1

File Edit View Insert Tools Desktop LWindow Help

(===

L]

Dade (K RVODEL- (2|08 | D

@ Note new toolbar buttons: data brushing & linked plots g% Play videa
1

0.9

0.8

0.7

0.6

05

04

03

0.2

0.1

B Figure 2 [==]=]
File Edit Wiew Insert Tools Desktop Window Help L
NEES A UDEL |G 08 a0
@ MNote new toolbar buttons: data brushing & linked plots g% [, Playvideo X
1§<*>?2< @(?% »?(ée&é}a >2<>§<E)Xx0x oo
ER" x W, B ><(2;x
094 % e o} x

0.8

07

0.6

05

0.4

0.3

02

01

008%

o} (ol
990 g GG
0 01 02 0_3 04 05 06

Training
Error rate: 0.11

Testing
Error rate: 0.145

Non-Linear Classification

* Non-linear case

8 x’& 8 // :{n = [:{HIJ:{HZ]
7 N
879 o0\ &%
Xn2 8 l o /0 *
1000 ¢!
g/\g..././x Xn = [xnll' Xn2, Xpq * xnzjxnlzijZZ]
Xn1

- Support vector machine (SVM):
- Linear to nonlinear: Feature transform and kernel function

Deep Learning Representation

- Functional approximation

-NN Is a universal function approximator

- Can approximate an arbitrary non-linear
function

-We focus on supervised learning

- Two main operations
- Forward propagation

- Backward propagation
(weight adjustment)

Forward Propagation

* Forward Propagation :
— Sum inputs, produce activation, feed-forward

Z2
— \
L2 Y2
inputs N Z1 / outputs
/V
I Y1
~— o

1 ' v

f@) = /

1.4

1 ' T

fl)= l+e " /

X = -0.06%2.7 + 2.5%8.6 + 1.4x0.002 =21.34

1.4 f(x) = (1+ e21.34)1

General View: Forward Propagation

- An Artificial Neuron is a non-linear
parameterized function with restricted output
range

Multiple Layers: Artificial neuron

Input

Hidden

Y1

Output

Yo VECTORS

y1=f;(Wy X +b,)

Yo=fy(W, y; + b))

Training: Deep Network

Input Layer 1 Layer2 :==-----

Y2 =f,(f,(x, 0,), 0,)

Yn(Xs 01, 0 5--0 O)= F(F g (- (F1(X, 61), Ong)s Oy)

Loss (cost) function

Summary: Deep Network

Y1 =f,(x, 0,) Y2 =fy(y1, 65)

Y2 =f2(fl(X1 91), 91)

Deep Network: family of parametric, non-linear, hierarchical representations
YN(X, 01, 05 5000 O)= i (F g (- (FL(X, 04), Oy.1), By)

Training: optimize network parameters to minimise loss over training set

Input Hidden Hidden Output

Layer Layer #1 Layer #2 Layer Bas | 1
Neurons Neurons x! Activation function
Xo ™ Wijk (mare on this later)
A ZD\% (x,y)
Neuron
X % Inputs —
b D ?@}4 h(x0)
X % /
X3 ' D/ ZD/ / T
/ /) / hypothesis
Bias ¢ o ° o
Inputs 1 1 4 @‘(\e(
Forward Propagation) o
1 T _ - 2::
J(00,01,...,6,) = =— > (ho(z¥)) —y)2 IR et o e 0
om i g
Learning is the adjusting of the weights w;; such that Sl N
the cost function J(8) is minimized (a form of Hebbian i ——
learning). 5 e

Simple learning procedure: Back Propagation (of the error signal)

-Use set of training data D

- Adjust weights to optimize
classification performance over D

A dataset

Fields class
1.4 27 19 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
41 0.1 0.2 0

etc ...

Training the neural network

Fields class
1.4 27 19 0
3.8 3.4 3.2 0
6.4 2.8 1.7 1
41 0.1 0.2 0

etc ...

Training data

Initialise with random weights

Fields class
1.4 27 19 0
3.8 34 3.2 0
6.4 2.8 1.7 1
41 0.1 0.2 0

etc ...

Training data .
ields Present a training pattern

1.4 2.7 1.9
3.8 34 3.2

6.4 2.8 1.7
4.1 0.1 0.2 1.4
etc ...
2.1
1.9

2
on—\oo@

Training data

S
1.4 2.7 1.9

3.8 34 3.2
6.4 2.8 1.7
41 0.1 0.2

etc ...

Feed it through to get output

O,
OHOO@

Training data

S
1.4 2.7 1.9

3.8 34 3.2
6.4 28 1.7
4.1 01 0.2

etc ...

Compare with target output

O
owoo&

1.4

0.8

0
error 0.8

2.7

1.9

Training data

S
1.4 2.7 1.9

3.8 34 3.2
6.4 28 1.7
41 01 0.2

etc ..

Adjust weights based on error

S

1.4

O
owoo&

0.8

0

1.9 error 0.8

Training data -
Fields ~ class
14 27 19 0
8 34 3.2

6.4 28 1.7 1
41 0.1 0.2 0
etc ...

Training data :
Fields class Feed it through to get output
1.4 27 1.9 0
8 34 3.2

6.4 2.8 1.7 1
41 0.1 0.2 0
etc ...

Training data :
Fields class Compare with target output

1.4 2.7 1.9 0

8 34 3.2
6.4 28 1.7 1
41 01 0.2 0 6.4

etc ..

2.8 0.9

1
error -0.1

1.7

Training data

Fields class Adjust weights based on error
1.4 27 1.9 0
8 34 3.2
6.4 2.8 1.7 1
41 0.1 0.2 0 6.4 .\
etc ...
2.8 | — 0.9

1

1.7 error -0.1

Training data
Fields class
1.4 27 1.9 0

3.8 34 3.2 0
l 6.4 28 1.7 1 I 6.4 .§
41 0.1 0.2 0

etc ... 28

1.7 error -0.1

Repeat this thousands, maybe millions of times — each time
taking a random training instance, and making slight
weight adjustments

The decision boundary perspective...

Initial random weights

The decision boundary perspective...

Present a training instance / adjust the weights

The decision boundary perspective...

Present a training instance / adjust the weights

The decision boundary perspective...

Present a training instance / adjust the weights

The decision boundary perspective...

Present a training instance / adjust the weights

The decision boundary perspective...

Eventually

Training: Summary

Forward it

Back-
through the o8
network, get
predictions

Update the
propagate pmmsd network
the errors weights

labeled data [

SGD
Momentum
NAG
Adagrad

- Adadelta
Rmsprop

o

Optimize (min. or max.) objective/cost function e(0)
Generate error signal that measures difference
between predictions and target values

=2

-4

1.0

0.0

0.5 -1.0

1.0

Use error signal to change the weights and get more
accurate predictions

Subtracting a fraction of the gradient moves you
towards the (local) minimum of the cost function

https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39

