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Overview 

 

•Machine Learning Basics 

•Key tasks of Deep Learning network 

• Classification 

• Learning  

•Classification in DN  

•Learning in DN 

• Backpropagation 

 



Machine learning is a field of computer science that gives computers the 

ability to learn without being explicitly programmed 

Methods that can learn from and make predictions on data 

Labeled Data 

Labeled Data 

Machine Learning 

algorithm 

Learned model Prediction 

Training 

Prediction 

Machine Learning Basics 



Training and testing: Supervised Case 

Training 

set 

Universal set 

Testing set 

Data 

acquisition 

Practical 

usage 



• Training is the process of making the system able to learn. 

 

• No free lunch rule: 

• Training set and testing set come from the same distribution 

• Adequacy of functional approximation 

 

Assumptions 



• There are several factors affecting the performance: 

• Types of training provided 

• The form and extent of any initial background knowledge 

• The type of feedback provided 

• The learning algorithms used 

 

• Two important factors: 

• Modeling 

• Optimization 

 

Performance 



• The success of machine learning system also depends on 

the algorithms.  

 

• The algorithms control the search to find and build the 

knowledge structures. 

 

• The learning algorithms should extract useful information 

from training examples. 

 

 

Algorithms 



Regression 

Supervised: Learning labels y with a labeled training set x 

Example: email classification with already labeled emails 

 

Unsupervised: Discover patterns in unlabeled data x 

Example: cluster similar documents based on text 

 

Reinforcement learning: learn to act based on feedback/reward z 

Example: learn to play Go, reward: win or lose  

Types of Learning 

class A 

class A 

Classification 

Anomaly Detection 

Sequence labeling 

… 

Clustering 

http://mbjoseph.github.io/2013/11/27/measure.html 

y=f(x) 

f(x) 

y=f(x) 

z 



• Supervised learning (                                        ) 

• Prediction 

• Classification (discrete labels), Regression (real values) 

• Unsupervised learning (                          ) 

• Clustering 

• Probability distribution estimation 

• Finding association (in features) 

• Dimension reduction  

• Semi-supervised learning 

• Reinforcement learning 

• Decision making (robot, chess machine) 

 

Tasks of Different Approaches 



Visualisation of Approaches 

Supervised 

learning 

Unsupervised 

learning 

Semi-supervised learning 



• Supervised learning 

Machine Learning Methodology 



• Unsupervised learning 

Machine Learning Methodology 



• Supervised: Low Eout or maximize probabilistic terms 

 

 

 

 

 

 

 

• Unsupervised: Minimum quantization error, Minimum 

distance, MAP, MLE(maximum likelihood estimation) 

 

 

Objectives (Examples) 

Ein: for training set 

Eout: for testing set 



  Under-fitting  VS. Over-fitting (fixed N) 

What are we seeking? 

error 

(model = hypothesis + loss 

functions) 



• Supervised learning representations 

• Linear classifier (numerical functions)  

• Parametric (Probabilistic functions)  

• Naïve Bayes, Gaussian discriminant analysis (GDA), Hidden 

Markov models (HMM), Probabilistic graphical models   

• Non-parametric (Instance-based functions)  

• K-nearest neighbors, Kernel regression, Kernel density 

estimation, Local regression 

• Non-metric (Symbolic functions)  

• Classification and regression tree (CART), decision tree   

• Aggregation 

• Bagging (bootstrap + aggregation), Adaboost, Random forest 
  

 

 

Learning Representations 



 

 

 

 

 

• Techniques:  

• Perceptron 

• Logistic regression  

• Support vector machine (SVM)  

• Ada-line 

• Multi-layer perceptron (MLP) 

 

 

Linear Classifiers 

   where w is an d-dim vector (learned) 

• Linear classifier 



Linear Classification using NN 

Using perceptron learning algorithm(PLA) 

Training Testing 

Error rate: 0.10 Error rate: 0.156 



Using logistic regression 

Training Testing 

Error rate: 0.11 Error rate: 0.145 

Linear Classification using Regression 



• Support vector machine (SVM): 

• Linear to nonlinear: Feature transform and kernel function 

 

Non-Linear Classification 

• Non-linear case 



Deep Learning Representation 

•Functional approximation 

• NN is a universal function approximator 

• Can approximate an arbitrary non-linear 

function 

 

•We focus on supervised learning 



Neural Network Basics 

•Two main operations 

• Forward propagation 

• Backward propagation 

(weight adjustment) 



Forward Propagation 



W1  

W2  

W3  

f(x) 

1.4 

-2.5 

-0.06 

Example 



2.7 

-8.6 

0.002 

f(x) 

1.4 

-2.5 

-0.06 

x =  -0.06×2.7 + 2.5×8.6 + 1.4×0.002  = 21.34  

Example 

f(x) = (1+ e-21.34)-1 



General View: Forward Propagation 

• An Artificial Neuron is a non-linear 

parameterized function with restricted output 

range 
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w0  also called a bias term (bi) 



Multiple Layers: Artificial neuron 

Input Hidden Output 

x y1 y2 

W1 

W2 

b1 

b2 

y1 =f1(W1 x + b1) 
y2 =f2(W2 y1 + b2) 

VECTORS 



Training: Deep Network 

Input Output Layer 1 Layer 2 …….. 

…….. x y1 y2 

y2 =f2(y1, 2) 
y1 =f1(x, 1) 

y2 =f2(f1(x, 1), 1) 

yN(x, 1, 2 ,… N)= f N(f N-1(…(f1(x, 1),  N-1), N) 

 

=arg min   𝐽[𝑦, 𝑓𝐿 𝑥, 1, … 𝐿 ]𝑥,𝑦 ⊆(𝑋,𝑌)  

Loss (cost) function 



Summary: Deep Network 
Input Output Layer 1 Layer 2 …….. 

…….. x y1 y2 

y2 =f2(y1, 2) 
y1 =f1(x, 1) 

y2 =f2(f1(x, 1), 1) 

yN(x, 1, 2 ,… N)= f N(f N-1(…(f1(x, 1),  N-1), N) 

 

=arg min   𝐽[𝑦, 𝑓𝐿 𝑥, 1, … 𝐿 ]𝑥,𝑦 ⊆(𝑋,𝑌)  

Deep Network: family of parametric, non-linear, hierarchical representations 

Training: optimize network parameters to minimise loss over training set 



Deep Feed Forward Neural Nets (in 1 Slide ()) 

So what then is learning? 

hθ(x
(i)) 

hypothesis 

(x(i),y(i)) 

Forward Propagation 

Learning is the adjusting of the weights wi,j such that  

the cost function J(θ) is minimized (a form of Hebbian  

learning). 

Simple learning procedure: Back Propagation (of the error signal) 



Supervised Training of Neural Networks 

•Use set of training data D 

•Adjust weights to optimize 

classification performance over D  



A  dataset 

Fields               class 

1.4  2.7   1.9         0 

3.8  3.4   3.2         0 

6.4  2.8   1.7         1 

4.1  0.1   0.2         0 

etc … 

Example 



Training the neural network  

Fields               class 

1.4  2.7   1.9         0 

3.8  3.4   3.2         0 

6.4  2.8   1.7         1 

4.1  0.1   0.2         0 

etc … 

Example 



Training data 

Fields               class 

1.4  2.7   1.9         0 

3.8  3.4   3.2         0 

6.4  2.8   1.7         1 

4.1  0.1   0.2         0 

etc … 

Initialise with random weights 

Example 



Training data 

Fields               class 

1.4  2.7   1.9         0 

3.8  3.4   3.2         0 

6.4  2.8   1.7         1 

4.1  0.1   0.2         0 

etc … 

Present a training pattern 

1.4  

 
2.7                                                     

 
1.9         

Example 



Training data 

Fields               class 

1.4  2.7   1.9         0 

3.8  3.4   3.2         0 

6.4  2.8   1.7         1 

4.1  0.1   0.2         0 

etc … 

Feed it through to get output 

1.4  

 
2.7                                                    0.8 

 
1.9         

Example 



Training data 

Fields               class 

1.4  2.7   1.9         0 

3.8  3.4   3.2         0 

6.4  2.8   1.7         1 

4.1  0.1   0.2         0 

etc … 

Compare with target output 

1.4  

 
2.7                                                    0.8  

                                                  0 
1.9                                           error 0.8 

Example 



Training data 

Fields               class 

1.4  2.7   1.9         0 

3.8  3.4   3.2         0 

6.4  2.8   1.7         1 

4.1  0.1   0.2         0 

etc … 

Adjust weights based on error 

1.4  

 
 

2.7 

                                                  0                                         
1.9                                             error  0.8 

0.8 

Example 



Training data 

Fields               class 

1.4  2.7   1.9         0 

3.8  3.4   3.2         0 

6.4  2.8   1.7         1 

4.1  0.1   0.2         0 

etc … 

Present a training pattern 

6.4  

 
2.8                                                     

 
1.7         

Example 



Training data 

Fields               class 

1.4  2.7   1.9         0 

3.8  3.4   3.2         0 

6.4  2.8   1.7         1 

4.1  0.1   0.2         0 

etc … 

Feed it through to get output 

6.4  

 
2.8                                                     0.9                                              

 
1.7         

Example 



Training data 

Fields               class 

1.4  2.7   1.9         0 

3.8  3.4   3.2         0 

6.4  2.8   1.7         1 

4.1  0.1   0.2         0 

etc … 

Compare with target output 

6.4  

 
2.8                                                     0.9                                                    

                                                  1   
1.7                                          error  -0.1 

Example 



Training data 

Fields               class 

1.4  2.7   1.9         0 

3.8  3.4   3.2         0 

6.4  2.8   1.7         1 

4.1  0.1   0.2         0 

etc … 

Adjust weights based on error 

6.4  

 
2.8                                                     0.9                                                    

                                                  1   
1.7                                          error  -0.1 

Example 



Training data 

Fields               class 

1.4  2.7   1.9         0 

3.8  3.4   3.2         0 

6.4  2.8   1.7         1 

4.1  0.1   0.2         0 

etc … 

And so on …. 

6.4  

 
2.8                                                     0.9                                                    

                                                  1   
1.7                                          error  -0.1 

Repeat this thousands, maybe millions of times – each time 

taking a random training instance, and making slight  

weight adjustments 

  Algorithms for weight adjustment are designed to make 

changes that will reduce the error 

Example 



The decision boundary perspective… 

Initial random weights 



The decision boundary perspective… 

Present a training instance / adjust the weights 



The decision boundary perspective… 

Present a training instance / adjust the weights 



The decision boundary perspective… 

Present a training instance / adjust the weights 



The decision boundary perspective… 

Present a training instance / adjust the weights 



The decision boundary perspective… 

Eventually …. 



Training: Summary 

Sample 

labeled data 

(batch) 

Forward it 
through the 

network, get 

predictions 

Back-

propagate 

the errors 

Update the 

network 

weights 

Optimize (min. or max.) objective/cost function 𝒆(𝜽) 
Generate error signal that measures difference 

between predictions and target values 

Use error signal to change the weights and get more 

accurate predictions  

Subtracting a fraction of the gradient moves you 

towards the (local) minimum of the cost function 

 
https://medium.com/@ramrajchandradevan/the-evolution-of-gradient-descend-optimization-algorithm-4106a6702d39 


