
CS6421: Deep Neural Networks

Gregory Provan

Spring 2020

Lecture 1: Introduction

Based on notes from John Canny, Ismini Lourentzou,

Stanford courses CS224NLP/CS231

Overview

•Course Overview

• Focus

• Grading

• Topics to be covered

•Neural Networks: Brief Survey

• Introduction to Deep Learning

Focus of Course

• Introduce key aspects of deep learning

• Scientific basis

• Methodology to implement deep networks

• Use Keras/TensorFlow for implementations

•NOT tool-focused

• Tools change over time, but the science is
the key to using deep learning

• If you want to learn about tools, take a
different course

Course Schedule

Week Date Number Main Topic Details

BACKGROUND 1 15/01/2020 1 Overview Introduction to deep learning

17/01/2020 2

Classification and

Learning

Using deep networks for classification and

learning tasks

2 22/01/2020 3 Modularity Architectures for Deep networks

24/01/2020 4

Mathematical

Background Matrices and differential calculus

BASIC INFERENCE 3 29/01/2020 5 DL Inference Designing a Learning problem

31/01/2020 6

Inference:

classification

Computation graph

- Theory

- Tensor Flow

4 05/02/2020 7

TensorFlow: practical

aspects TensorFlow implementation details

07/02/2020 8

Deep Learning:

Training Backpropagation; Optimisation

PRACTICAL

ASPECTS 5 12/02/2020 9 Practical Aspects

Network-Initialisation: Architectures;

Activation and Loss functions

14/02/2020 10 Practical Aspects Weight initialisation; Data pre-processing

6 19/02/2020 11 Practical Aspects

Data augmentation; transfer learning;

Deep-Network practical issues; CPU/GPU

practical issues

21/02/2020 12

Practical Aspects:

Training Deep

Networks

Optimization

gradient flow

batch optimization

7

MIDTERM

CNN 8 04/03/2020 13

Convolution Neural

Networks (CNNs) Applications of CNNs

06/03/2020 14

Convolution Neural

Networks (CNNs) Applications of CNNs

9 11/03/2020 15

TEMPORAL

NETWORKS 13/03/2020 16

Temporal Deep

Networks RNN

10 18/03/2020 17

Temporal Deep

Networks LSTM

20/03/2020 18

Temporal Deep

Networks RNN/LSTM applications

REINFORCEMENT

LEARNING 11 25/03/2020 19

Deep Reinforcement

Learning

Deep Reinforcement Learning

introduction; critic-based methods

27/03/2020 20

Deep Reinforcement

Learning

Deep Reinforcement Learning: actor-

based methods

12 01/04/2020 21 Deep-RL-applications

03/04/2020 22

Deep Probabilistic

Networks Restricted Boltzmann Machines

Technical Topics Covered

 Machine Learning basics

 Introduction to Deep Learning

 what is Deep Learning

 why is it useful

 Main components/hyper-parameters:

 activation functions

 optimizers, cost functions and training

 regularization methods

 tuning

 classification vs. regression tasks

 Methodology of deep learning

 How to train deep networks on real-world data

 DNN basic architectures

 convolutional

 recurrent

 attention mechanism

Some material from CS224 NLP with DL course at Stanford

http://web.stanford.edu/class/cs224n/lectures/cs224n-2017-lecture10.pdf

Pre-Requisites

•Mathematics

• Multi-variable calculus

• Linear algebra

• Matrix and tensor algebras

• Basic probability theory

•Programming

• Python (intermediate level)

Lecture: Jan. 24th

Grading

•Mid-term: 35%

•Final: 35%

•Programming assignments: 30%

What will the exams be like?

• Technical understanding of deep learning

• Key concept: how to design a deep network to perform

task X.

• Questions will explore science of deep learning

• Practice exams will be provided

• Examples

• What architecture is best suited to image processing?

• What activation functions work best for temporal

models?

• Draw a computation graph to solve task Y

• How does the differentiability of an activation function

affect the performance of a deep network?

Machine learning is a field of computer science that gives computers the

ability to learn without being explicitly programmed

Methods that can learn from and make predictions on data

Labeled Data

Labeled Data

Machine Learning

algorithm

Learned model Prediction

Training

Prediction

Machine Learning Basics

Regression

Supervised: Learning labels y with a labeled training set x

Example: email classification with already labeled emails

Unsupervised: Discover patterns in unlabeled data x

Example: cluster similar documents based on text

Reinforcement learning: learn to act based on feedback/reward z

Example: learn to play Go, reward: win or lose

Types of Learning

class A

class A

Classification

Anomaly Detection

Sequence labeling

…

Clustering

http://mbjoseph.github.io/2013/11/27/measure.html

y=f(x)

f(x)

y=f(x)

z

Most machine learning methods work well because of human-designed

representations and input features

ML becomes just optimizing weights to best make a final prediction

ML vs. Deep Learning

A machine learning subfield of learning representations of data. Very effective

at learning patterns.

Deep learning algorithms attempt to learn (multiple levels of) representation by

using a hierarchy of multiple layers

If you provide the system tons of information, it begins to understand it and

respond in useful ways.

What is Deep Learning (DL) ?

https://www.xenonstack.com/blog/static/public/uploads/media/machine-learning-vs-deep-learning.png

Key Thing to Understand

•Task difficulty remains unchanged

• Learning task is NP-hard (at least)

• Type of learning does not affect this

•ML

• manual feature extraction/analysis

•Deep learning

• manual architecture/hyper-parameter

specification/analysis

o Manually designed features are often over-specified, incomplete and take a

long time to design and validate

o Learned Features are easy to adapt, fast to learn

o Deep learning provides a very flexible, (almost?) universal, learnable

framework for representing world, visual and linguistic information.

o Can learn both unsupervised and supervised

o Effective end-to-end joint system learning

o Utilize large amounts of training data

Why is DL useful?

In ~2010 DL started outperforming

other ML techniques

first in speech and vision, then NLP

Several big improvements in recent years in NLP

 Machine Translation

 Sentiment Analysis

 Dialogue Agents

 Question Answering

 Text Classification …

State of the art in …

Leverage different levels of representation

o words & characters

o syntax & semantics

LeNet 1989: recognize zip codes, Yann Lecun, Bernhard

Boser and others, ran live in US postal service

Milestones: Digit Recognition

Convolutional NNs: AlexNet (2012): trained on 200 GB of

ImageNet Data

Milestones: Image Classification

Human performance

5.1% error

Recurrent Nets: LSTMs (1997):

Milestones: Speech Recognition

Sequence-to-sequence models with LSTMs and attention:

Source: Luong, Cho, Manning ACL Tutorial 2016.

Milestones: Language Translation

 Milestones: Deep Reinforcement Learning

In 2013, Deep Mind’s arcade player bests human expert

on six Atari Games. Acquired by Google in 2014,.

In 2016, Deep Mind’s

alphaGo defeats former
world champion Lee Sedol

20

Deep Learning: Is it Hype or Hope?

Yes !

Deep Learning: Is it Hype or Hope?

Why is DL Hard?

•Creating high-performance network is

a “black art”

• Many adjustable parameters

•Lots of data needed

•Need hardware/software integration

for efficiency

• GPUs are difficult to program

ML compared to DL

Machine Learning Deep Learning

Data

Dependencies

Excellent performances on a

small/medium dataset

Excellent performance on a

big dataset

Hardware

dependencies

Work on a low-end machine. Requires powerful machine,

preferably with GPU: DL

performs a significant amount

of matrix multiplication

Feature

engineering

Need to understand the features that

represent the data

No need to understand the

best feature that represents the

data

Execution time From few minutes to hours Up to weeks. Neural Network

needs to compute a significant

number of weights

Interpretability Some algorithms are easy to interpret

(logistic, decision tree), some are

almost impossible (SVM, XGBoost)

Difficult to impossible

ML compared to DL

Machine learning Deep

learning

Training dataset Small Large

Choose features Yes No

Number of algorithms Many Few

Training time Short Long

• From both complexity and learning theory perspectives,

simple networks are very limited.

• Can’t compute parity with a small network.

• NP-Hard to learn “simple” functions like 3SAT formulae

• Training a DNN is NP-hard.

Why the success of DNNs is surprising

• The most successful DNN training algorithm is a version of

gradient descent which will only find local optima. In other

words, it’s a greedy algorithm. Backprop:

 loss L= f(g(h(y)))

 dL/dy = f’(g) x g’(h) x h’(y)

• Greedy algorithms are even more limited in what they can

represent and how well they learn.

• If a problem has a greedy solution, its regarded as an “easy”

problem.

Why the success of DNNs is surprising

• In graphical models, values in a network represent random

variables, and have a clear meaning. The network structure

encodes dependency information, i.e. you can represent rich

models.

• In a DNN, node activations encode nothing in particular, and

the network structure only encodes (trivially) how they derive

from each other.

Why the success of DNNs is surprising

Why the success of DNNs is surprising obvious

• Hierarchical representations are ubiquitous in AI. Computer

vision:

Why the success of DNNs is surprising obvious

• Natural language:

Why the success of DNNs is surprising obvious

• Human Learning: is deeply layered.

Deep expertise

Why the success of DNNs is surprising obvious

• What about greedy optimization?

• Less obvious, but it looks like many learning problems (e.g.

image classification) are actually “easy” i.e. have reliable

steepest descent paths to a good model.

Ian Goodfellow – ICLR 2015 Tutorial

Neural Network: Basis of Deep Learning

•Overview of neural network

•Functional approximation

• NN is a universal function approximator

• Can approximate an arbitrary non-linear

function

Artificial Neural Network (NN)

• NN: mathematical model designed to solve
engineering problems

• Group of highly connected artificial neurons to
realize compositions of non-linear functions

• Tasks
• Classification

• Discrimination

• Estimation

• 2 types of networks
• Feed forward Neural Networks

• Recurrent Neural Networks

Neural Network Basics

•Two main operations

• Forward propagation

• Backward propagation

(weight adjustment)

W1

W2

W3

f(x)

1.4

-2.5

-0.06

Artificial neuron

2.7

-8.6

0.002

f(x)

1.4

-2.5

-0.06

x = -0.06×2.7 + 2.5×8.6 + 1.4×0.002 = 21.34

f(x) = 1/(1+e-21.34)

Artificial neuron

General View: Artificial neuron

• An Artificial Neuron is a non-linear

parameterized function with restricted output

range

y = f w0 + wixi
i=1

n-1

å
æ

è
ç

ö

ø
÷

x1 x2 x3

w0

y

w0 also called a bias term (bi)

Multiple Layers: Artificial neuron

Input Hidden Output

x y1 y2

W1

W2

b1

b2

y1 =f1(W1 x + b1)
y2 =f2(W2 y1 + b2)

VECTORS

Feed Forward Neural Networks

• The information is propagated
from the inputs to the outputs
• Directed Acyclic Graph (DAG)

• Computes one or more non-

linear functions
• Computation is carried out by

composition of some number of
algebraic functions implemented by
the connections, weights and
biases of the hidden and output
layers

• Hidden layers compute
intermediate representations
• Dimension reduction

• Time has no role -- no cycles

between outputs and inputs

x1 x2 xn …..

1st hidden

layer

2nd hidden

layer

Output layer

We say that the input data, or features, are n dimensional

General Case: Deep Network

Input Output Layer 1 Layer 2
……..

Tensor 1 Tensor 2
……..

tensor: an algebraic object that describes a mapping

from one set of algebraic objects to another

https://en.wikipedia.org/wiki/Linear_mapping

General Case: Deep Network

Input Output Layer 1 Layer 2
……..

…….. x y1 y2

y2 =f2(y1, 2)
y1 =f1(x, 1)

y2 =f2(f1(x, 1), 1)

yN(x, 1, 2 ,… N)= f N(f N-1(…(f1(x, 1), N-1), N)

Training: Deep Network

Input Output Layer 1 Layer 2 ……..

…….. x y1 y2

y2 =f2(y1, 2)
y1 =f1(x, 1)

y2 =f2(f1(x, 1), 1)

yN(x, 1, 2 ,… N)= f N(f N-1(…(f1(x, 1), N-1), N)

=arg min 𝐽[𝑦, 𝑓𝐿 𝑥, 1, … 𝐿]𝑥,𝑦 ∈(𝑋,𝑌)

Loss (cost) function

J: objective

 function

 (learning)

Summary: Deep Network
Input Output Layer 1 Layer 2 ……..

…….. x y1 y2

y2 =f2(y1, 2)
y1 =f1(x, 1)

y2 =f2(f1(x, 1), 1)

yN(x, 1, 2 ,… N)= f N(f N-1(…(f1(x, 1), N-1), N)

=arg min 𝐽[𝑦, 𝑓𝐿 𝑥, 1, … 𝐿]𝑥,𝑦 ∈(𝑋,𝑌)

Deep Network: family of parametric, non-linear, hierarchical representations

Training: optimize network parameters to minimise loss over training set

Deep Feed Forward Neural Nets (in 1 Slide ())

So what then is learning?

hθ(x
(i))

hypothesis

(x(i),y(i))

Forward Propagation

Learning is the adjusting of the weights wi,j such that

the cost function J(θ) is minimized (a form of Hebbian

learning).

Simple learning procedure: Back Propagation (of the error signal)

Overview of Topics

• Representations for Deep Learning

• Underlying Mathematics

• Inference
• TensorFlow

• BackPropagation

• Network Classes
• CNN

• Temporal Deep Networks (RNN, LSTM)

• Deep Reinforcement Learning

• Practical Aspects

