

Sequence Diagrams and Systems

Architecture
CS6406

1

Overview

• Model message flows using sequence diagrams.

• Relation of sequence diagrams to architecture

• Rules for defining system architectures

2

Use-Case Analysis

• Use-cases are a necessary starting point for systems

development

• Formal models for use-cases

– Sequence diagrams

– Other sequence models (e.g., automata)

• Associated representation

– Systems architecture

– Functional models

3

Scenario Modeling Techniques –

Interaction Diagram

• Scenario modeling describes how the objects in

a system interact with each other in a scenario.

• A scenario is a sequence of events that occurs

during one particular execution path within a

use case of a system.

• Each event involves the interaction of objects

passing messages between them.

4

Scenario Modeling Techniques –

Interaction Diagram (cont’d)
• An interaction diagram can be used to model the

collaborating objects in scenarios, showing the objects
involved in the scenario and the messages sent and received
by them.

• These objects may be external or internal to the system.

• The messages represent the invocation of operations of the
receiving objects.

• Sequence diagrams focus on the time sequencing of
messages.

5

Use-Case 1– An Automatic

Teller Machine (ATM)

• The ATM prompts the user to insert a card.

• The user inserts an ATM card.

• The ATM prompts the user to input the PIN.

• The user enters the PIN.

• The ATM asks the bank consortium to verify the ATM card number and PIN.

• The bank consortium verifies the ATM card number and PIN with bank.

• The bank notifies the bank consortium that the PIN is correct.

• The bank consortium notifies the ATM the PIN is correct.

• The ATM prompts the user to select a service.

• The user selects the withdraw cash service.

• The ATM prompts the user to enter the amount to withdraw.

6

Example 1 – An Automatic

Teller Machine (cont’d)

• The user enters the amount to withdraw.

• The ATM asks the bank consortium to process the request. The bank
consortium forwards the request to bank.

• The bank confirms the successful execution of the request to the bank
consortium which in turn notifies the ATM that the request has been
approved.

• The ATM displays the successful transaction screen, ejects card and then
dispenses cash requested.

• The ATM shows the main menu to the user for selecting the next service.

7

Example – An Automatic

Teller Machine (cont’d)

8

Example – An Automatic

Teller Machine (cont’d)

9

Example – An Automatic

Teller Machine (cont’d)

10

Architecture for Use-Case

11

System Architecture

• Decomposition of system into core sub-systems

• Good decomposition is critical to any software project

– Poor decomposition can lead to errors and/or inefficiency

• Example: security of messaging

– Card verification vs. PIN verification

12

ATM Sub-System Decomposition

13

System Architecture Definition

• Define a hierarchical structure

– Trades off abstraction for “logical structure”

– Example: logical structure of ATM is to separate ATM from main

bank database

– Ensure different functions are partitioned

– Do not duplicate functionality

• Encode all critical actors for every use-case

– If any use-case is omitted the requirements are not satisfied

14

Common UML Interaction Diagram

Notation

• Object Symbol

15

Naming Format Notation

An object of an unspecified
class.

A named object of a specified
class.

An unnamed object of a
specified class.

Object Stereotype

16

Object
Category

Description

Graphical Notations

Actor Object

An external entity that
interacts with the
system.

Entity Object

An object that models
the data in the system.
It often represents an
object in the problem
domain.

Object Stereotype (cont’d)

17

Object
Category

Description

Graphical Notations

Boundary

Object

An object that handles
the communication
between actor objects
and the system.

Control Object

An object that models
the flow of control and
functionality that do
not naturally belong to
entity objects or
boundary objects.

Messages

18

Message

Description

Notation

Procedure call or
other nested flow
of control

The message sender waits
for the completion of the
procedure call of the
message receiver.

Asynchronous
communication

The sender dispatches a
message and immediately
continues with the next step
of execution.

Messages (cont’d)

19

Message

Description

Notation

Return message Message returned from the
procedure call.

Message with
travel delay

The message will take a
significant amount of time
to arrive at the receiving
object. (This is only used in
sequence diagrams.)

Sequence Diagrams

• An interaction diagram models the behavior of a group of
objects that work together to achieve a user goal.

• A sequence diagram helps us identify a set of collaborating
objects involved in a scenario of a use case.

• A sequence diagram has two dimensions: the vertical
dimension and the horizontal dimension, respectively
representing the passage of time and the objects involved in
the interaction.

• Object icons are placed horizontally at the top of the
sequence diagram, and messages are passed between them.

20

Sequence Diagrams (cont’d)

21

Life Line & Activation

22

Object with

Lifeline

Object with

Activation

Creation & Destruction

23

Object

Creation

Object

Destruction

Branching

24

Conditional

Message

Transmission

25

Message that Takes Time

Message Transmission that Takes Time

Iteration

26

Iteration

Alternate Message Reception

27

Alternate

Message

Reception

Recursion

28

Recursion

Example

29

Life line

Creation

Deletion

Example

30

Life line

Activation

iteration

Example

31

Life line
collective

iteration

Example

32

Concurrent

Branch

Example - A Soft Drink

Vending Machine

33

System Decomposition Principles

• It is important to decompose a system to improve

– Model understandability

– Inference complexity

– Easy of implementation

• General guidelines

– Based on “engineering practice”

34

Rules for System Decomposition

• All non-trivial systems are hierarchical

– E.g., bio-systems

– Galaxies, super-clusters, solar systems

• Are there rules for system decomposition?

– Mathematics are only now being developed

– Topology is understood

– Functional decomposition is not understood

35

“The Prime Directive”

Partition software so that:

• each component is cohesive - does only one operation

• each component has narrow coupling with other

components

• each component has low complexity

• each component can be nearly exhaustively tested

• each component is easily understood

• correct operation is based on satisfaction of, at most, a

few assertions

Prime Directive
Keep it Short and Simple - the KISS principle

Applying the KISS principle is the most important

step in developing correct components.

Applying the Prime Directive

• We often deal with very large, complex systems in our

professional careers. How do we apply the KISS

Principle?

• Divide and Conquer!

– Partition into an executive an a set of server modules.

– Each server is focused on a single activity.

– Higher level modules can use the services of lower level

modules.

– Higher level modules implement the required behavior of the

system and so are not likely to be reusable. They are

application artifacts.

– Lower level modules implement solution-side functionality and

can be widely reused when we design with foresight.

39

Structured Design
• Early work of software design (from 1979) that presented

concepts such as cohesion, coupling, and encapsulation.

– “Fundamentals of a Discipline of Computer Program and Systems
Design”

• by Edward Yourdon and Larry Constantine

• Modules are not the same as for Parnas:

– Module: A lexically contiguous sequence of program statements,
bounded by boundary elements, having an aggregate identifier.

• A function, a procedure, a method

• Normal and pathological connections between modules:

normal
pathological

40

Human limitations on
dealing with complexity

• George Miller: The Magical Number Seven, Plus or Minus Two

– Can’t keep track of too many things at the same time

– Yourdon: Maximum number of subroutines called by a routine should be 5-9.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

Things to consider at once

E
r
r
o

r
s

41

Two kinds of complexity
• Intra-module complexity

– Complexity within one module

• Inter-module complexity

– Complexity of modules interacting with one another

Inter-module effect grows as
the number of modules grow

Intra-module effect decrease as the
modules become smaller

Total errors is a combination

Errors

of modules

42

Overall cost
• The overall cost of a system depends on both:

– The cost of production (and debugging)

– And the cost of maintenance

• Both are approximately equal for a typical system

• These costs are directly related to the complexity of the code

– Complexity injects more errors and makes them harder to fix

– Complexity requires more changes and makes them harder to effect

• Complexity can be reduced by breaking the problem into smaller
pieces

– (So long as the pieces are relatively independent of one another)

• But eventually the process of breaking pieces into smaller pieces
creates more complexity than it eliminates.

– 1970’s: Happens later than most designers would like to believe

– 2000’s: Happens sooner than most designers would like to believe

44

Design approach

• Therefore, there is some optimal level of sub-
division that minimizes complexity

– But to reach it you need your judgment

• Once you know the right level, the key decision is
to choose how to divide:

– Minimize coupling between modules

• Reduces complexity of interaction

– Maximize cohesion within modules

• Keeps changes from propagating

– Duals of one another

45

Coupling
• Two modules are independent if each can function completely

without the presence of the other

– They are decoupled, or uncoupled

• Highly coupled modules are joined by many interconnections and
dependencies

– And loosely coupled modules have a few interconnections and
dependencies

• Goal: Minimize coupling between modules in a system

– Coupling translates into “the probability that in
coding/modifying/debugging module A we will have to take into
account something from module B”

• Note that a system that has only one module (function) is
absolutely uncoupled

– But that’s not what we want!

– (We’ll analyze cohesion, coupling’s complement, later)

46

Influences on coupling
• Type of connection

– Minimally connected: parameters to a subroutine

– Pathologically connected: non-parameter data
references

• Interface complexity

– Number of parameters/returns

– Difficulty of usage

• Information flow

– Data flow: Passing data is handled uniformly

– Control flow: Passing of flags governs how data is
processed

• Binding time

– More static = more complex

• E.g., literal “30” vs. pervasive constant N_STUDENTS, vs.
execution-time parameter

47

Common-environment coupling
• A module writes into global data

• A different module reads from it (data or, worse, control)

Q

R S

T

U

V
W

X

48

Cohesion
• While minimizing coupling, we must also maximize

cohesion

– How well a particular module “holds together”

• The cement that holds a module together

– Answer the questions:

• Does this make sense as a distinct module?

• Do these things belong together?

• Best cohesion is when it comes from the problem space,
not the solution space

– Echoed years later in OOA/OOD

49

Levels of lack of cohesion
(roughly from worst to best)

• Coincidental

– No reason for doing two things in the same routine

• double computeAndRead(double x, char c);

• Logical

– Similar class of things that still should be separated

• char input(bool fromFile, bool fromStdIn);

• Temporal

– The fact that things happen one after the other is no excuse to put
them in the same routine

• void initSimulationAndPrepareFirst();

• Procedural

– Operations are together because they are in the same loop or decision
process, but no higher cohesion exists

• typeDecide(m); // Decide type of plant being simulated and perform
simulation part 1

50

Levels of lack of cohesion
(roughly from worst to best) (cont)

• Communicational

– Procedures that access the same data are kept together

• void printReports(data x); // Outputs day report and
monthly summary

• Sequential

– A sequence of steps that take the output from the
previous step as input for the next step

• string compile(String program) {parse, semantic analysis,
code generation}

• Functional

– That which is none of the above

– Does one and only one conceptual thing

– Equivalent to information hiding

• double sqrt(double x);

Practical Issues with Modularity

• Subdividing code

• Interface specification given modules

• Modular component design and reUse

Modularity
• The purpose of a module or class is to implement a small, simple logical model.

• The purpose of modularization is to build a software system out of cohesive,

reliable modules.

• Modularization consists of dividing a program into modules which can be compiled

separately. C++ performs type checking across module boundaries.

• Modules in C# and C++ are simply separately compiled files.

• We place module interface declarations in header files.

• Module implementations are placed in separate files which include the header file

at compilation time via a preprocessor #include “mod_name.hpp” directive.

#include “mod_name.hpp”

Public Interface

 header file
 mod_name.hpp

 Module

Implementatio

n

mod_name.cpp

 Client
Implementation
client_namecpp

#include “mod_name.hpp”

mod_name module

compile and link

these files

 “An information cluster is a set of
[functions] used for every access to data
that has a complex structure, sensitive
security, or device dependence.”

Meilir Page-Jones, The Practical Guide to Structured Systems Design, Yourdon
Press, 1988

Encapsulation and the Information Cluster

private data
private functions

public interface functions

Information Clustering
• The major benefit of this organization is that knowledge

of specific layout and implementation details is hidden
from clients, who have access only to a public interface.

•

The internal data could be reorganized, to improve
performance say, without adversely affecting any of its
clients provided that the public interface remains fixed.

• Classes are simply patterns for information clusters.
Objects are their instances, defined in memory.

• Modules are information clusters with only one instance.

