Introduction to MapReduce

Adapted from Jimmy Lin (U. Maryland, USA)

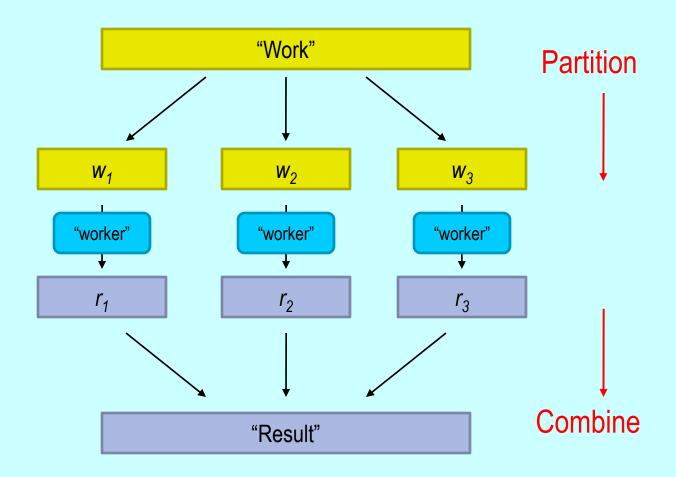
Overview

- Motivation
 - Need for handling "big data"
 - New programming paradigm
- Review of functional programming
 - mapReduce uses this abstraction
- mapReduce details

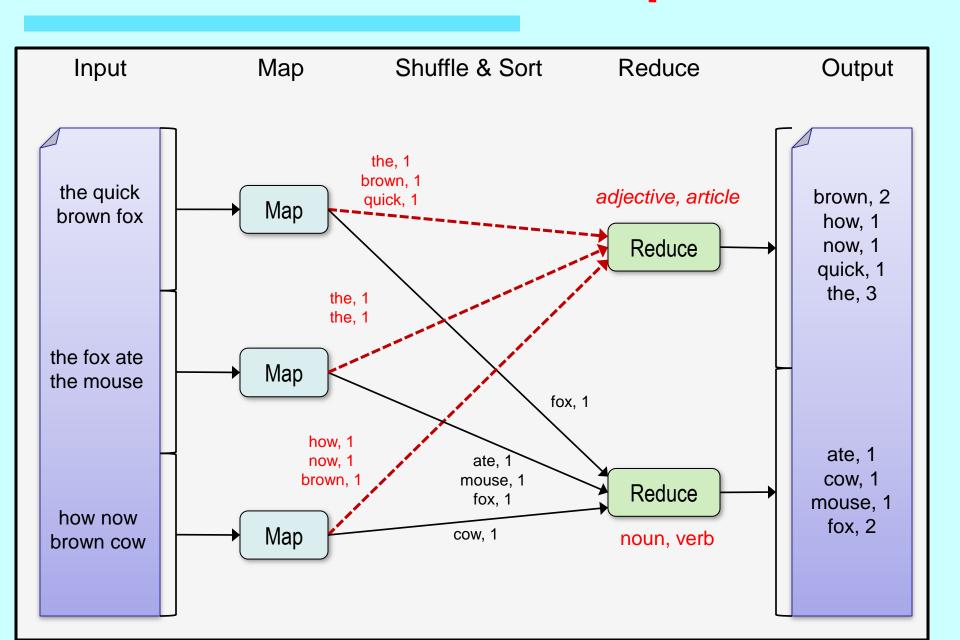
Motivation: Large Scale Data Processing

- Want to process lots of data (> 1 TB)
- Want to parallelize across hundreds/thousands of CPUs
- ... Want to make this easy

Divide and Conquer



Word Count Example



Parallelization Challenges

- How do we assign work units to workers?
- What if we have more work units than workers?
- What if workers need to share partial results?
- How do we aggregate partial results?
- How do we know all the workers have finished?
- What if workers die?

What is the common theme of all of these problems?

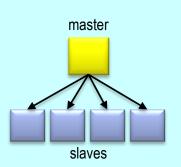
Managing Multiple Workers

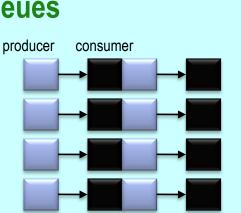
- Difficult because
 - We don't know the order in which workers run
 - We don't know when workers interrupt each other
 - We don't know the order in which workers access shared data
- Thus, we need:
 - Semaphores (lock, unlock)
 - Conditional variables (wait, notify, broadcast)
 - Barriers
- Still, lots of problems:
 - Deadlock, livelock, race conditions...
 - Dining philosophers, sleeping barbers, cigarette smokers...
- Moral of the story: be careful!

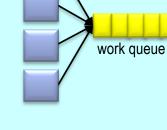
Current Tools

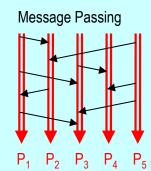
Shared Memory

- Programming models
 - Shared memory (pthreads)
 - Message passing (MPI)
- Design Patterns
 - Master-slaves
 - Producer-consumer flows
 - Shared work queues









CS 6323, Algorithms University College Cork, Gregory M. Provan

producer

consumer

Concurrency Challenge!

- Concurrency is difficult to reason about
- Concurrency is even more difficult to reason about
 - At the scale of datacenters (even across datacenters)
 - In the presence of failures
 - In terms of multiple interacting services
- Not to mention debugging...
- The reality:
 - Lots of one-off solutions, custom code
 - Write you own dedicated library, then program with it
 - Burden on the programmer to explicitly manage everything

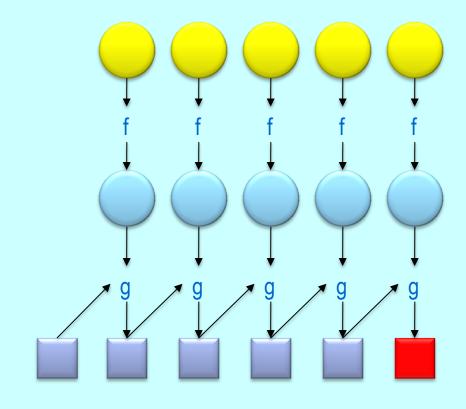
Overview

- Motivation
 - Need for handling "big data"
 - New programming paradigm
- Review of functional programming
 - mapReduce uses this abstraction
- mapReduce details

MapReduce: Roots in Functional Programming

Map

Reduce



CS 6323, Algorithms University College Cork, Gregory M. Provan

Functional Programming Review

- Functional operations do not modify data structures
 - They always create new ones
- Original data still exists in unmodified form
- Data flows are implicit in program design
- Order of operations does not matter

Functional Programming Review

```
fun foo(l: int list) =
  sum(l) + mul(l) + length(l)
```

Order of sum() and mul(), etc does not matter – they do not modify *I*

"Updates" Don't Modify Structures

```
fun append(x, lst) =
  let lst' = reverse lst in
  reverse ( x :: lst' )
```

The append() function above reverses a list, adds a new element to the front, and returns all of that, reversed, which appends an item.

But it never modifies lst!

Functions Can Be Used As Arguments

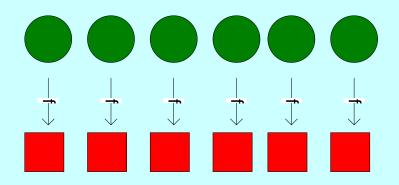
fun DoDouble(f, x) = f(f x)

It does not matter what f does to its argument; DoDouble() will do it twice.

Map

map f lst: ('a->'b) -> ('a list) -> ('b list)

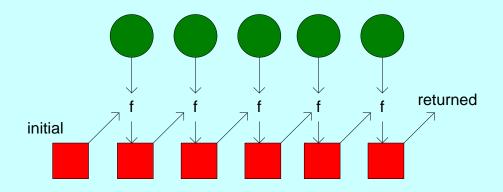
Creates a new list by applying f to each element of the input list; returns output in order.



Reduce (Fold)

fold $f x_0$ lst: ('a*'b->'b)->'b->('a list)->'b

Moves across a list, applying f to each element plus an accumulator. f returns the next accumulator value, which is combined with the next element of the list



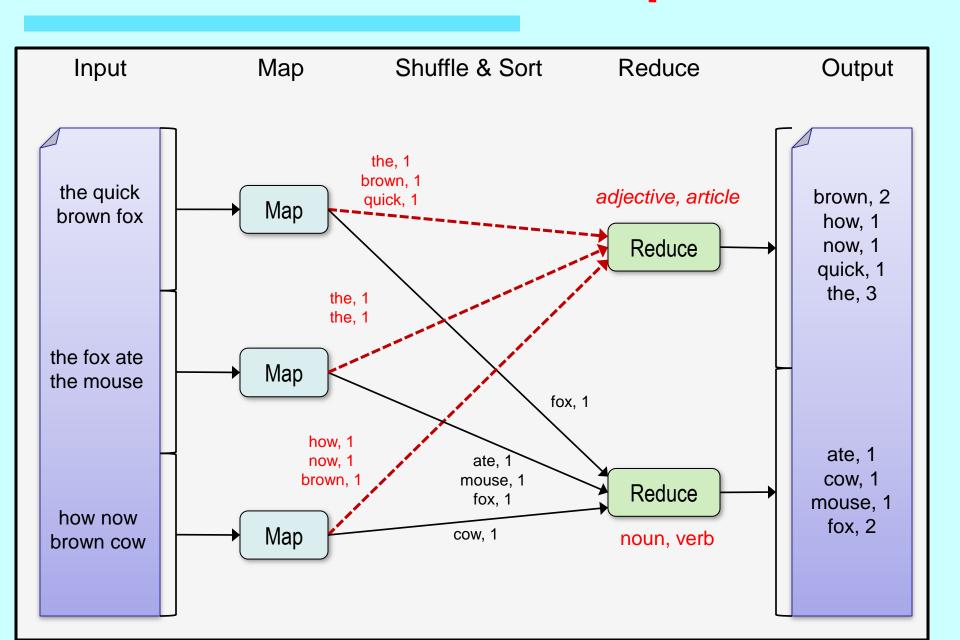
MapReduce Details

Typical Large-Data Problem

- Iterate over a large number of records
- Map Extract something of interest from each
 - Shuffle and sort intermediate results
 - Aggregate intermediate results
 - Generate final output
 Reduce

Key idea: provide a functional abstraction for these two operations

Word Count Example



Programming Model

- Borrows from functional programming
- Users implement interface of two functions:

```
- map (in_key, in_value) ->
  (out_key, intermediate_value) list
```

```
- reduce (out_key, intermediate_value list) ->
  out_value list
```


MapReduce

Programmers specify two functions:

```
map (k, v) \rightarrow [(k', v')]
reduce (k', [v']) \rightarrow [(k', v')]
```

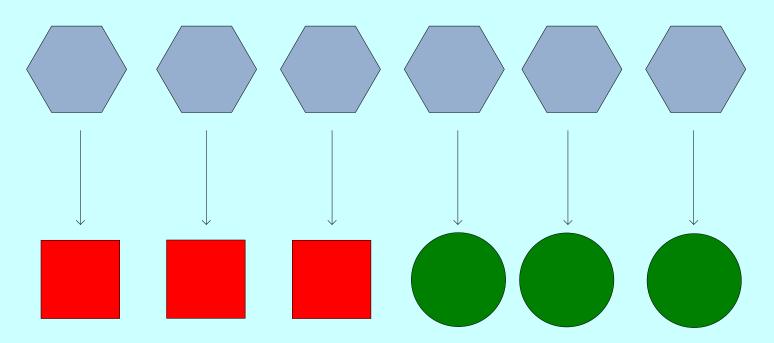
- All values with the same key are sent to the same reducer
- The execution framework handles everything else...

Map

- Records from the data source (lines out of files, rows of a database, etc) are fed into the map function as key*value pairs: e.g., (filename, line).
- map() produces one or more *intermediate* values along with an output key from the input.

Map

```
map (in_key, in_value) ->
  (out key, intermediate value) list
```



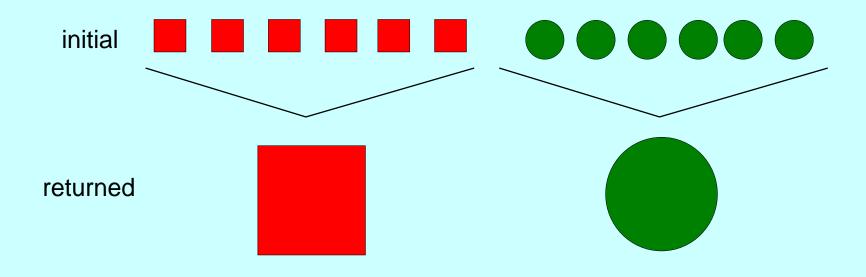
CS 6323, Algorithms University College Cork, Gregory M. Provan

Reduce

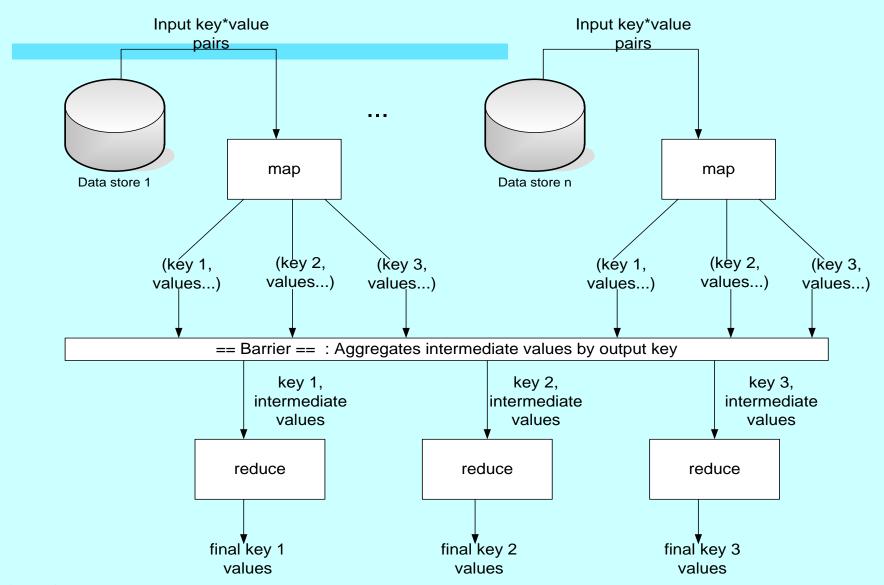
- After the map phase is over, all the intermediate values for a given output key are combined together into a list
- reduce() combines those intermediate values into one or more final values for that same output key
- (in practice, usually only one final value per key)

Reduce

reduce (out_key, intermediate_value list) ->
 out_value list



CS 6323, Algorithms University College Cork, Gregory M. Provan



CS 6323, Algorithms University College Cork, Gregory M. Provan

Parallelism

- map() functions run in parallel, creating different intermediate values from different input data sets
- reduce() functions also run in parallel, each working on a different output key
- All values are processed independently
- Bottleneck: reduce phase can't start until map phase is completely finished.

Example: Count word occurrences

```
map(String input key, String input value):
  // input key: document name
  // input value: document contents
  for each word w in input value:
    EmitIntermediate(w, 1);
reduce(String output key, Iterator<int>
  intermediate values):
  // output key: a word
  // output values: a list of counts
  int result = 0;
  for each v in intermediate values:
    result += v;
                      CS 6323, Algorithms
 Emit(result);
                      University College Cork,
                       Gregory M. Provan
```

Optimizations

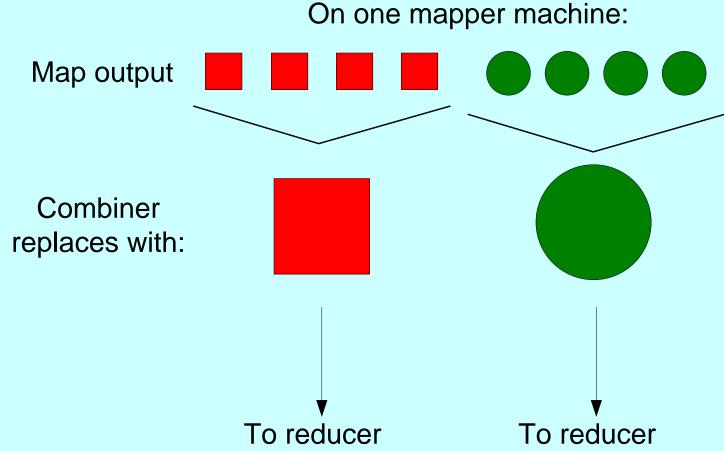
- No reduce can start until map is complete:
 - A single slow disk controller can rate-limit the whole process
- Master redundantly executes "slow-moving" map tasks; uses results of first copy to finish

Why is it safe to redundantly execute map tasks? Wouldn't this mess up the total computation?

Combining Phase

- Run on mapper nodes after map phase
- "Mini-reduce," only on local map output
- Used to save bandwidth before sending data to full reducer
- Reducer can be combiner if commutative & associative

Combiner, graphically



CS 6323, Algorithms University College Cork, Gregory M. Provan



CS 6323, Algorithms University College Cork, Gregory M. Provan

MapReduce

Programmers specify two functions:

map
$$(k, v) \rightarrow \langle k', v' \rangle^*$$

reduce $(k', v') \rightarrow \langle k', v' \rangle^*$

- All values with the same key are sent to the same reducer
- The execution framework handles everything else...

What's "everything else"?

MapReduce "Runtime"

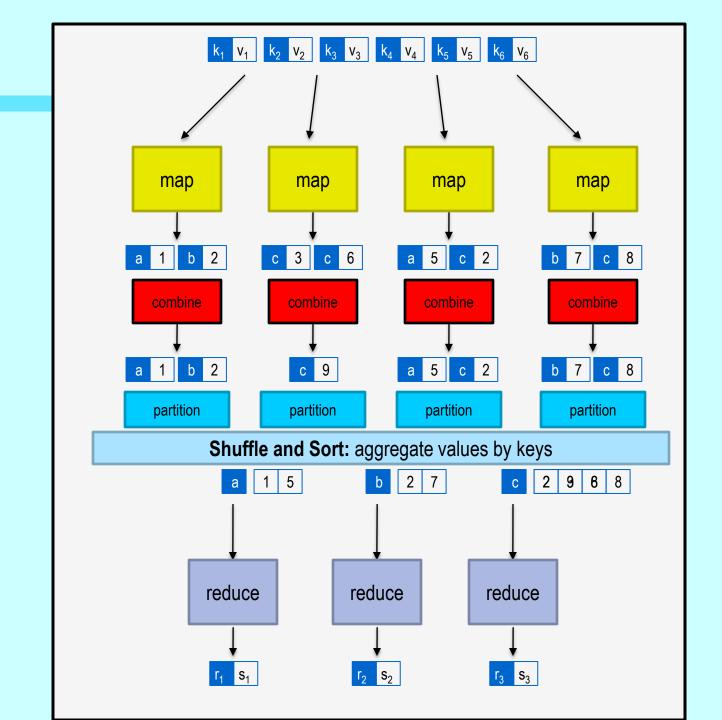
- Handles scheduling
 - Assigns workers to map and reduce tasks
- Handles "data distribution"
 - Moves processes to data
- Handles synchronization
 - Gathers, sorts, and shuffles intermediate data
- Handles errors and faults
 - Detects worker failures and restarts
- Everything happens on top of a distributed FS

MapReduce

Programmers specify two functions:

```
map (k, v) \rightarrow [(k', v')]
reduce (k', [v']) \rightarrow [(k', v')]
```

- All values with the same key are reduced together
- The execution framework handles everything else...
- Not quite...usually, programmers also specify: partition (k', number of partitions) → partition for k'
 - Often a simple hash of the key, e.g., hash(k') mod n
 - Divides up key space for parallel reduce operations combine $(k', [v']) \rightarrow [(k', v'')]$
 - Mini-reducers that run in memory after the map phase
 - Used as an optimization to reduce network traffic



Two more details...

- Barrier between map and reduce phases
 - But we can begin copying intermediate data earlier
- Keys arrive at each reducer in sorted order
 - No enforced ordering across reducers

MapReduce can refer to...

- The programming model
- The execution framework (aka "runtime")
- The specific implementation

Usage is usually clear from context!

"Hello World": Word Count

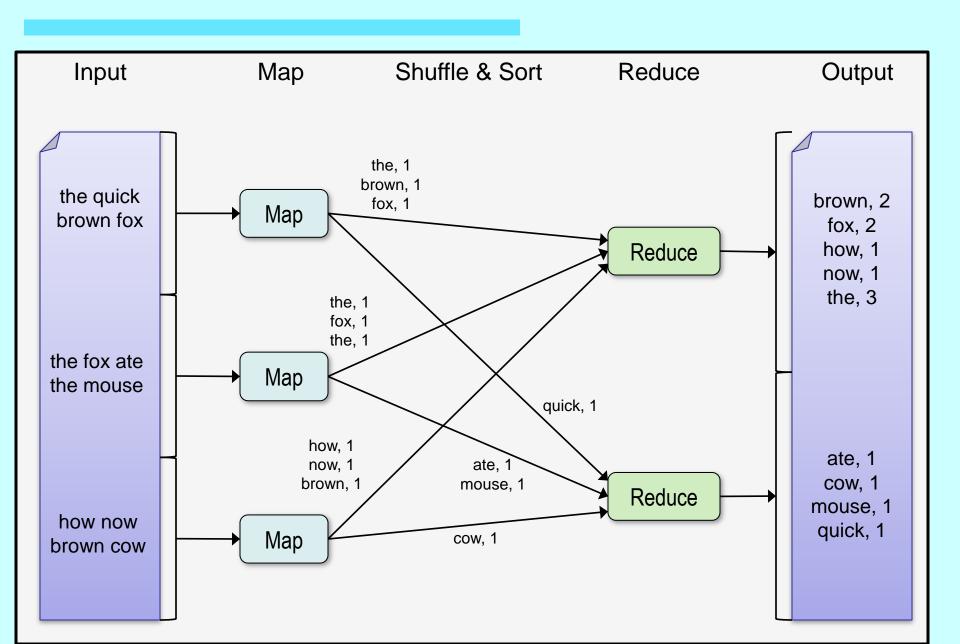
```
Map(String docid, String text):
    for each word w in text:
        Emit(w, 1);

Reduce(String term, Iterator<Int> values):
    int sum = 0;
    for each v in values:
        sum += v;
        Emit(term, value);
```


MapReduce

- Automatic parallelization & distribution
- Fault-tolerant
- Provides status and monitoring tools
- Clean abstraction for programmers

Word Count Execution

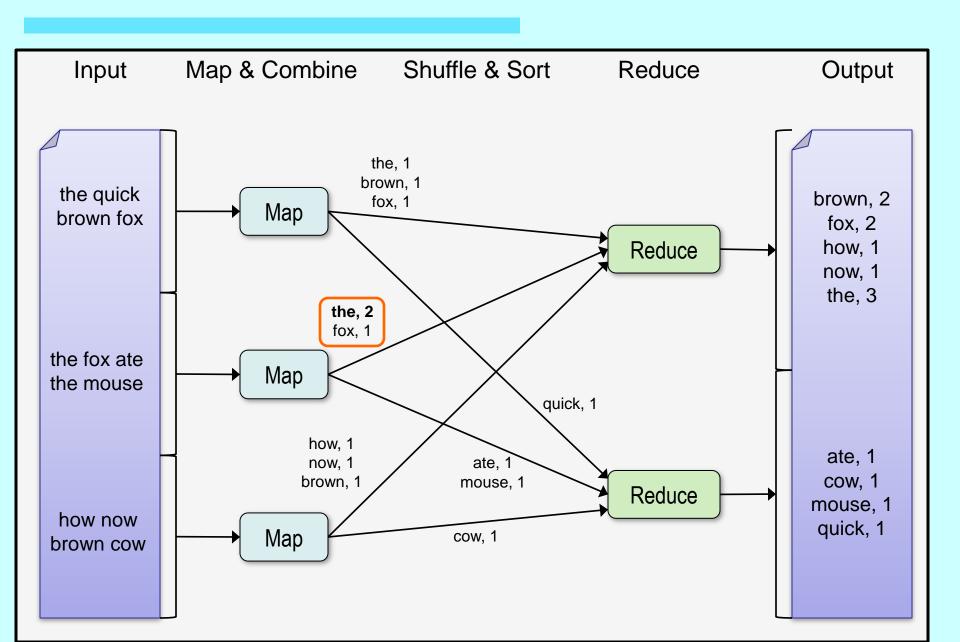


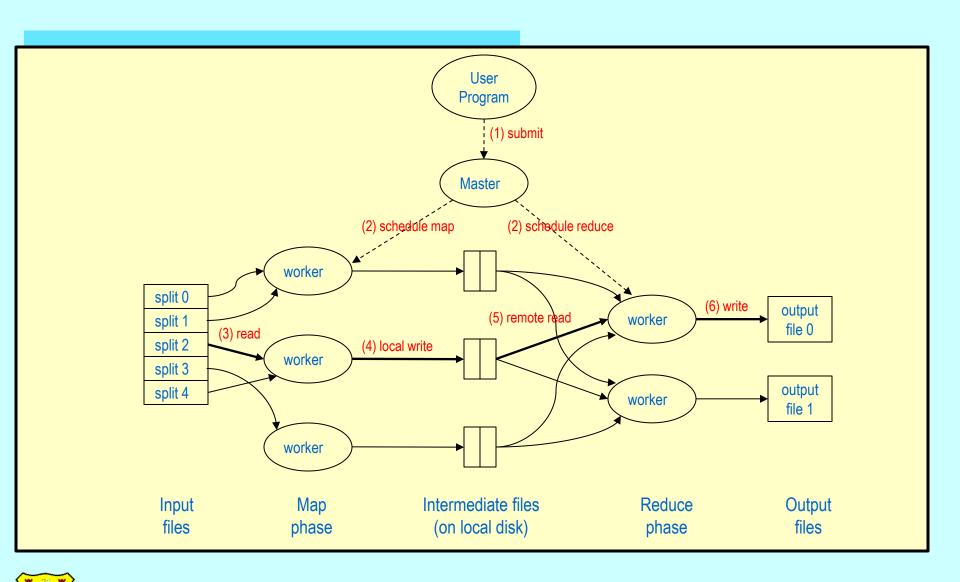
An Optimization: The Combiner

- A combiner is a local aggregation function for repeated keys produced by same map
- For associative ops. like sum, count, max
- Decreases size of intermediate data
- Example: local counting for Word Count:

```
def combiner(key, values):
  output(key, sum(values))
```


Word Count with Combiner





MapReduce Conclusions

- MapReduce has proven to be a useful abstraction
- Greatly simplifies large-scale computations at Google
- Functional programming paradigm can be applied to large-scale applications
- Fun to use: focus on problem, let library deal w/ messy details

MapReduce in the Real World

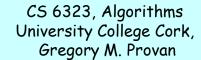
- Implementations
- Who works with this approach

MapReduce Implementations

- Google has a proprietary implementation in C++
 - Bindings in Java, Python
- Hadoop is an open-source implementation in Java
 - Development led by Yahoo, used in production
 - Now an Apache project
 - Rapidly expanding software ecosystem
- Lots of custom research implementations
 - For GPUs, cell processors, etc.

Hadoop History

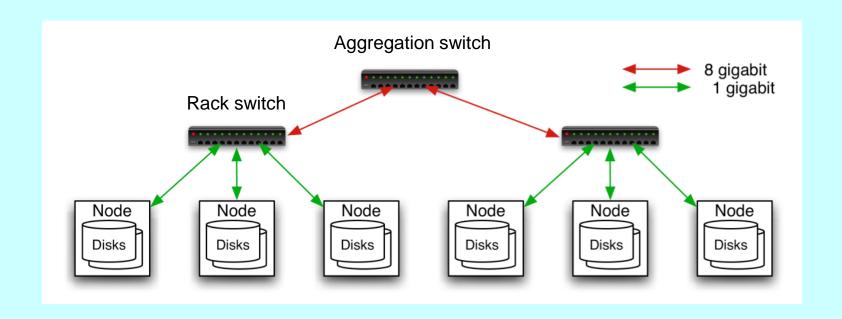
- Dec 2004 Google GFS paper published
- July 2005 Nutch uses MapReduce
- Feb 2006 Becomes Lucene subproject
- Apr 2007 Yahoo! on 1000-node cluster
- Jan 2008 An Apache Top Level Project
- Jul 2008 A 4000 node test cluster
- Sept 2008 Hive becomes a Hadoop subproject
- Feb 2009 The Yahoo! Search Webmap is a Hadoop application that runs on more than 10,000 core Linux cluster and produces data that is now used in every Yahoo! Web search query.
- June 2009 On June 10, 2009, Yahoo! made available the source code to the version of Hadoop it runs in production.
- In 2010 Facebook claimed that they have the largest Hadoop cluster in the world with 21 PB of storage. On July 27, 2011 they announced the data has grown to 30 PB.



Who uses Hadoop?

- Amazon/A9
- Facebook
- Google
- IBM
- Joost
- Last.fm
- New York Times
- PowerSet
- Veoh
- Yahoo!

Typical Hadoop Cluster



- 40 nodes/rack, 1000-4000 nodes in cluster
- 1 GBps bandwidth in rack, 8 GBps out of rack
- Node specs (Yahoo terasort):
 8 x 2.0 GHz cores, 8 GB RAM, 4 disks (= 4 TB?)

Typical Hadoop Cluster

 $Image\ from\ http://wiki.apache.org/hadoop-data/attachments/frequest Participal Attachments/aw-apachecon-eu-2009.pdf$

Example vs. Actual Source Code

- Example is written in pseudo-code
- Actual implementation is in C++, using a MapReduce library
- Bindings for Python and Java exist via interfaces
- True code is somewhat more involved (defines how the input key/values are divided up and accessed, etc.)

Locality

- Master program divvies up tasks based on location of data: tries to have map() tasks on same machine as physical file data, or at least same rack
- map() task inputs are divided into 64 MB blocks: same size as Google File System chunks

Fault Tolerance

- Master detects worker failures
 - Re-executes completed & in-progress map() tasks
 - Re-executes in-progress reduce() tasks
- Master notices particular input key/values cause crashes in map(), and skips those values on re-execution.
 - Effect: Can work around bugs in third-party libraries!

