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Overview 

 Motivation 

– Need for handling “big data” 

– New programming paradigm 

 Review of functional programming 

– mapReduce uses this abstraction 

 mapReduce details 
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Motivation: Large Scale Data 

Processing 
 Want to process lots of data ( > 1 TB) 

 Want to parallelize across hundreds/thousands of CPUs 

 … Want to make this easy 
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Divide and Conquer 

“Work” 

w1 w2 w3 

r1 r2 r3 

“Result” 

“worker” “worker” “worker” 

Partition 

Combine 
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Word Count Example 

the quick 

brown fox 

the fox ate 

the mouse 

how now 

brown cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 

how, 1 

now, 1 

quick, 1 

the, 3 

ate, 1 

cow, 1 

mouse, 1 

fox, 2 

the, 1 

brown, 1 

quick, 1 

fox, 1 

the, 1 

the, 1 

how, 1 

now, 1 

brown, 1 

ate, 1 

mouse, 1 

fox, 1 

cow, 1 

Input Map Shuffle & Sort Reduce Output 

noun, verb 

adjective, article 
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Parallelization Challenges 

 How do we assign work units to workers? 

 What if we have more work units than workers? 

 What if workers need to share partial results? 

 How do we aggregate partial results? 

 How do we know all the workers have finished? 

 What if workers die? 

What is the common theme of all of these problems? 
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Managing Multiple Workers 

 Difficult because 
– We don’t know the order in which workers run 

– We don’t know when workers interrupt each other 

– We don’t know the order in which workers access shared data 

 Thus, we need: 
– Semaphores (lock, unlock) 

– Conditional variables (wait, notify, broadcast) 

– Barriers 

 Still, lots of problems: 
– Deadlock, livelock, race conditions... 

– Dining philosophers, sleeping barbers, cigarette smokers... 

 Moral of the story: be careful! 
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Current Tools 

 Programming models 

– Shared memory (pthreads) 

– Message passing (MPI) 

 Design Patterns 

– Master-slaves 

– Producer-consumer flows 

– Shared work queues 

 

Message Passing 

P1 P2 P3 P4 P5 

Shared Memory 

P1 P2 P3 P4 P5 

M
em

or
y 

master 

slaves 

producer consumer 

producer consumer 

work queue 
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Concurrency Challenge! 

 Concurrency is difficult to reason about 

 Concurrency is even more difficult to reason about 

– At the scale of datacenters (even across datacenters) 

– In the presence of failures 

– In terms of multiple interacting services 

 Not to mention debugging… 

 The reality: 

– Lots of one-off solutions, custom code 

– Write you own dedicated library, then program with it 

– Burden on the programmer to explicitly manage everything 
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Overview 

 Motivation 

– Need for handling “big data” 

– New programming paradigm 

 Review of functional programming 

– mapReduce uses this abstraction 

 mapReduce details 
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g g g g g 

f f f f f Map 

Reduce 

MapReduce: 
Roots in Functional Programming 
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Functional Programming Review 

 Functional operations do not modify data structures 

– They always create new ones  

 Original data still exists in unmodified form 

 Data flows are implicit in program design 

 Order of operations does not matter 
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Functional Programming Review 

fun foo(l: int list) = 

  sum(l) + mul(l) + length(l) 

 

   Order of sum() and mul(), etc does not matter – they do not 

modify l 

 



CS 6323, Algorithms 
University College Cork, 

 Gregory M. Provan 

“Updates” Don’t Modify Structures 

fun append(x, lst) =   

  let lst' = reverse lst in 

    reverse ( x :: lst' ) 

 

The append() function above reverses a list, adds a 

new element to the front, and returns all of that, 

reversed, which appends an item.  

 

But it never modifies lst! 
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Functions Can Be Used As Arguments 

fun DoDouble(f, x) = f (f x) 

It does not matter what f does to its argument; 

DoDouble() will do it twice. 
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Map 

map f lst: (’a->’b) -> (’a list) -> (’b list) 

   Creates a new list by applying f to each element of the 

input list; returns output in order. 

f f f f f f
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Reduce (Fold) 

fold f x0 lst: ('a*'b->'b)->'b->('a list)->'b 

   Moves across a list, applying f to each element plus an 

accumulator. f returns the next accumulator value, 

which is combined with the next element of the list 

f f f f f returned

initial



MapReduce Details 
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Typical Large-Data Problem 

 Iterate over a large number of records 

 Extract something of interest from each 

 Shuffle and sort intermediate results 

 Aggregate intermediate results 

 Generate final output 

Key idea: provide a functional abstraction for these two 

operations 

(Dean and Ghemawat, OSDI 2004) 
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Word Count Example 

the quick 

brown fox 

the fox ate 

the mouse 

how now 

brown cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 

how, 1 

now, 1 

quick, 1 

the, 3 

ate, 1 

cow, 1 

mouse, 1 

fox, 2 

the, 1 

brown, 1 

quick, 1 

fox, 1 

the, 1 

the, 1 

how, 1 

now, 1 

brown, 1 

ate, 1 

mouse, 1 

fox, 1 

cow, 1 

Input Map Shuffle & Sort Reduce Output 

noun, verb 

adjective, article 
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Programming Model 

 Borrows from functional programming 

 Users implement interface of two functions: 

 

– map  (in_key, in_value) ->  

  (out_key, intermediate_value) list 

 

– reduce (out_key, intermediate_value list) -> 

  out_value list 
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MapReduce 

 Programmers specify two functions: 
map (k, v) → [(k’, v’)] 

reduce (k’, [v’]) → [(k’, v’)] 

– All values with the same key are sent to the same reducer 

 The execution framework handles everything else… 
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Map  

 Records from the data source (lines out of files, rows of a 

database, etc) are fed into the map function as key*value 

pairs: e.g., (filename, line). 

 map() produces one or more intermediate values along with 

an output key from the input. 
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map  (in_key, in_value) ->  

 (out_key, intermediate_value) list 

Map  
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Reduce  

 After the map phase is over, all the intermediate values for a 

given output key are combined together into a list 

 reduce() combines those intermediate values into one or 

more final values for that same output key  

 (in practice, usually only one final value per key) 

 



CS 6323, Algorithms 
University College Cork, 

 Gregory M. Provan 

Reduce 

reduce (out_key, intermediate_value list) -> 

  out_value list 

returned

initial
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Data store 1 Data store n
map

(key 1, 

values...)

(key 2, 

values...)
(key 3, 

values...)

map

(key 1, 

values...)

(key 2, 

values...)
(key 3, 

values...)

Input key*value 

pairs

Input key*value 

pairs

== Barrier ==  : Aggregates intermediate values by output key

reduce reduce reduce

key 1, 

intermediate 

values

key 2, 

intermediate 

values

key 3, 

intermediate 

values

final key 1 

values

final key 2 

values

final key 3 

values

...
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Parallelism 

 map() functions run in parallel, creating different 
intermediate values from different input data sets 

 reduce() functions also run in parallel, each working on a 
different output key 

 All values are processed independently 

 Bottleneck: reduce phase can’t start until map phase is 
completely finished. 
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Example: Count word occurrences 

map(String input_key, String input_value): 

  // input_key: document name  

  // input_value: document contents  

  for each word w in input_value:  

    EmitIntermediate(w, 1);  

 

reduce(String output_key, Iterator<int> 
intermediate_values):  

  // output_key: a word  

  // output_values: a list of counts  

  int result = 0;  

  for each v in intermediate_values:  

    result += v; 

 Emit(result);  
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Optimizations 

 No reduce can start until map is complete: 

– A single slow disk controller can rate-limit the whole process 

 Master redundantly executes “slow-moving” map tasks; uses 

results of first copy to finish 

Why is it safe to redundantly execute map tasks? Wouldn’t this mess up 

the total computation? 
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Combining Phase 

 Run on mapper nodes after map phase 

 “Mini-reduce,” only on local map output 

 Used to save bandwidth before sending data to full reducer 

 Reducer can be combiner if commutative & associative 
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Combiner, graphically 

Combiner 

replaces with:

Map output

To reducer

On one mapper machine:

To reducer
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map map map map 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

a 1 5 b 2 7 c 2 3 6 8 

r1 s1 r2 s2 r3 s3 
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MapReduce 

 Programmers specify two functions: 
map (k, v) → <k’, v’>* 

reduce (k’, v’) → <k’, v’>* 

– All values with the same key are sent to the same reducer 

 The execution framework handles everything else… 

What’s “everything else”? 
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MapReduce “Runtime” 

 Handles scheduling 
– Assigns workers to map and reduce tasks 

 Handles “data distribution” 
– Moves processes to data 

 Handles synchronization 
– Gathers, sorts, and shuffles intermediate data 

 Handles errors and faults 
– Detects worker failures and restarts 

 Everything happens on top of a distributed FS 
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MapReduce 

 Programmers specify two functions: 
map (k, v) → [(k’, v’)] 

reduce (k’, [v’]) → [(k’, v’)] 

– All values with the same key are reduced together 

 The execution framework handles everything else… 

 Not quite…usually, programmers also specify: 
partition (k’, number of partitions) → partition for k’ 

– Often a simple hash of the key, e.g., hash(k’) mod n 

– Divides up key space for parallel reduce operations 

combine (k’, [v’]) → [(k’, v’’)] 

– Mini-reducers that run in memory after the map phase 

– Used as an optimization to reduce network traffic 
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combine combine combine combine 

b a 1 2 c 9 a c 5 2 b c 7 8 

partition partition partition partition 

map map map map 

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6 

b a 1 2 c c 3 6 a c 5 2 b c 7 8 

Shuffle and Sort: aggregate values by keys 

reduce reduce reduce 

a 1 5 b 2 7 c 2 9 8 

r1 s1 r2 s2 r3 s3 

c 2 3 6 8 
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Two more details… 

 Barrier between map and reduce phases 

– But we can begin copying intermediate data earlier 

 Keys arrive at each reducer in sorted order 

– No enforced ordering across reducers 
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MapReduce can refer to… 

 The programming model 

 The execution framework (aka “runtime”) 

 The specific implementation 

Usage is usually clear from context! 
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“Hello World”: Word Count 

Map(String docid, String text): 

     for each word w in text: 

          Emit(w, 1); 

 

Reduce(String term, Iterator<Int> values): 

     int sum = 0; 

     for each v in values: 

          sum += v; 

          Emit(term, value); 
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MapReduce 

 Automatic parallelization & distribution 

 Fault-tolerant 

 Provides status and monitoring tools 

 Clean abstraction for programmers 
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Word Count Execution 

the quick 

brown fox 

the fox ate 

the mouse 

how now 

brown cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 

fox, 2 

how, 1 

now, 1 

the, 3 

ate, 1 

cow, 1 

mouse, 1 

quick, 1 

the, 1 

brown, 1 

fox, 1 

quick, 1 

the, 1 

fox, 1 

the, 1 

how, 1 

now, 1 

brown, 1 

ate, 1 

mouse, 1 

cow, 1 

Input Map Shuffle & Sort Reduce Output 
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An Optimization: The Combiner 

 A combiner is a local aggregation function for 

repeated keys produced by same map 

 For associative ops. like sum, count, max 

 Decreases size of intermediate data 

 

 Example: local counting for Word Count: 

def combiner(key, values): 
  output(key, sum(values)) 
 



CS 6323, Algorithms 
University College Cork, 

 Gregory M. Provan 

Word Count with Combiner 

Input Map & Combine Shuffle & Sort Reduce Output 

the quick 

brown fox 

the fox ate 

the mouse 

how now 

brown cow 

Map 

Map 

Map 

Reduce 

Reduce 

brown, 2 

fox, 2 

how, 1 

now, 1 

the, 3 

ate, 1 

cow, 1 

mouse, 1 

quick, 1 

the, 1 

brown, 1 

fox, 1 

quick, 1 

the, 2 

fox, 1 

how, 1 

now, 1 

brown, 1 

ate, 1 

mouse, 1 

cow, 1 
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split 0 

split 1 

split 2 

split 3 

split 4 

worker 

worker 

worker 

worker 

worker 

Master 

User 

Program 

output 

file 0 

output 

file 1 

(1) submit 

(2) schedule map (2) schedule reduce 

(3) read 
(4) local write 

(5) remote read 
(6) write 

Input 

files 

Map 

phase 

Intermediate files 

(on local disk) 

Reduce 

phase 

Output 

files 

Adapted from (Dean and Ghemawat, OSDI 2004) 
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MapReduce Conclusions 

 MapReduce has proven to be a useful abstraction  

 Greatly simplifies large-scale computations at 

Google 

 Functional programming paradigm can be applied 

to large-scale applications 

 Fun to use: focus on problem, let library deal w/ 

messy details  



CS 6323, Algorithms 
University College Cork, 

 Gregory M. Provan 

MapReduce in the Real World 

 Implementations 

 Who works with this approach 
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MapReduce Implementations 

 Google has a proprietary implementation in C++ 

– Bindings in Java, Python 

 Hadoop is an open-source implementation in Java 

– Development led by Yahoo, used in production 

– Now an Apache project 

– Rapidly expanding software ecosystem 

 Lots of custom research implementations 

– For GPUs, cell processors, etc. 
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Hadoop History 

 Dec 2004 – Google GFS paper published 

 July 2005 – Nutch uses MapReduce 

 Feb 2006 – Becomes Lucene subproject 

 Apr 2007 – Yahoo! on 1000-node cluster 

 Jan 2008 – An Apache Top Level Project 

 Jul 2008 – A 4000 node test cluster 

 Sept 2008 – Hive becomes a Hadoop subproject 

 Feb 2009 – The Yahoo! Search Webmap is a Hadoop application that runs on 

more than 10,000 core Linux cluster and produces data that is now used in 

every Yahoo! Web search query.  

 June 2009 – On June 10, 2009, Yahoo! made available the source code to the 

version of Hadoop it runs in production.  

 In 2010 Facebook claimed that they have the largest Hadoop cluster in the 

world with 21 PB of storage. On July 27, 2011 they announced the data has 

grown to 30 PB. 
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Who uses Hadoop? 

 Amazon/A9 

 Facebook 

 Google 

 IBM 

 Joost 

 Last.fm 

 New York Times 

 PowerSet 

 Veoh 

 Yahoo! 
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Typical Hadoop Cluster 

 40 nodes/rack, 1000-4000 nodes in cluster 

 1 GBps bandwidth in rack, 8 GBps out of rack 

 Node specs (Yahoo terasort): 

8 x 2.0 GHz cores, 8 GB RAM, 4 disks (= 4 TB?) 

Aggregation switch 

Rack switch 
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Typical Hadoop Cluster 

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/aw-apachecon-eu-2009.pdf 
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Example vs. Actual Source Code 

 Example is written in pseudo-code 

 Actual implementation is in C++, using a MapReduce library 

 Bindings for Python and Java exist via interfaces 

 True code is somewhat more involved (defines how the 

input key/values are divided up and accessed, etc.) 
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Locality 

 Master program divvies up tasks based on location of data: 

tries to have map() tasks on same machine as physical file 

data, or at least same rack 

 map() task inputs are divided into 64 MB blocks: same size 

as Google File System chunks 
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Fault Tolerance 

 Master detects worker failures 
– Re-executes completed & in-progress map() tasks 

– Re-executes in-progress reduce() tasks 

 Master notices particular input key/values cause crashes in 
map(), and skips those values on re-execution. 
– Effect: Can work around bugs in third-party libraries! 


