Adapted from Jimmy Lin (U. Maryland, USA)

Overview

e Motivation
Need for handling “big data”
New programming paradigm

e Review of functional programming
mapReduce uses this abstraction

e mapReduce details

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Motivation: Large Scale Data
Processing

e Want to process lots of data (> 1 TB)
e Want to parallelize across hundreds/thousands of CPUs
e ... Want to make this easy

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Divide and Conquer

RS Partition

RN
we o Es S
N

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Word Count Example

Input

A

the quick
brown fox

the fox ate
the mouse

how now
brown cow

Map

brown, 1 ,/

Shuffle & Sort Reduce
the, 1
brown, 1 _ _ _
quick, 1 adjective, article

how, 1 o
now, 1 p

Reduce }——P

noun, verb

Output

[4

brown, 2
how, 1

now, 1

quick, 1
the, 3

ate, 1
cow, 1
mouse, 1
fox, 2

Parallelization Challenges

How do we assign work units to workers?
What if we have more work units than workers?
What if workers need to share partial results?
How do we aggregate partial results?

How do we know all the workers have finished?
What if workers die?

What is the common theme of all of these problems?

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Managing Multiple Workers

Difficult because
We don’t know the order in which workers run
We don’t know when workers interrupt each other
We don’t know the order in which workers access shared data

Thus, we need:
Semaphores (lock, unlock)
Conditional variables (wait, notify, broadcast)
Barriers
Still, lots of problems:
Deadlock, livelock, race conditions...
Dining philosophers, sleeping barbers, cigarette smokers...

Moral of the story: be careful!

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Current Tools

® Programming mOdels Shared Memory Message Passing
| R i |
Shared memory (pthreads) || | i |
Message passing (MPI) <
] VVYYVY v \ A
e Design Patterns Py P, Py Py P P Py Py Py P
Master-slaves

Producer-consumer flows
Shared work queues

producer consumer

Wy Ny
Wy Ny
Wy Ny
Wy gy

producer consumer

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

master

work queue

Concurrency Challenge!

e Concurrency is difficult to reason about

e Concurrency is even more difficult to reason about
At the scale of datacenters (even across datacenters)
In the presence of failures
In terms of multiple interacting services

e Not to mention debugging...
e The reality:

Lots of one-off solutions, custom code
Write you own dedicated library, then program with it
Burden on the programmer to explicitly manage everything

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Overview

e Motivation
Need for handling “big data”
New programming paradigm

e Review of functional programming
mapReduce uses this abstraction

e mapReduce details

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

MapReduce:

Roots in Functional Programming
IR R
PYOPY

Reduce 0 A9 g Ag Ag
T11Y

Map

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Functional Programming Review

Functional operations do not modify data structures
They always create new ones

Original data still exists in unmodified form
Data flows are implicit in program design
Order of operations does not matter

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Functional Programming Review

fun foo(l: int list) =
sum(l) + mul(l) + length(l)

Order of sum() and mul(), etc does not matter — they do not
modify /

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

“Updates” Don’t Modify Structures

fun append(x, Ist) =
let Ist' = reverse Ist in
reverse (x :: Ist')

The append() function above reverses a list, adds a
new element to the front, and returns all of that,
reversed, which appends an item.

But it never modifies Ist!

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Functions Can Be Used As Arguments

fun DoDouble(f, x) = f (f x)

It does not matter what f does to its argument;
DoDouble() will do it twice.

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Map

map f Ist: ('a->’b) -> ('a list) -> ('b list)
Creates a new list by applying f to each element of the
input list; returns output in order.

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Reduce (Fold)

fold f x, Ist: ('a*'b->'b)->'b->('a list)->'b
Moves across a list, applying fto each element plus an

accumulator. f returns the next accumulator value,
which is combined with the next element of the list

SRR
CLLLLL]

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Typical Large-Data Problem

e |terate over a large number of records
Mapo Extract something of interest from each

e Shuffle and sort intermediate results

e Aggregate intermediate results

e Generate final output Reduc®

Key idea: provide a functional abstraction for these two
operations

CS 6323, Algorithms
g University College Cork,
amameehemawat, OSDI 2004) Gregory M. Provan

Word Count Example

Input

A

the quick
brown fox

the fox ate
the mouse

how now
brown cow

Map

brown, 1 ,/

Shuffle & Sort Reduce
the, 1
brown, 1 _ _ _
quick, 1 adjective, article

how, 1 o
now, 1 p

Reduce }——P

noun, verb

Output

[4

brown, 2
how, 1

now, 1

quick, 1
the, 3

ate, 1
cow, 1
mouse, 1
fox, 2

Programming Model

e Borrows from functional programming
e Users implement interface of two functions:

map (in key, in value) ->

(out key, intermediate value) 1list

reduce (out key, intermediate value list) ->

out_value list

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

MapReduce

e Programmers specify two functions:
map (k, v) — [(K’, v')]
reduce (k’, [V’]) — [(K’, V)]
All values with the same key are sent to the same reducer
e The execution framework handles everything else...

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Map

e Records from the data source (lines out of files, rows of a
database, etc) are fed into the map function as key*value
pairs: e.g., (filename, line).

e map() produces one or more intermediate values along with
an output key from the input.

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Map

map (1n key, 1n value) ->
(out key, intermediate value) list

A 2 X 2 X
EEEHOOO

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Reduce

e After the map phase is over, all the intermediate values for a
given output key are combined together into a list

e reduce() combines those intermediate values into one or
more final values for that same output key

e (in practice, usually only one final value per key)

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Reduce

reduce (out key, intermediate value list) ->
out value list

nial [l 1l Il HEHE @00 00O
—

returned

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Input key*value Input key*value

pairs pairs
A
map map
Data store 1 Data store n
(kéy 1, (key 2, (Key 3, (kéy 1, (key 2, (Key 3,
values...) values...) valuels...) valules...) values...) values...)
== Barrier == : Aggregates intermediate values by output key |
key 1, key 2, key 3,
intermediate intermediate intermediate
values values values
\ y y
reduce reduce reduce
final key 1 final key 2 final key 3
values values values

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Parallelism

e map() functions run in parallel, creating different
intermediate values from different input data sets

e reduce() functions also run in parallel, each working on a
different output key

e All values are processed independently

e Bottleneck: reduce phase can’t start until map phase is
completely finished.

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Example: Count word occurrences

map (String i1nput key, String input value):
// input key: document name
// input value: document contents
for each word w in input value:

EmitIntermediate(w, 1);

reduce (String output key, Iterator<int>
intermediate values):

// output key: a word

// output values: a list of counts

int result = 0;

for each v 1n intermediate values:
result += v;

Emi r 1 . CS 6323, Algorithms
t(result); University College Cork,

Gregory M. Provan

Optimizations

e No reduce can start until map is complete:
A single slow disk controller can rate-limit the whole process

e Master redundantly executes “slow-moving” map tasks; uses
results of first copy to finish

Why is it safe to redundantly execute map tasks? Wouldn’t this mess up
the total computation?

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Combining Phase

Run on mapper nodes after map phase

“Mini-reduce,” only on local map output

Used to save bandwidth before sending data to full reducer
Reducer can be combiner if commutative & associative

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Combiner, graphically

On one mapper machine:

mMapouput [ll [l H H @O O @
\/ \/
Combiner
replaces with: . ‘

]

To reducer To reducer

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

ki NE

i [

i [

ks KA

& [

map

map

!

o [

b [E

!

map

¢ E

¢ B

!

map

B

cE

!

n7

8

Shuffle and Sort: aggregate values by keys

|

115

reduce

!

B :

7

|

reduce

!
-, B

2

|

reduce

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

!

MapReduce

e Programmers specify two functions:
map (k, v) — <k’, v’>*
reduce (k’, v’) — <k’, v’>*
All values with the same key are sent to the same reducer
e The execution framework handles everything else...

What's “everything else™?

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

MapReduce “Runtime”

Handles scheduling
Assigns workers to map and reduce tasks

Handles “data distribution™
Moves processes to data

Handles synchronization
Gathers, sorts, and shuffles intermediate data

Handles errors and faults
Detects worker failures and restarts

Everything happens on top of a distributed FS

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

MapReduce

e Programmers specify two functions:
map (k, v) — [(K', V)]
reduce (k’, [V']) — [(K’, V’)]
All values with the same key are reduced together
e The execution framework handles everything else...

e Not quite...usually, programmers also specify:
partition (k’, number of partitions) — partition for k’
Often a simple hash of the key, e.g., hash(k’) mod n
Divides up key space for parallel reduce operations
combine (k’, [V']) — [(K’, V"]
Mini-reducers that run in memory after the map phase
Used as an optimization to reduce network traffic

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Shuffle and Sort: aggregate values by keys

1

5

|

reduce

!
- B

2

7

|

reduce

!
-, B

2

reduce

!
- B

Two more detalls...

e Barrier between map and reduce phases
But we can begin copying intermediate data earlier

e Keys arrive at each reducer in sorted order
No enforced ordering across reducers

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

MapReduce can refer to...

e The programming model
e The execution framework (aka “runtime”)
e The specific implementation

Usage is usually clear from context!

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

“Hello World”: Word Count

Map(String docid, String text):
for each word w in text:
Emit(w, 1);

Reduce(String term, Iterator<int> values):
int sum =0;
for each v in values:
sum +=v;
Emit(term, value);

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

MapReduce

Automatic parallelization & distribution
Fault-tolerant

Provides status and monitoring tools
Clean abstraction for programmers

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Word Count Execution

Input

Map Shuffle & Sort

A

the quick
brown fox

the fox ate
the mouse

how now
brown cow

the, 1

Reduce

Reduce }——P

Reduce }——P

Output

[A

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1

An Optimization: The Combiner

A combiner is alocal aggregation function for
repeated keys produced by same map

For associative ops. like sum, count, max
Decreases size of intermediate data

Example: local counting for Word Count:

def combiner(key, values):
output(key, sum(values))

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Word Count with Combiner

Input

Map & Combine

A

the quick
brown fox

the fox ate
the mouse

how now
brown cow

Shuffle & Sort

the, 1

Reduce

Reduce }——P

Reduce }——P

Output

[4

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1

User

Program
+ (1) submit
2) sch,edufe, map 2) s\ch‘edgle reduce
A7]
worker >)
split 0 —
) \ outpu
split 1 (5) remote r4 :
2 l (3) read . file 0
split 2 (4) local wiite
split 3 g
split 4 output
file 1
worker >
Input Map Intermediate files Reduce Output
files phase (on local disk) phase files

CS 6323, Algorithms
University College Cork,
Dean and Ghemawat, OSDI 2004) Gr-egor'y M. Provan

MapReduce Conclusions

e MapReduce has proven to be a useful abstraction

e Greatly simplifies large-scale computations at
Google

e Functional programming paradigm can be applied
to large-scale applications

e Fun to use: focus on problem, let library deal w/
messy details

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

MapReduce in the Real World

e Implementations
e Who works with this approach

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

MapReduce Implementations

e Google has a proprietary implementation in C++
Bindings in Java, Python

e Hadoop is an open-source implementation in Java
Development led by Yahoo, used in production
Now an Apache project
Rapidly expanding software ecosystem

e Lots of custom research implementations
For GPUs, cell processors, etc.

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Hadoop History

Dec 2004 - Google GFS paper published

July 2005 - Nutch uses MapReduce

Feb 2006 — Becomes Lucene subproject

Apr 2007 - Yahoo! on 1000-node cluster

Jan 2008 — An Apache Top Level Project

Jul 2008 — A 4000 node test cluster

Sept 2008 - Hive becomes a Hadoop subproject

Feb 2009 — The Yahoo! Search Webmap is a Hadoop application that runs on
more than 10,000 core Linux cluster and produces data that is now used in
every Yahoo! Web search query.

June 2009 - On June 10, 2009, Yahoo! made available the source code to the
version of Hadoop it runs in production.

In 2010 Facebook claimed that they have the largest Hadoop cluster in the
world with 21 PB of storage. On July 27, 2011 they announced the data has
grown to 30 PB.

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Who uses Hadoop?

Amazon/A9
Facebook
Google

IBM

Joost

Last.fm

New York Times
PowerSet

Veoh

Yahoo!

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Typical Hadoop Cluster

Aggregation switch

<—» 8 gigabit
Rack switch

e 40 nodes/rack, 1000-4000 nodes in cluster

e 1 GBps bandwidth in rack, 8 GBps out of rack

e Node specs (Yahoo terasort):
8 X 2.0 GHz cores, 8 GB RAM, 4 disks (=4 TB?)

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Typical Hadoop Cluster

'povan

Example vs. Actual Source Code

e Example is written in pseudo-code

e Actual implementation is in C++, using a MapReduce library
e Bindings for Python and Java exist via interfaces

®

True code is somewhat more involved (defines how the
input key/values are divided up and accessed, etc.)

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Locality

e Master program divvies up tasks based on location of data:
tries to have map() tasks on same machine as physical file
data, or at least same rack

e map() task inputs are divided into 64 MB blocks: same size
as Google File System chunks

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Fault Tolerance

o Master detects worker failures
Re-executes completed & in-progress map() tasks
Re-executes in-progress reduce() tasks

e Master notices particular input key/values cause crashes in
map(), and skips those values on re-execution.
Effect: Can work around bugs in third-party libraries!

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

