
Introduction to MapReduce

Adapted from Jimmy Lin (U. Maryland, USA)

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Overview

 Motivation

– Need for handling “big data”

– New programming paradigm

 Review of functional programming

– mapReduce uses this abstraction

 mapReduce details

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Motivation: Large Scale Data

Processing
 Want to process lots of data (> 1 TB)

 Want to parallelize across hundreds/thousands of CPUs

 … Want to make this easy

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Divide and Conquer

“Work”

w1 w2 w3

r1 r2 r3

“Result”

“worker” “worker” “worker”

Partition

Combine

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Word Count Example

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

how, 1

now, 1

quick, 1

the, 3

ate, 1

cow, 1

mouse, 1

fox, 2

the, 1

brown, 1

quick, 1

fox, 1

the, 1

the, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

fox, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

noun, verb

adjective, article

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Parallelization Challenges

 How do we assign work units to workers?

 What if we have more work units than workers?

 What if workers need to share partial results?

 How do we aggregate partial results?

 How do we know all the workers have finished?

 What if workers die?

What is the common theme of all of these problems?

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan Source: Ricardo Guimarães Herrmann

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Managing Multiple Workers

 Difficult because
– We don’t know the order in which workers run

– We don’t know when workers interrupt each other

– We don’t know the order in which workers access shared data

 Thus, we need:
– Semaphores (lock, unlock)

– Conditional variables (wait, notify, broadcast)

– Barriers

 Still, lots of problems:
– Deadlock, livelock, race conditions...

– Dining philosophers, sleeping barbers, cigarette smokers...

 Moral of the story: be careful!

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Current Tools

 Programming models

– Shared memory (pthreads)

– Message passing (MPI)

 Design Patterns

– Master-slaves

– Producer-consumer flows

– Shared work queues

Message Passing

P1 P2 P3 P4 P5

Shared Memory

P1 P2 P3 P4 P5

M
em

or
y

master

slaves

producer consumer

producer consumer

work queue

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Concurrency Challenge!

 Concurrency is difficult to reason about

 Concurrency is even more difficult to reason about

– At the scale of datacenters (even across datacenters)

– In the presence of failures

– In terms of multiple interacting services

 Not to mention debugging…

 The reality:

– Lots of one-off solutions, custom code

– Write you own dedicated library, then program with it

– Burden on the programmer to explicitly manage everything

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Overview

 Motivation

– Need for handling “big data”

– New programming paradigm

 Review of functional programming

– mapReduce uses this abstraction

 mapReduce details

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

g g g g g

f f f f f Map

Reduce

MapReduce:
Roots in Functional Programming

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Functional Programming Review

 Functional operations do not modify data structures

– They always create new ones

 Original data still exists in unmodified form

 Data flows are implicit in program design

 Order of operations does not matter

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Functional Programming Review

fun foo(l: int list) =

 sum(l) + mul(l) + length(l)

 Order of sum() and mul(), etc does not matter – they do not

modify l

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

“Updates” Don’t Modify Structures

fun append(x, lst) =

 let lst' = reverse lst in

 reverse (x :: lst')

The append() function above reverses a list, adds a

new element to the front, and returns all of that,

reversed, which appends an item.

But it never modifies lst!

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Functions Can Be Used As Arguments

fun DoDouble(f, x) = f (f x)

It does not matter what f does to its argument;

DoDouble() will do it twice.

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Map

map f lst: (’a->’b) -> (’a list) -> (’b list)

 Creates a new list by applying f to each element of the

input list; returns output in order.

f f f f f f

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Reduce (Fold)

fold f x0 lst: ('a*'b->'b)->'b->('a list)->'b

 Moves across a list, applying f to each element plus an

accumulator. f returns the next accumulator value,

which is combined with the next element of the list

f f f f f returned

initial

MapReduce Details

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Typical Large-Data Problem

 Iterate over a large number of records

 Extract something of interest from each

 Shuffle and sort intermediate results

 Aggregate intermediate results

 Generate final output

Key idea: provide a functional abstraction for these two

operations

(Dean and Ghemawat, OSDI 2004)

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Word Count Example

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

how, 1

now, 1

quick, 1

the, 3

ate, 1

cow, 1

mouse, 1

fox, 2

the, 1

brown, 1

quick, 1

fox, 1

the, 1

the, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

fox, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

noun, verb

adjective, article

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Programming Model

 Borrows from functional programming

 Users implement interface of two functions:

– map (in_key, in_value) ->

 (out_key, intermediate_value) list

– reduce (out_key, intermediate_value list) ->

 out_value list

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

MapReduce

 Programmers specify two functions:
map (k, v) → [(k’, v’)]

reduce (k’, [v’]) → [(k’, v’)]

– All values with the same key are sent to the same reducer

 The execution framework handles everything else…

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Map

 Records from the data source (lines out of files, rows of a

database, etc) are fed into the map function as key*value

pairs: e.g., (filename, line).

 map() produces one or more intermediate values along with

an output key from the input.

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

map (in_key, in_value) ->

 (out_key, intermediate_value) list

Map

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Reduce

 After the map phase is over, all the intermediate values for a

given output key are combined together into a list

 reduce() combines those intermediate values into one or

more final values for that same output key

 (in practice, usually only one final value per key)

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Reduce

reduce (out_key, intermediate_value list) ->

 out_value list

returned

initial

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Data store 1 Data store n
map

(key 1,

values...)

(key 2,

values...)
(key 3,

values...)

map

(key 1,

values...)

(key 2,

values...)
(key 3,

values...)

Input key*value

pairs

Input key*value

pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,

intermediate

values

key 2,

intermediate

values

key 3,

intermediate

values

final key 1

values

final key 2

values

final key 3

values

...

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Parallelism

 map() functions run in parallel, creating different
intermediate values from different input data sets

 reduce() functions also run in parallel, each working on a
different output key

 All values are processed independently

 Bottleneck: reduce phase can’t start until map phase is
completely finished.

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Example: Count word occurrences

map(String input_key, String input_value):

 // input_key: document name

 // input_value: document contents

 for each word w in input_value:

 EmitIntermediate(w, 1);

reduce(String output_key, Iterator<int>
intermediate_values):

 // output_key: a word

 // output_values: a list of counts

 int result = 0;

 for each v in intermediate_values:

 result += v;

 Emit(result);

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Optimizations

 No reduce can start until map is complete:

– A single slow disk controller can rate-limit the whole process

 Master redundantly executes “slow-moving” map tasks; uses

results of first copy to finish

Why is it safe to redundantly execute map tasks? Wouldn’t this mess up

the total computation?

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Combining Phase

 Run on mapper nodes after map phase

 “Mini-reduce,” only on local map output

 Used to save bandwidth before sending data to full reducer

 Reducer can be combiner if commutative & associative

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Combiner, graphically

Combiner

replaces with:

Map output

To reducer

On one mapper machine:

To reducer

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

map map map map

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

MapReduce

 Programmers specify two functions:
map (k, v) → <k’, v’>*

reduce (k’, v’) → <k’, v’>*

– All values with the same key are sent to the same reducer

 The execution framework handles everything else…

What’s “everything else”?

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

MapReduce “Runtime”

 Handles scheduling
– Assigns workers to map and reduce tasks

 Handles “data distribution”
– Moves processes to data

 Handles synchronization
– Gathers, sorts, and shuffles intermediate data

 Handles errors and faults
– Detects worker failures and restarts

 Everything happens on top of a distributed FS

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

MapReduce

 Programmers specify two functions:
map (k, v) → [(k’, v’)]

reduce (k’, [v’]) → [(k’, v’)]

– All values with the same key are reduced together

 The execution framework handles everything else…

 Not quite…usually, programmers also specify:
partition (k’, number of partitions) → partition for k’

– Often a simple hash of the key, e.g., hash(k’) mod n

– Divides up key space for parallel reduce operations

combine (k’, [v’]) → [(k’, v’’)]

– Mini-reducers that run in memory after the map phase

– Used as an optimization to reduce network traffic

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

combine combine combine combine

b a 1 2 c 9 a c 5 2 b c 7 8

partition partition partition partition

map map map map

k1 k2 k3 k4 k5 k6 v1 v2 v3 v4 v5 v6

b a 1 2 c c 3 6 a c 5 2 b c 7 8

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Two more details…

 Barrier between map and reduce phases

– But we can begin copying intermediate data earlier

 Keys arrive at each reducer in sorted order

– No enforced ordering across reducers

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

MapReduce can refer to…

 The programming model

 The execution framework (aka “runtime”)

 The specific implementation

Usage is usually clear from context!

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

“Hello World”: Word Count

Map(String docid, String text):

 for each word w in text:

 Emit(w, 1);

Reduce(String term, Iterator<Int> values):

 int sum = 0;

 for each v in values:

 sum += v;

 Emit(term, value);

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

MapReduce

 Automatic parallelization & distribution

 Fault-tolerant

 Provides status and monitoring tools

 Clean abstraction for programmers

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Word Count Execution

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1

fox, 1

quick, 1

the, 1

fox, 1

the, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

An Optimization: The Combiner

 A combiner is a local aggregation function for

repeated keys produced by same map

 For associative ops. like sum, count, max

 Decreases size of intermediate data

 Example: local counting for Word Count:

def combiner(key, values):
 output(key, sum(values))

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Word Count with Combiner

Input Map & Combine Shuffle & Sort Reduce Output

the quick

brown fox

the fox ate

the mouse

how now

brown cow

Map

Map

Map

Reduce

Reduce

brown, 2

fox, 2

how, 1

now, 1

the, 3

ate, 1

cow, 1

mouse, 1

quick, 1

the, 1

brown, 1

fox, 1

quick, 1

the, 2

fox, 1

how, 1

now, 1

brown, 1

ate, 1

mouse, 1

cow, 1

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

worker

Master

User

Program

output

file 0

output

file 1

(1) submit

(2) schedule map (2) schedule reduce

(3) read
(4) local write

(5) remote read
(6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

MapReduce Conclusions

 MapReduce has proven to be a useful abstraction

 Greatly simplifies large-scale computations at

Google

 Functional programming paradigm can be applied

to large-scale applications

 Fun to use: focus on problem, let library deal w/

messy details

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

MapReduce in the Real World

 Implementations

 Who works with this approach

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

MapReduce Implementations

 Google has a proprietary implementation in C++

– Bindings in Java, Python

 Hadoop is an open-source implementation in Java

– Development led by Yahoo, used in production

– Now an Apache project

– Rapidly expanding software ecosystem

 Lots of custom research implementations

– For GPUs, cell processors, etc.

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Hadoop History

 Dec 2004 – Google GFS paper published

 July 2005 – Nutch uses MapReduce

 Feb 2006 – Becomes Lucene subproject

 Apr 2007 – Yahoo! on 1000-node cluster

 Jan 2008 – An Apache Top Level Project

 Jul 2008 – A 4000 node test cluster

 Sept 2008 – Hive becomes a Hadoop subproject

 Feb 2009 – The Yahoo! Search Webmap is a Hadoop application that runs on

more than 10,000 core Linux cluster and produces data that is now used in

every Yahoo! Web search query.

 June 2009 – On June 10, 2009, Yahoo! made available the source code to the

version of Hadoop it runs in production.

 In 2010 Facebook claimed that they have the largest Hadoop cluster in the

world with 21 PB of storage. On July 27, 2011 they announced the data has

grown to 30 PB.

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Who uses Hadoop?

 Amazon/A9

 Facebook

 Google

 IBM

 Joost

 Last.fm

 New York Times

 PowerSet

 Veoh

 Yahoo!

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Typical Hadoop Cluster

 40 nodes/rack, 1000-4000 nodes in cluster

 1 GBps bandwidth in rack, 8 GBps out of rack

 Node specs (Yahoo terasort):

8 x 2.0 GHz cores, 8 GB RAM, 4 disks (= 4 TB?)

Aggregation switch

Rack switch

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Typical Hadoop Cluster

Image from http://wiki.apache.org/hadoop-data/attachments/HadoopPresentations/attachments/aw-apachecon-eu-2009.pdf

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Example vs. Actual Source Code

 Example is written in pseudo-code

 Actual implementation is in C++, using a MapReduce library

 Bindings for Python and Java exist via interfaces

 True code is somewhat more involved (defines how the

input key/values are divided up and accessed, etc.)

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Locality

 Master program divvies up tasks based on location of data:

tries to have map() tasks on same machine as physical file

data, or at least same rack

 map() task inputs are divided into 64 MB blocks: same size

as Google File System chunks

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Fault Tolerance

 Master detects worker failures
– Re-executes completed & in-progress map() tasks

– Re-executes in-progress reduce() tasks

 Master notices particular input key/values cause crashes in
map(), and skips those values on re-execution.
– Effect: Can work around bugs in third-party libraries!

