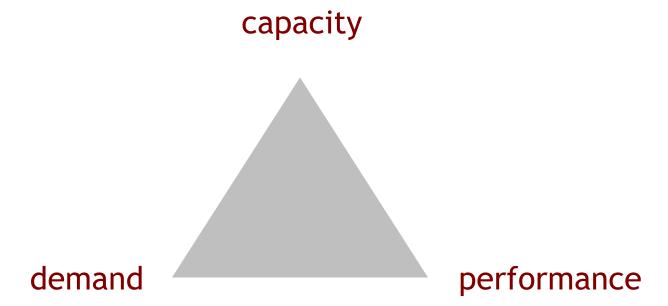
Overview of Graph Theory

for networking applications

Gregory Provan

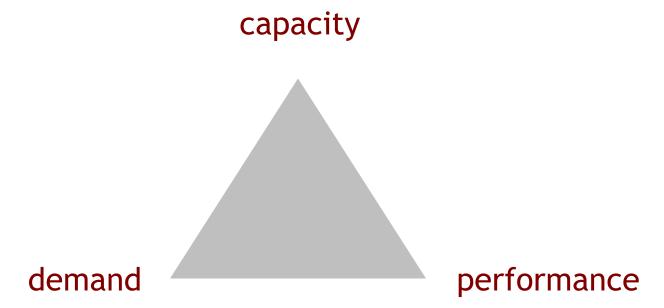
Introduction to Probability Theory


Probability Theory: Outline

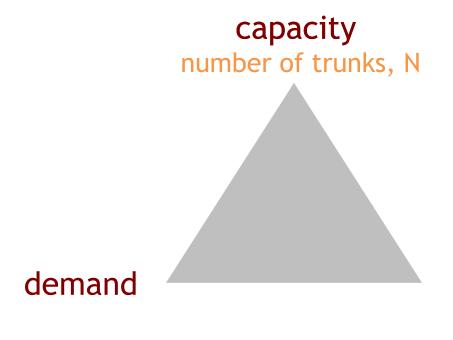
- Motivation
- Basic concepts in probability theory
- Bayes' rule
- Random variables and distributions

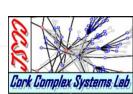
The role of the engineer

 to quantify the three-way relationship between demand, capacity and performance

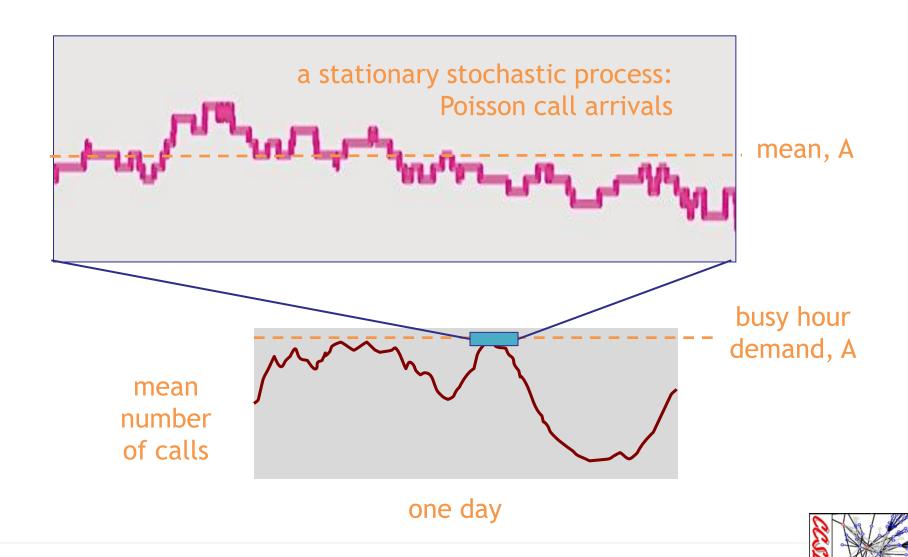


network The role of the \(\sqrt{} \) engineer


 to quantify the three-way relationship between demand, capacity and performance



The role of the network engineer


 an example from the telephone network: the Erlang formula

performance call blocking probability, B

Traffic variations and stationarity

Cork Complex Systems Lab

network The role of the \(\sqrt{} \) engineer

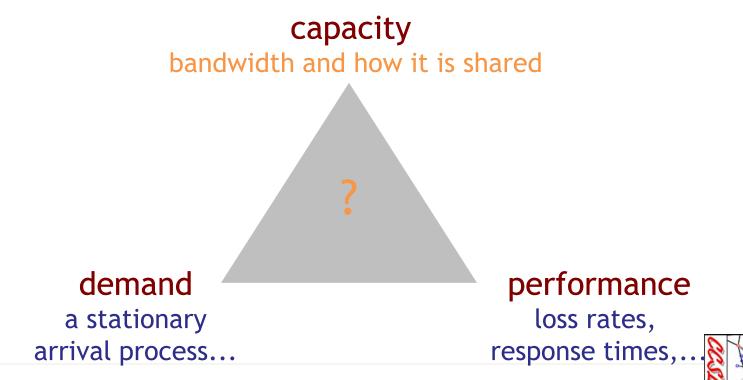
- an example from the telephone network: the Erlang formula
- insensitivity (of performance to detailed traffic characteristics) facilitates engineering

capacity

number of trunks, N

$$B = \frac{A^N/N!}{\sum_{i=0}^N A^i/i!}$$

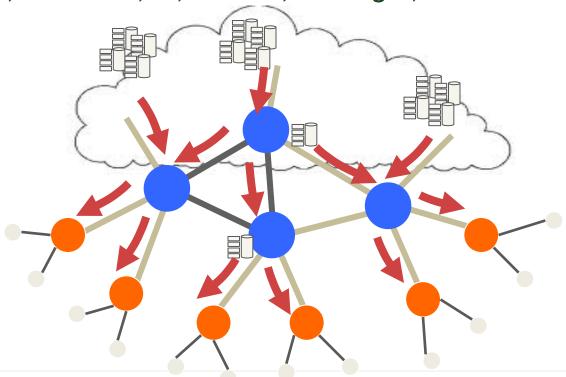
demand


Poisson call process of intensity A

performance call blocking probability, B

network The role of the \(\sqrt{} \) engineer

what about the Internet? what about the Cloud?

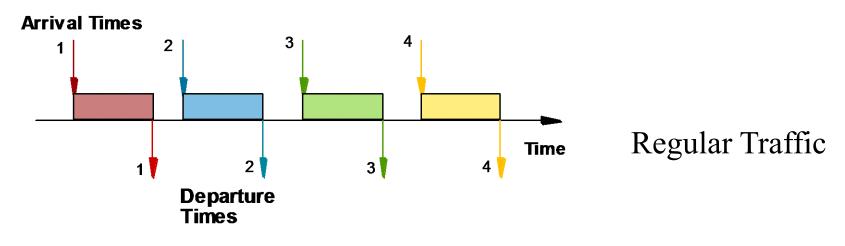


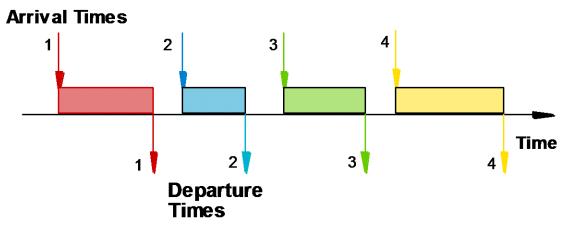
Cork Complex Systems La

A network of data centers

most traffic in an ISP network originates in a data center

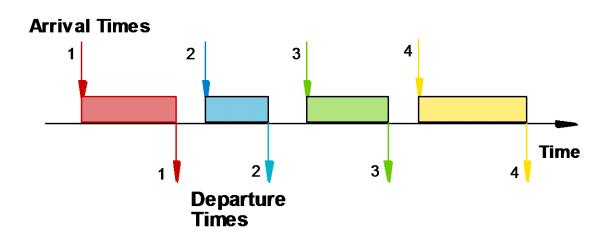
- Google, Facebook,..., Akamai, Limelight,...


Probability Theory: Outline


- Motivation
- Basic concepts in probability theory
- Bayes' rule
- Random variables and distributions

Stochastic Packet Distribution

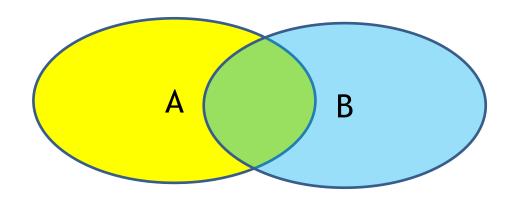
· Packets may arrive randomly, and have random length



Irregular but Spaced Apart Traffic

Probabilistic Models

- P(arrival=t)
- P(packet length = τ)
- P(departure = $t+\tau$)


Definition of Probability

- Experiment: toss a coin twice
- **Sample space**: possible outcomes of an experiment
 - S = {HH, HT, TH, TT}
- **Event**: a subset of possible outcomes
 - A={HH}, B={HT, TH}
- Probability of an event: a measure assigned to an event A, Pr(A)
 - Axiom 1: $Pr(A) \ge 0$
 - Axiom 2: Pr(S) = 1
 - Axiom 3: For every sequence of disjoint events $\Pr(\bigcup_i A_i) = \sum_i \Pr(A_i)$
- Example: Pr(A) = n(A)/N

Joint Probability

- For events A and B, the **joint probability** Pr(AB) stands for the probability that both events happen.
- Example: A={HH}, B={HT, TH}, what is the joint probability Pr(AB)?

Independence

Two events A and B are independent in case

$$Pr(AB) = Pr(A)Pr(B)$$

• A set of events {A_i} is independent iff

$$\Pr(\bigcap_{i} A_{i}) = \prod_{i} \Pr(A_{i})$$

Independence

Two events A and B are independent in case
 Pr(AB) = Pr(A)Pr(B)

• A set of events {A_i} is independent iff

$$\Pr(\bigcap_{i} A_{i}) = \prod_{i} \Pr(A_{i})$$

Example: Drug test

	Women	Men
Success	200	1800
Failure	1800	200

 $A = \{A \text{ patient is a Women}\}\$

$$B = \{Drug fails\}$$

Will event A be independent from event B?

Independence

- Consider the experiment of tossing a coin twice
- Example I:
 - $A = \{HT, HH\}, B = \{HT\}$
 - Is event A independent from event B?
- Example II:
 - $A = \{HT\}, B = \{TH\}$
 - Is event A independent from event B?
- Disjoint ≠ Independence
- If A is independent from B, B is independent from C, will A be independent from C?

Conditioning

 If A and B are events with Pr(A) > 0, the conditional probability of B given A is

$$Pr(B \mid A) = \frac{Pr(AB)}{Pr(A)}$$

Conditioning

 If A and B are events with Pr(A) > 0, the conditional probability of B given A is

$$Pr(B \mid A) = \frac{Pr(AB)}{Pr(A)}$$

Example: Drug test

	Women	Men
Success	200	1800
Failure	1800	200

$$A = \{Patient is a Woman\}$$

$$B = \{Drug fails\}$$

$$Pr(B|A) = ?$$

$$Pr(A|B) = ?$$

Conditioning

 If A and B are events with Pr(A) > 0, the conditional probability of B given A is

$$Pr(B \mid A) = \frac{Pr(AB)}{Pr(A)}$$

Example: Drug test

Pr(outcome gender)	Women	Men
Success	200	1800
Failure	1800	200

$$A = \{Patient is a Women\}$$

$$B = \{Drug fails\}$$

$$Pr(B|A) = ?$$

$$Pr(A|B) = ?$$

 Given A is independent from B, what is the relationship between Pr(A|B) and Pr(A)?

Conditional Independence

 Event A and B are conditionally independent given C in case

$$Pr(AB|C)=Pr(A|C)Pr(B|C)$$

 A set of events {A_i} is conditionally independent given C in case

$$\Pr(\bigcup_{i} A_{i} \mid C) = \prod_{i} \Pr(A_{i} \mid C)$$

Conditional Independence (cont'd)

- Example: There are three events: A, B, C
 - Pr(A) = Pr(B) = Pr(C) = 1/5
 - Pr(A,C) = Pr(B,C) = 1/25, Pr(A,B) = 1/10
 - Pr(A,B,C) = 1/125
 - Are A, B are independent?
 - Are A, B are conditionally independent given C?
- A and B are independent ≠ A and B are conditionally independent

Outline

- Important concepts in probability theory
- Bayes' rule
- Random variables and distributions

Bayes' Rule

Given two events A and B and suppose that Pr(A) > 0. Then

$$Pr(B \mid A) = \frac{Pr(AB)}{Pr(A)} = \frac{Pr(A \mid B) Pr(B)}{Pr(A)}$$

• Example:

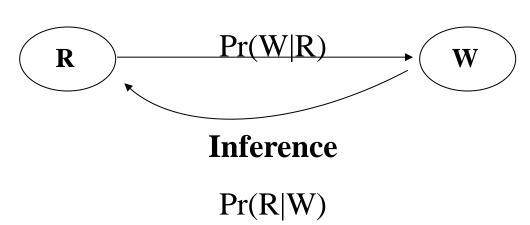
$$Pr(R) = 0.8$$

Pr(W R)	R	$\neg R$
W	0.7	0.4
$\neg W$	0.3	0.6

R: It is a rainy day

W: The grass is wet

$$Pr(R|W) = ?$$

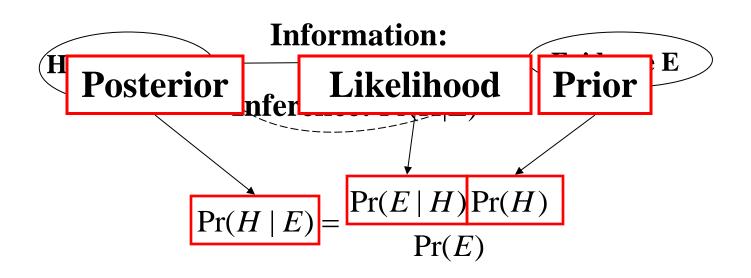

Bayes' Rule

	R	$\neg R$
W	0.7	0.4
$\neg W$	0.3	0.6

R: It rains

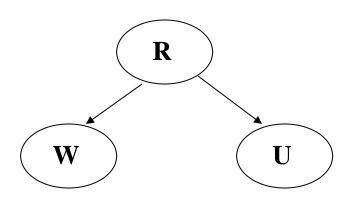
W: The grass is wet

Information



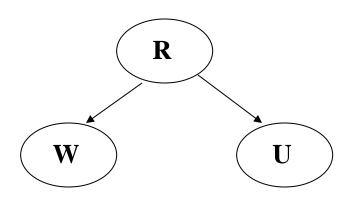
Bayes' Rule

	R	$\neg R$
W	0.7	0.4
$\neg W$	0.3	0.6


R: It rains

W: The grass is wet

A More Complicated Example



R It rains

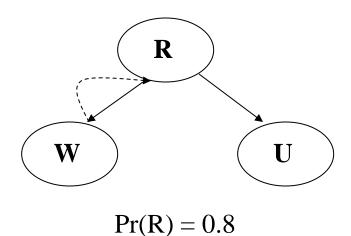
W The grass is wet

U People bring umbrella

A More Complicated Example

R It rains

W The grass is wet


U People bring umbrella

Pr(UW|R)=Pr(U|R)Pr(W|R)

 $Pr(UW| \neg R) = Pr(U| \neg R)Pr(W| \neg R)$

A More Complicated Example

W The grass is wet

U People bring umbrella

$$Pr(UW|R)=Pr(U|R)Pr(W|R)$$

$$Pr(UW| \neg R) = Pr(U| \neg R)Pr(W| \neg R)$$

Pr(W R)	R	¬R
W	0.7	0.4
$\neg W$	0.3	0.6

Pr(U R)	R	$\neg R$
U	0.9	0.2
$\neg U$	0.1	0.8

Outline

- Important concepts in probability theory
- Bayes' rule
- Random variable and probability distribution

Random Variable and Distribution

- A *random variable X* is a numerical outcome of a random experiment
- The *distribution* of a random variable is the collection of possible outcomes along with their probabilities:
 - Discrete case: $Pr(X = x) = p_{\theta}(x)$
 - Continuous case: $Pr(a \le X \le b) = \int_a^b p_{\theta}(x) dx$

Random Variable: Example

- Let S be the set of all sequences of three rolls of a die. Let X be the sum of the number of dots on the three rolls.
- What are the possible values for X?
- Pr(X = 5) = ?, Pr(X = 10) = ?

Expectation

• A random variable $X \sim Pr(X=x)$. Then, its expectation is

$$E[X] = \sum_{x} x \Pr(X = x)$$

- In an empirical sample, x1, x2,..., xN,

$$E[X] = \frac{1}{N} \sum_{i=1}^{N} x_i$$

- Continuous case: $E[X] = \int_{-\infty}^{\infty} x p_{\theta}(x) dx$
- Expectation of sum of random variables


$$E[X_1 + X_2] = E[X_1] + E[X_2]$$

Expectation: Example

- Let S be the set of all sequence of three rolls of a die. Let X be the sum of the number of dots on the three rolls.
- What is E(X)?

- Let S be the set of all sequence of three rolls of a die. Let X be the product of the number of dots on the three rolls.
- What is E(X)?

Variance

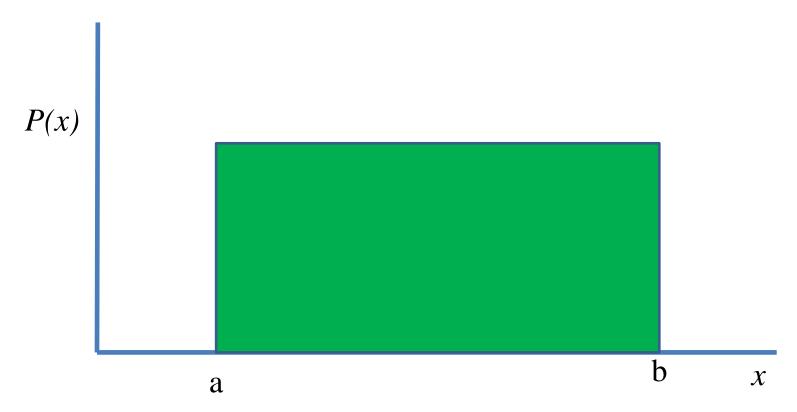
 The variance of a random variable X is the expectation of (X-E[x])²:

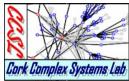
$$Var(X) = E((X - E[X])^{2})$$

$$= E(X^{2} + E[X]^{2} - 2XE[X])$$

$$= E(X^{2} - E[X]^{2})$$

$$= E[X^{2}] - E[X]^{2}$$


Important Distributions


- Uniform distribution
- Bernoulli distribution
 - Binary outcomes
- Poisson distribution
- Normal (Gaussian) distribution

Uniform Distribution

• Probability is constant over a range (a,b)

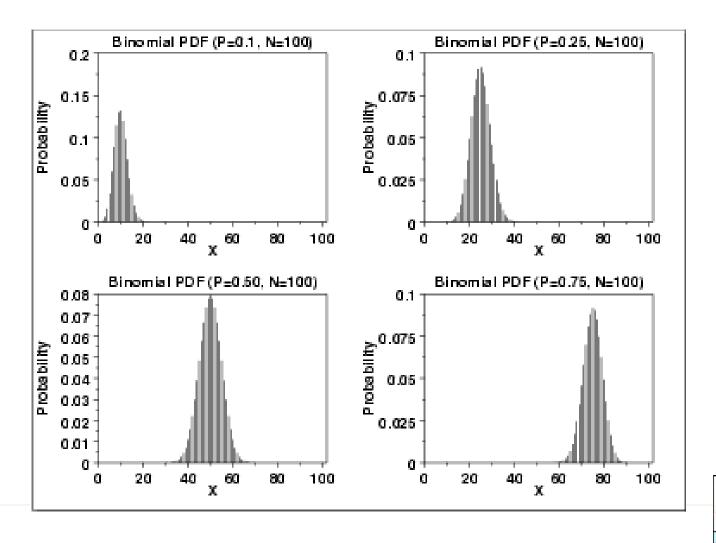
Bernoulli Distribution

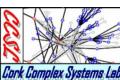
- The outcome of an experiment can either be success (i.e., 1) or failure (i.e., 0).
- Pr(X=1) = p, Pr(X=0) = 1-p, or

$$p_{\theta}(x) = p^{x} (1-p)^{1-x}$$

• E[X] = p, Var(X) = p(1-p)

Binomial Distribution


- n draws of a Bernoulli distribution
 - X_i -Bernoulli(p), $X = \sum_{i=1}^n X_i$, X-Bin(p, n)
- Random variable X stands for the number of times that experiments are successful.

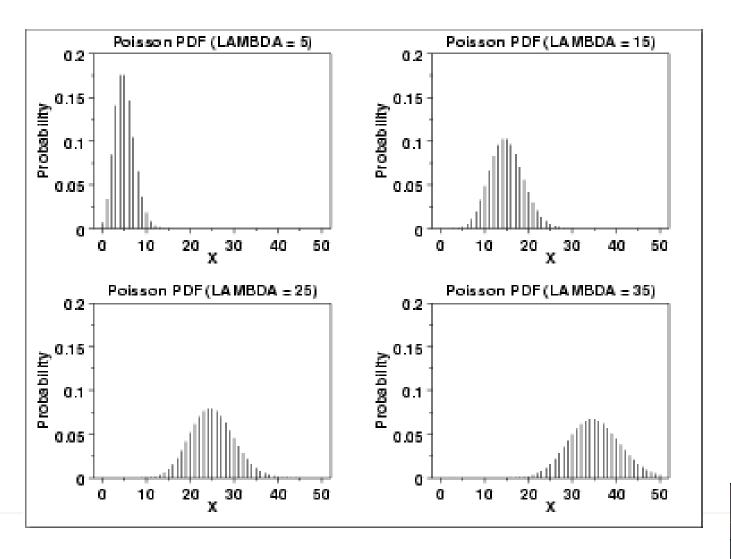

$$Pr(X = x) = p_{\theta}(x) = \begin{cases} \binom{n}{x} p^{x} (1-p)^{n-x} & x = 1, 2, ..., n \\ 0 & \text{otherwise} \end{cases}$$

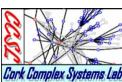
• E[X] = np, Var(X) = np(1-p)

Plots of Binomial Distribution

Poisson Distribution

- Coming from Binomial distribution
 - Fix the expectation λ =np
 - Let the number of trials $n \rightarrow \infty$


A Binomial distribution will become a Poisson distribution


$$\Pr(X = x) = p_{\theta}(x) = \begin{cases} \frac{\lambda^{x}}{x!} e^{-\lambda} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

•
$$E[X] = \lambda$$
, $Var(X) = \lambda$

Plots of Poisson Distribution

Normal (Gaussian) Distribution

• X~N(μ,σ)

$$p_{\theta}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

$$\Pr(a \le X \le b) = \int_a^b p_\theta(x) dx = \int_a^b \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx$$

- $E[X] = \mu$, $Var(X) = \sigma^2$
- If $X_1 \sim N(\mu_1, \sigma_1)$ and $X_2 \sim N(\mu_2, \sigma_2)$, $X = X_1 + X_2$?

