
Overview of Graph Theory

Gregory Provan

Overview

• Need for graphical models of computation

– Cloud computing

– Data centres

– Telecommunications networks

• Graph theory

Graph Models for Cloud Computing

• Integration of multiple

networks
– Large ISPs and enterprise

networks

– Large data centers with

thousands or tens of thousands

machines

– Metro Ethernet

– More and more devices are

“Internet-capable” and

plugged in

• Likely rich and more diverse

network topology and

connectivity

State of the Practice:
A Hybrid Architecture

Enterprise networks comprised of Ethernet-based

IP subnets interconnected by routers

R

R

R

R

Ethernet Bridging
 - Flat addressing

 - Self-learning

 - Flooding

 - Forwarding along a tree
IP Routing (e.g., OSPF)

 - Hierarchical addressing

 - Subnet configuration

 - Host configuration

 - Forwarding along shortest paths

R

Broadcast Domain

(LAN or VLAN)

Cisco Recommended DC Structure:
Illustration

Internet
CR CR

AR AR AR AR …

S S LB LB

Data Center
Layer 3

Internet

S S

…

S S

…

…

Layer 2

Key:
• CR = L3 Core Router
• AR = L3 Access Router
• S = L2 Switch
• LB = Load Balancer
• A = Rack of 20 servers
 with Top of Rack switch

Graph Models for Computer Networking

• Networks can be represented by graphs

• The nodes are vertices

• The communication links are edges

• Routing protocols often use shortest path
algorithms

Vertices

Edges

Significance of Graphs

• Graph topology makes enormous difference to system

performance

• Topologies differ based on application

– Local area network (LAN)

– Cloud network

– Internet

Elementary Concepts

• A graph G(V,E) is two sets of object

Vertices (or nodes) , set V

Edges, set E

• A graph is represented with dots or circles

(vertices) joined by lines (edges)

• The magnitude of graph G is characterized by

number of vertices |V| (called the order of G) and

number of edges |E| (size of G)

• The running time of algorithms are measured in

terms of the order and size

Graphs ↔ Networks

Graph

(Network)

Vertexes

(Nodes)

Edges

(Arcs)
Flow

Communications
Telephones exchanges,
computers, satellites

Cables, fiber optics,
microwave relays

Voice, video,
packets

Circuits
Gates, registers,
processors

Wires Current

Mechanical Joints Rods, beams, springs Heat, energy

Hydraulic
Reservoirs, pumping
stations, lakes

Pipelines Fluid, oil

Financial Stocks, currency Transactions Money

Transportation
Airports, rail yards,
street intersections

Highways, railbeds,
airway routes

Freight,
vehicles,
passengers

Directed Graph

An edge e  E of a directed graph is represented as an

ordered pair (u,v), where u, v  V. Here u is the initial

vertex and v is the terminal vertex. Also assume here that

u ≠ v
2

4

3
1

V = { 1, 2, 3, 4}, | V | = 4

E = {(1,2), (2,3), (2,4), (4,1), (4,2)}, | E |=5

Undirected Graph

2

4

3
1

V = { 1, 2, 3, 4}, | V | = 4

E = {(1,2), (2,3), (2,4), (4,1)}, | E |=4

An edge e  E of an undirected graph is represented as an

unordered pair (u,v)=(v,u), where u, v  V. Also assume

that u ≠ v

Degree of a Vertex

Degree of a vertex in an undirected graph is the number of

edges incident on it. In a directed graph, the out degree of a

vertex is the number of edges leaving it and the in degree is

the number of edges entering it

2

4

3
1

2

4

3
1

The degree of vertex 2 is 3 The in degree of vertex 2 is 2

and the in degree of vertex 4

is 1

Weighted Graph
A weighted graph is a graph for which each edge has an

associated weight, usually given by a weight function w: E  R

2

4

3
1

2

4

3
1

1.2

2.1

0.2

0.5 4

8

6

2

9

Walks and Paths



3

2

3

4

1

1

V5 V4

V3 V2

V1
V6

4

1

A walk is an sequence of nodes (v1, v2,..., vL) such that
{(v1, v2), (v2, v3),..., (v5, v4)} E, e.g. (V2, V3,V6, V5,V3)

A cycle is an walk (v1, v2,..., vL) where v1=vL with no
other nodes repeated and L>3, e.g. (V1, V2,V5, V4,V1)

A simple path is a walk with no repeated nodes,

e.g. (V1, V4,V5, V2,V3)

A graph is called cyclic if it contains a cycle; otherwise it
is called acyclic

Complete Graphs

A

D

C

B

4 nodes and (4*3)/2 edges

V nodes and V*(V-1)/2 edges

C

A

B

3 nodes and 3*2 edges

V nodes and V*(V-1) edges

A complete graph is an undirected/directed graph in which

every pair of vertices is adjacent. If (u, v) is an edge in a

graph G, we say that vertex v is adjacent to vertex u.

Connected Graphs

A

D E F

B C

A B

C D

An undirected graph is connected

if you can get from any node to

any other by following a sequence

of edges OR any two nodes are

connected by a path

A directed graph is strongly

connected if there is a directed path

from any node to any other node

A graph is sparse if | E |  | V |

A graph is dense if | E |  | V |2

Bipartite Graph

A bipartite graph

is an undirected graph

G = (V,E) in which V

can be partitioned into

2 sets V1 and V2 such

that (u,v)  E implies

either

u  V1 and v  V2

OR

v  V1 and u  V2.

u1

u2

u3

u4

v1

v2

v3

V1 V2

An example of bipartite graph application to telecommunication problems can be found in,

C.A. Pomalaza-Ráez, “A Note on Efficient SS/TDMA Assignment Algorithms,” IEEE Transactions on

Communications, September 1988, pp. 1078-1082.

Trees

A

B

D

F

C

E

Let G = (V, E) be an undirected graph.

The following statements are equivalent,

1. G is a tree

2. Any two vertices in G are connected

by unique simple path

3. G is connected, but if any edge is

removed from E, the resulting graph

is disconnected

4. G is connected, and | E | = | V | -1

5. G is acyclic, and | E | = | V | -1

6. G is acyclic, but if any edge is added

to E, the resulting graph contains a

cycle

Example: Routing

• Routing is a key algorithm for all communications

networks

• If links fail, then routing tables must be updated

– How to do this efficiently?

Spanning Tree
A tree (T) is said to span G = (V,E) if T = (V,E’) and E’ E 

V5 V4

V3 V2

V1
V6

V5 V4

V3 V2

V1
V6

V5
V4

V3 V2

V1
V6

For the graph shown on

the right two possible

spanning trees are shown

below

For a given graph there are usually

several possible spanning trees

Minimum Spanning Tree

1

3

8

2

6

7

4
5

 5

23

10

21

 14

 16

 6 18
9

7

11
 8

1

3

8

2

6

7

4
5

 5

 6

 4

9

7

11
 8

G = (V, E) T = (V, F) w(T) = 50

24

 4

Given connected graph G with real-valued edge weights ce, a

Minimum Spanning Tree (MST) is a spanning tree of G whose

sum of edge weights is minimized

Cayley's Theorem (1889)

There are nn-2 spanning trees of a complete graph Kn

n = |V|, m = |E|

Can't solve MST by brute force (because of nn-2)

Applications of MST

• Designing physical networks
– telephone, electrical, hydraulic, TV cable, computer, road

• Cluster analysis
– delete long edges leaves connected components

– finding clusters of quasars and Seyfert galaxies

– analyzing fungal spore spatial patterns

• Approximate solutions to NP-hard problems
– metric TSP (Traveling Salesman Problem), Steiner tree

• Indirect applications.
– describing arrangements of nuclei in skin cells for cancer research

– learning salient features for real-time face verification

– modeling locality of particle interactions in turbulent fluid flow

– reducing data storage in sequencing amino acids in a protein

MST is central combinatorial problem with diverse applications

MST Computation

 Select an arbitrary node as the initial tree (T)

 Augment T in an iterative fashion by adding the outgoing

edge (u,v), (i.e., u  T and v  G-T) with minimum cost

(i.e., weight)

 The algorithm stops after |V | - 1 iterations

 Computational complexity = O (|V|2)

 Select the edge e  E of minimum weight → E’ = {e}

 Continue to add the edge e  E – E’ of minimum weight

that when added to E’, does not form a cycle

 Computational complexity = O (|E| log|E|)

Prim’s Algorithm

Kruskal’s Algorithm

Prim’s Algorithm (example)
3

2
3

4
1

1

V5 V4

V3
V2

V1
V6

4

1

V1

V2

V1

1

3

3

V2

V1

1

V3

3

3
1

V5

V2

V1

1

V3
3

1

1

V5
V4

V3
V2

V1

1

3

2

1

1

V5 V4

V3
V2

V1
V6

1

Algorithm starts

After the 1st iteration After the 2nd iteration

After the 3rd iteration After the 4th iteration After the 5th iteration

Kruskal’s Algorithm (example)

3

2

1

1

V5 V4

V3
V2

V1
V6

1

V2

V1

1

1

V5

V3 V2

V1
1

1

1

V5

V4

V3
V2

V1

1

2

1

1

V5 V4

V3
V2

V1 V6

1

After the 1st

iteration

After the 2nd

iteration
After the 3rd iteration

After the 4th iteration After the 5th iteration

3

2
3

4
1

1

V5 V4

V3
V2

V1
V6

4

1

Graphs and their Properties

• Graph representations

– Weighted graphs

• Adjacency matrix representation

– Multigraphs

– Pseudographs

• Graph properties

– Degree Centrality

– Betweenness Centrality

– Closeness Centrality

Weighted graph

is a graph for which each edge has an associated

weight, usually given by a weight function

w: E  R, generally positive

07.05.01.20

7.001.200

5.01.204.30

1.204.305.1

0005.10

E

D

C

B

A

EDCBA

Adjacency Matrix of Weighted

graphs

Degree of Weighted graphs

The sum of the weights associated to every edge

 incident to the corresponding node

The sum of the corresponding row or column of

 the adjacency matrix

07.05.01.20

7.001.200

5.01.204.30

004.305.1

0005.10

E

D

C

B

A

EDCBA Degree

1.5

4.9

6

2.8

3.3

Multigraph or pseudograph

is a graph which is permitted to have multiple

edges. Is an ordered pair G:=(V,E) with
V a set of nodes

E a multiset of unordered pairs of vertices.

Adjacency Matrix of Multigraphs

02140

20100

11030

40301

00012

E

D

C

B

A

EDCBA

Directed Graph (digraph)
• Edges have directions

– The adjacency matrix is not symmetric

01000

10100

10010

20010

00010

E

D

C

B

A

EDCBA

Local metrics

 Local metrics provide a measurement of a

structural property of a single node

 Designed to characterise

 Functional role – what part does this node play in

system dynamics?

 Structural importance – how important is this node

to the structural characteristics of the system?

Degree Centrality

B

E D

C

A

2

4

2

1

1

degree

00010

00010

00011

11101

00110

E

D

C

B

A

EDCBA

Betweenness centrality

 The number of shortest paths in the graph that

pass through the node divided by the total

number of shortest paths.

 
 
 

kji
ji

jki
kBC

i j





 ,

,

,,

Betweenness centrality

B

 Shortest paths are:

 AB, AC, ABD, ABE, BC,

BD, BE, CBD, CBE, DBE

 B has a BC of 5

A

C

D E

   
   
   
   
    1, ;1,,

1, ;1,,

1, ;1,,

1, ;1,,

1, ;1,,











EDEBD

ECEBC

DBDBC

EAEBA

DADBA











Betweenness centrality

 Nodes with a high betweenness centrality are

interesting because they

 control information flow in a network

 may be required to carry more information

 And therefore, such nodes

 may be the subject of targeted attack

Closeness centrality

 
 




j

jid

N
iCC

,

1

 The normalised inverse of the sum of

topological distances in the graph.

B

E D

C

A

02212

20212

22011

11101

22110

E

D

C

B

A

EDCBA
 



n

j

jid
1

,

6

4

6

7

7

Closeness centrality

Closeness centrality

B

E D

C

A Closeness

0.67

1.00

0.67

0.57

0.57

Node B is the most central one in spreading

information from it to the other nodes in the

network.

Closeness centrality

B

E D

C

A

Local metrics

Node B is the most central one

 according to the degree,

 betweenness and closeness

 centralities.

Which is the most central node?

A

B

and the winner is…

A is the most central

 according to the

 degree

B is the most central

 according to closeness

 and betweenness

Other Important Graph Algorithms

• Distributed algorithms

• Shortest-path algorithms

Distributed Algorithms

 Each node does not need complete knowledge of the topology

 The MST is created in a distributed manner

 Example of this type of algorithms is the one proposed by
Gallager, Humblet, and Spira (“Distributed Algorithm for
Minimum-Weight Spanning Trees,” ACM Transactions on
Programming Languages and Systems, January 1983, pp. 66-
67).

 Starts with one or more fragments consisting of single nodes

 Each fragment selects its minimum weight outgoing edge and
using control messaging fragments coordinate to merge with a
neighboring fragment over its minimum weight outgoing edge

 The algorithm can produce a MST in O(|V |x|V |) time
provided that the edge weights are unique

 If these weights are not unique the algorithm still works by
using the nodes IDs to break ties between edges with equal
weight

 The algorithm requires O(|V |xlog|V |) + |E |) message
overhead

Distributed Algorithm- Example
1

4 3

3

6

5

V5 V4

V3
V2

V1

V6

4

1

V7

2
5

2

1

4 3

3

6

5

V5 V4

V3
V2

V1 V6 4

1

V7

2
5

2

1

4 3

3

6

5

V5 V4

V3
V2

V1
V6 4

1

V7

2
5

2

1

4 3

3

6

5

V5 V4

V3
V2

V1 V6 4

1

V7

2
5

2

1

4 3

3

6

5

V5 V4

V3
V2

V1 V6 4

1

V7

2
5

2

Zero level

fragments

1st level

fragments

{1,2} and

{5,6} are

formed

Nodes 3, 4, and

7 join fragment

{1,2}

Fragments {1,2,3,4,7} and

{5,6} join to form 2nd level

fragment that is the MST

Shortest Path Spanning Tree

A shortest path spanning tree (SPTS), T, is a spanning tree

rooted at a particular node such that the |V |-1 minimum weight

paths from that node to each of the other network nodes is

contained in T

2

4

3 1

6 2

5

2

2

4

3 1

2

5

2

2

4

3 1

6 2

2

Graph Minimum Spanning Tree
Shortest Path Spanning Tree

rooted at vertex 1

Note that the SPST is not the same as the MST

Applications of Trees

• Unicast routing (one to one) → SPST

• Multicast routing (one to several)

• Maximum probability of reliable one to all communications →

maximum weight spanning tree

• Load balancing → Degree constrained spanning tree

Shortest Path Algorithms

• Assume non-negative edge weights

• Given a weighted graph (G, W) and a node s, a

shortest path tree rooted at s is a tree T such that, for

any other node v  G, the path between s and v in T is

a shortest path between the nodes

• Examples of the algorithms that compute these

shortest path trees are Dijkstra and Bellman-Ford

algorithms as well as algorithms that find the shortest

path between all pairs of nodes, e.g. Floyd-Marshall

Dijkstra Algorithm
Procedure (assume s to be the root node)

V’ = {s}; U =V-{s};

E’ =  ;

For v  U do

 Dv = w(s,v);

 Pv = s;

EndFor

While U ≠  do

 Find v  U such that Dv is minimal;

 V’ = V’  {v}; U = U – {v};

 E’ = E’  (Pv,v);

 For x  U do

 If Dv + w(v,x) < Dx then

 Dx = Dv + w(v,x);

 Px = v;

 EndIf

 EndFor

EndWhile

Example - Dijkstra

V1

1

4 3

3

6

4 4

1 2
5

2

Assume V1 is s and Dv

is the distance from

node s to node v.

If there is no edge

connecting two nodes

x and y → w(x,y) = ∞

V2
V3

V7 V6

V5 V4

V1

1

4
3

3

6

4 4

1 2
5

2

V2
V3

V7 V6

V5 V4

V1

1

4 3

3

6

4 4

1 2
5

2

V2
V3

V7
V6

V5 V4

D2=1

D4=3

D3=2

D7=∞

D5=∞

D6=∞

D3=∞
D2=1

D4=3

D7=3

D6=∞

D5=∞

V’ = {1} V’ = {1,2}

Example - Dijkstra

V1

1

4 3

3

6

4 4

1 2
5

2

V2
V3

V7
V6

V5 V4

D3=2
D2=1

D4=3

D7=3

D6=6

D5=∞

V’ = {1,2,3}

V1

1

4 3

3

6

4 4

1 2
5

2

V2
V3

V7
V6

V5 V4

D3=2
D2=1

D4=3

D7=3

D6=6

D5=9

V’ = {1,2,3,4}

V1

1

4 3

3

6

4 4

1 2
5

2

V2
V3

V7
V6

V5 V4

D3=2
D2=1

D4=3

D7=3

D6=6

D5=7

V’ = {1,2,3,4,7}

V1

1

4 3

3

6

4 4

1 2
5

2

V2
V3

V7
V6

V5 V4

D3=2
D2=1

D4=3

D7=3

D6=6

D5=7

V’ = {1,2,3,4,7,6}

Example - Dijkstra

V1

1

4 3

3

6

4 4

1 2
5

2

V2
V3

V7
V6

V5 V4

D3=2
D2=1

D4=3

D7=3

D6=6

D5=7

V’ = {1,2,3,4,7,6,5}

The algorithm terminates

when all the nodes have

been processed and their

shortest distance to node 1

has been computed

V1

1

4 3

3

6

4 4

1 2
5

2

V2
V3

V7
V6

V5 V4

Note that the tree computed

is not a minimum weight

spanning tree. A MST for the

given graph is →

Bellman-Ford Algorithm
Find the shortest walk from a source node s to an arbitrary

destination node v subject to the constraints that the walk

consist of at most h hops and goes through node v only once

Procedure

Dv
-1

 = ∞  v V;

Ds
0

 = 0 and Dv
0

 = ∞  v ≠ s, v  V ;

h = 0;

Until (Dv
h

 = Dv
h-1

  v V) or (h = |V |) do

 h = h + 1;

 For v V do

 Dv
h+1

 = min{Du
h
 + w(u,v)} u V;

 EndFor

EndUntil

Bellman-Ford Algorithm (Example)

V1

1

4 3

3

6

4 4

1 2
5

2

V2
V3

V7 V6

V5 V4

h=1 h=2 h=3 h=4

D2
h 1 1 1 1

D3
h
 ∞ 2 2 2

D4
h
 3 3 3 3

D5
h
 ∞ 9 7 7

D6
h
 ∞ ∞ 6 6

D7
h
 ∞ 3 3 3

Until (Dv
h

 = Dv
h-1

  v V) or (h = |V |)

do

 h = h + 1;

 For v V do

 Dv
h+1

 = min{Du
h
 + w(u,v)} u V;

 EndFor

EndUntil

V1

1

4 3

3

6

4 4

1 2
5

2

V2
V3

V7 V6

V5 V4

Floyd-Warshall Algorithm
Find the shortest path between all ordered pairs of nodes

(s,v), {s,v} v V. Each iteration yields the path with the

shortest weight between all pair of nodes under the

constraint that only nodes {1,2,…n}, n  |V |, can be used

as intermediary nodes on the computed paths.

Procedure

D = W; (W is the matrix representation of the edge weights)

For u = 1 to |V | do

 For s = 1 to |V | do

 For v = 1 to |V | do

 Ds,v = min{Ds,v , Ds,u+ Wu,v}

 EndFor

 EndFor

EndFor

Note that this algorithm completes in O(|V |
3
) time

Floyd-Warshall Algorithm (Example)

V1

2

3

4

1

5

V2

V3

V5 V4

































01

501

34026

1802

3420

0D

4

1

1

8

3

2 2

6































01

40531

34026

1802

3420

1D

D = W

For u = 1 to |V | do

 For s = 1 to |V | do

 For v = 1 to |V | do

 Ds,v = min{Ds,v , Ds,u+ Wu,v}

 EndFor

 EndFor

EndFor

V1 V2 V3 V4 V5

V1

V2

V3

V4

V5

Floyd-Warshall Algorithm (Example































01

40531

34024

1602

3420

2D



























01

40531

34024

110602

38420

3D

























01642

40531

34024

110602

38420

4D

























01642

40531

34024

12602

34420

5D

Distributed Asynchronous Shortest Path
Algorithms

• Each node computes the path with the shortest

weight to every network node

• There is no centralized computation

• As for the distributed MST algorithm described in

[Gallager, Humblet, and Spiral], control messaging

is required to distributed computation

• Asynchronous means here that there is no

requirement of inter-node synchronization for the

computation performed at each node of for the

exchange of messages between nodes

Distributed Dijkstra Algorithm

• There is no need to change the algorithm

• Each node floods periodically a control message
throughout the network containing link state
information → transmission overhead is O(|V |x|E|)

• Entire topology knowledge must be maintained at
each node

• Flooding of the link state information allows for
timely dissemination of the topology as perceived by
each node. Each node has typically accurate
information to be able to compute the shortest paths

Distributed Bellman-Ford Algorithm

• Assume G contains only cycles of non-negative

weight

• If (u,v)  E then so is (v,u)

• The update equation is

N(s) = Neighbors of s →

• Each node only needs to know the weights of the

edges that are incident to it, the identity of all the

network nodes and estimates (received from its

neighbors) of the distances to all network nodes

}{},),({min ,
)(

, sVvDuswD vu
sNu

vs 


EussNu ),(),(

Distributed Bellman-Ford Algorithm

• Each node s transmits to its neighbors its current distance

vector Ds,V

• Likewise each neighbor node u  N(s) transmits to s its

distance vector Du,V

• Node s updates Ds,v,  v  V – {s} in accordance with:

If any update changes a distance value then s sends the

current version of Ds,v to its neighbors

• Node s updates Ds,v every time that it receives a distance

vector information from any of its neighbors

• A periodic timer prompts node s to recompute Ds,V or to

transmit a copy of Ds,V to each of its neighbors

}{},),({min ,
)(

, sVvDuswD vu
sNu

vs 


Distributed Bellman-Ford Algorithm
Example

A

B

E

C

D

7

1

2

8

1

2

Initial Ds,V

s A B C D E

A 0 7 ∞ ∞ 1

B 7 0 1 ∞ 8

C ∞ 1 0 2 ∞

D ∞ ∞ 2 0 2

E 1 8 ∞ 2 0

A

B

E

C

D

7

1

2

8

1

2

Ds,V

s A B C D E

A 0 7 ∞ ∞ 1

B 7 0 1 ∞ 8

C ∞ 1 0 2 ∞

D ∞ ∞ 2 0 2

E 1 8 4 2 0

E receives D’s routes and updates its Ds,V

Distributed Bellman-Ford Algorithm
Example

A

B

E

C

D

7

1

2

8

1

2

Ds,V

s A B C D E

A 0 7 8 ∞ 1

B 7 0 1 ∞ 8

C ∞ 1 0 2 ∞

D ∞ ∞ 2 0 2

E 1 8 4 2 0

A receives B’s routes and updates its Ds,V

A

B

E

C

D

7

1

2

8

1

2

Ds,V

s A B C D E

A 0 7 5 3 1

B 7 0 1 ∞ 8

C ∞ 1 0 2 ∞

D ∞ ∞ 2 0 2

E 1 8 4 2 0

A receives E’s routes and updates its Ds,V

Distributed Bellman-Ford Algorithm
Example

A

B

E

C

D

7

1

2

8

1

2

A’s routing table

Destination Next Hop Distance

B E 6

C E 5

D E 3

E E 1

A

B

E

C

D

7

1

2

8

1

2

E’s routing table

Destination Next Hop Distance

A A 1

B D 5

C D 4

D D 2

Distance Vector Protocols

• Each node maintains a routing table with entries

{Destination, Next Hop, Distance (cost)}

• Nodes exchange routing table information with neighbors

– Whenever table changes

– Periodically

• Upon reception of a routing table from a neighbor a node

updates its routing table if finds a “better” route

• Entries in the routing table are deleted if they are too old, i.e.

they are not “refreshed” within certain time interval by the

reception of a routing table

Link Failure

A

B

E

C

D

G

F

Simple rerouting case

• F detects that link to G has failed

• F sets a distance of ∞ to G and sends

update to A

• A sets a distance of ∞ to G since it uses

F to reach G

• A receives periodic update from C with

2-hop path to G (via D)

• A sets distance to G to 3 and sends

update to F

• F decides it can reach G in 4 hops via A

• Link from A to E fails

• A advertises distance of ∞ to E

• B and C had advertised a distance of 2

to E (prior to the link failure)

• Upon reception of A’s routing update B

decides it can reach E in 3 hops; and

advertises this to A

• A decides it can read E in 4 hops;

advertises this to C

• C decides that it can reach E in 5

hops…

Link Failure

A

B

E

C

D

G

F

Routing loop case

This behavior is called count-to-infinity

Count-to-Infinity Problem

A B C D E
(A,1) (A,2) (A,3)

(A,3) (A,2) (A,1) (A,4)

Example: routers working in stable state

Routing updates with distances to A are shown

Count-to-Infinity Problem

A B C D E
(A,3) (A,2) (A,3)

(A,3) (A,2) (A,4)

Example: link from A to B fails

B can no longer reach A directly, but C advertises a

distance of 2 to A and thus B now believes it can reach A

via C and advertises it

updated information

Count-to-Infinity Problem

A B C D E (A,3) (A,4) (A,3)

(A,3) (A,4) (A,4)

After 2 exchanges of updates

A B C D E (A,5) (A,4) (A,5)

(A,5) (A,4) (A,4)

After 3 exchanges of updates

A B C D E (A,5) (A,6) (A,5)

(A,5) (A,6) (A,6)

After 4 exchanges of updates

Count-to-Infinity Problem

A B C D E (A,7) (A,6) (A,7)

(A,7) (A,6) (A,6)

After 5 exchanges of updates

A B C D E (A,7) (A,8) (A,7)

(A,7) (A,8) (A,8)

After 6 exchanges of updates

This continues until the distance to A reaches infinity

Split Horizon Algorithm

• Used to avoid (not always) the count-to-infinity

problem

• If A routes to C via B, then A tells B that its

distance to C is ∞

A B C

B will not route to C via A if the link B to C fails

(C,∞)

• Works for two node loops

• Does not work for loops with more than two

nodes

Example Where Split Horizon Fails

A B

C

D

• When link C to D breaks, C
marks D as unreachable and
reports that to A and B.

• Suppose A learns it first

• A now thinks best path to D is
through B

• A reports D unreachable to B
and a route of cost 3 to C

• C thinks D is reachable through
A at cost 4 and reports that to B.

• B reports a cost 5 to A who
reports new cost to C.

• etc...

Routing Information Protocol (RIP)

• Routing Information Protocol (RIP), originally

distributed with BSD Unix

• Widely used on the Internet

– internal gateway protocol

• RIP updates are exchanged in ordinary IP

datagrams

• RIP sets infinity to 16 hops (cost  [0-15])

• RIP updates neighbors every 30 seconds, or

when routing tables change

