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Overview 

• Need for graphical models of computation 

– Cloud computing 

– Data centres 

– Telecommunications networks 

• Graph theory 



Graph Models for Cloud Computing 

• Integration of multiple 

networks 
– Large ISPs and enterprise 

networks 

– Large data centers with 

thousands or tens of thousands 

machines 

– Metro Ethernet 

– More and more devices are 

“Internet-capable” and 

plugged in  

• Likely rich and more diverse 

network topology and 

connectivity  
 



State of the Practice:  
A Hybrid Architecture 

Enterprise networks comprised of Ethernet-based  

IP subnets interconnected by routers 

R 

R 

R 

R 

Ethernet Bridging 
 - Flat addressing 

 - Self-learning 

 - Flooding 

 - Forwarding along a tree 
IP Routing (e.g., OSPF) 

 - Hierarchical addressing 

 - Subnet configuration 

 - Host configuration 

 - Forwarding along shortest paths 

R 

Broadcast Domain 

(LAN or VLAN) 



Cisco Recommended DC Structure: 
Illustration 

Internet 
CR CR 

AR AR AR AR … 

S S LB LB 

Data Center 
Layer 3 

Internet 

S S 

… 

S S 

… 

… 

Layer 2 

Key: 
• CR = L3 Core Router 
• AR = L3 Access Router 
• S = L2 Switch 
• LB = Load Balancer 
• A = Rack of 20 servers 
         with Top of Rack switch 



Graph Models for Computer Networking 

• Networks can be represented by graphs 

• The nodes are vertices 

• The communication links are edges 

• Routing protocols often use shortest path 
algorithms 

Vertices 

Edges 



Significance of Graphs 

• Graph topology makes enormous difference to system 

performance 

• Topologies differ based on application 

– Local area network (LAN) 

– Cloud network 

– Internet  



Elementary Concepts 

• A graph G(V,E) is two sets of object 

Vertices (or nodes) , set V 

Edges, set E 

• A graph is represented with dots or circles 

(vertices) joined by lines (edges) 

• The magnitude of graph G is characterized by 

number of vertices |V| (called the order of G) and 

number of edges |E| (size of G) 

• The running time of algorithms are measured in 

terms of the order and size 



Graphs ↔ Networks 

Graph 

(Network) 

Vertexes 

(Nodes) 

Edges 

(Arcs) 
Flow 

Communications 
Telephones exchanges, 
computers, satellites 

Cables, fiber optics, 
microwave relays 

Voice, video, 
packets 

Circuits 
Gates, registers, 
processors 

Wires Current 

Mechanical Joints Rods, beams, springs Heat, energy 

Hydraulic 
Reservoirs, pumping 
stations, lakes 

Pipelines Fluid, oil 

Financial Stocks, currency Transactions Money 

Transportation 
Airports, rail yards, 
street intersections 

Highways, railbeds, 
airway routes 

Freight, 
vehicles, 
passengers  



Directed Graph 

An edge e  E of a directed graph is represented as an 

ordered pair (u,v), where u, v  V. Here u is the initial 

vertex and v is the terminal vertex. Also assume here that 

u ≠ v 
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V = { 1, 2, 3, 4}, | V | = 4 

E = {(1,2), (2,3), (2,4), (4,1), (4,2)}, | E |=5 



Undirected Graph 

2 

4 

3 
1 

V = { 1, 2, 3, 4}, | V | = 4 

E = {(1,2), (2,3), (2,4), (4,1)}, | E |=4 

An edge e  E of an undirected graph is represented as an 

unordered pair (u,v)=(v,u), where u, v  V. Also assume 

that u ≠ v 



Degree of a Vertex 

Degree of a vertex in an undirected graph is the number of 

edges incident on it.  In a directed graph, the out degree of a 

vertex is the number of edges leaving it and the in degree is 

the number of edges entering it 
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The degree of vertex 2 is 3  The in degree of vertex 2 is 2 

and the in degree of vertex 4 

is 1 



Weighted Graph 
A weighted graph is a graph for which each edge has an 

associated weight, usually given by a weight function w: E  R 
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Walks and Paths 



3 

2 

3 

4 

1 

1 

V5 V4 

V3 V2 

V1 
V6 

4 

1 

A walk is an sequence of nodes (v1, v2,..., vL) such that 
{(v1, v2), (v2, v3),..., (v5, v4)}      E, e.g. (V2, V3,V6, V5,V3) 

A cycle is an walk (v1, v2,..., vL) where v1=vL with no 
other nodes repeated  and L>3, e.g. (V1, V2,V5, V4,V1) 

A simple path is a walk with no repeated nodes,  

e.g. (V1, V4,V5, V2,V3) 

A graph is called cyclic if it contains a cycle; otherwise it 
is called acyclic 



Complete Graphs 

A 

D 

C 

B 

4 nodes and (4*3)/2 edges 

V nodes and V*(V-1)/2 edges   

C 

A 

B 

3 nodes and 3*2 edges 

V nodes and V*(V-1) edges   

A complete graph is an undirected/directed graph in which 

every pair of vertices is adjacent.  If (u, v ) is an edge in a 

graph G, we say that vertex v is adjacent to vertex u. 



Connected Graphs 

A 

D E F 

B C 

A B 

C D 

An undirected graph is connected 

if you can get from any node to 

any other by following a sequence 

of edges OR any two nodes are 

connected by a path 

A directed graph is strongly 

connected if there is a directed path 

from any node to any other node 

A graph is sparse if | E |  | V | 

A graph is dense if  | E |   | V |2 



Bipartite Graph 

A bipartite graph  

is an undirected graph 

G = (V,E) in which V 

can be partitioned into 

2 sets V1 and V2 such 

that ( u,v)  E implies 

either 

u  V1 and v  V2  

OR  

v  V1  and u  V2. 

u1 

u2 

u3 

u4 

v1 

v2 

v3 

V1 V2 

An example of bipartite graph application to telecommunication problems can be found in,  

C.A. Pomalaza-Ráez, “A Note on Efficient SS/TDMA Assignment Algorithms,” IEEE Transactions on 

Communications, September 1988, pp. 1078-1082.  

 



Trees 

A 

B 

D 

F 

C 

E 

Let G = (V, E ) be an undirected graph. 

The following statements are equivalent, 

 

1. G is a tree 

2. Any two vertices in G are connected 

by unique simple path 

3. G is connected, but if any edge is 

removed from E, the resulting graph 

is disconnected 

4. G is connected, and  | E | = | V | -1 

5. G is acyclic, and  | E | = | V | -1 

6. G is acyclic, but if any edge is added 

to E, the resulting graph contains a 

cycle 



Example: Routing 

• Routing is a key algorithm for all communications 

networks 

• If links fail, then routing tables must be updated 

– How to do  this efficiently? 



Spanning Tree 
A tree (T ) is said to span G = (V,E) if T = (V,E’) and E’      E  

V5 V4 

V3 V2 

V1 
V6 

V5 V4 

V3 V2 

V1 
V6 

V5 
V4 

V3 V2 

V1 
V6 

For the graph shown on 

the right two possible 

spanning trees are shown 

below 

For a given graph there are usually 

several possible spanning trees  



Minimum Spanning Tree 

1 

3 

8 

2 

6 

7 

4 
5 

 5 

23 

10  

21 

 14 

 16 

 6 18 
9 

7 

11 
 8 

1 

3 

8 

2 

6 

7 

4 
5 

 5 

 6 

 4 

9 

7 

11 
 8 
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Given connected graph G with real-valued edge weights ce, a 

Minimum Spanning Tree (MST) is a spanning tree of G whose 

sum of edge weights is minimized 

Cayley's Theorem (1889) 

There are nn-2 spanning trees of a complete graph Kn 

n = |V|, m = |E| 

Can't solve MST by brute force (because of  nn-2) 



Applications of MST 

• Designing physical networks 
– telephone, electrical, hydraulic, TV cable, computer, road 

 

• Cluster analysis 
– delete long edges leaves connected components 

– finding clusters of quasars and Seyfert galaxies 

– analyzing fungal spore spatial patterns 
 

• Approximate solutions to NP-hard problems 
– metric TSP (Traveling Salesman Problem), Steiner tree 

 

• Indirect applications. 
– describing arrangements of nuclei in skin cells for cancer research 

– learning salient features for real-time face verification 

– modeling locality of particle interactions in turbulent fluid flow 

– reducing data storage in sequencing amino acids in a protein 

MST is central combinatorial problem with diverse applications 



MST Computation 

 Select an arbitrary node as the initial tree (T) 

 Augment T in an iterative fashion by adding the outgoing 

edge (u,v), (i.e., u  T and v  G-T ) with minimum cost 

(i.e., weight) 

 The algorithm stops after |V | - 1 iterations 

 Computational complexity = O (|V|2) 

 Select the edge e  E of minimum weight → E’ = {e} 

 Continue to add the edge e  E – E’ of minimum weight 

that when added to E’, does not form a cycle 

 Computational complexity = O (|E| log|E|) 

Prim’s Algorithm 

Kruskal’s Algorithm 



Prim’s Algorithm (example) 
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Algorithm starts 

After the 1st iteration After the 2nd  iteration 

After the 3rd  iteration After the 4th  iteration After the 5th  iteration 



Kruskal’s Algorithm (example) 
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Graphs and their Properties 

• Graph representations 

– Weighted graphs 

• Adjacency matrix representation 

– Multigraphs 

– Pseudographs 

• Graph properties 

– Degree Centrality 

– Betweenness Centrality 

– Closeness Centrality 



Weighted graph 

is a graph for which each edge has an associated  

weight, usually given by a weight function  

w: E  R, generally positive 



07.05.01.20

7.001.200

5.01.204.30
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EDCBA

Adjacency Matrix of Weighted 

graphs 



Degree of Weighted graphs 

The sum of the weights associated to every edge 

  incident to the corresponding node  

The sum of the corresponding row or column of  

  the adjacency matrix 

 

07.05.01.20

7.001.200

5.01.204.30

004.305.1

0005.10

E

D

C

B

A

EDCBA Degree 

1.5 

4.9 

6 

2.8 

3.3 



Multigraph or pseudograph 

is a graph which is permitted to have multiple  

edges. Is an ordered pair G:=(V,E) with 
V a set of nodes 

E a multiset of unordered pairs of vertices. 



Adjacency Matrix of Multigraphs  

02140

20100

11030

40301

00012

E

D

C

B

A

EDCBA



Directed Graph (digraph) 
• Edges have directions 

– The adjacency matrix is not symmetric 
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Local metrics 

 Local metrics provide a measurement of a 

structural property of a single node 

 Designed to characterise 

 Functional role – what part does this node play in 

system dynamics? 

 Structural importance – how important is this node 

to the structural characteristics of the system? 



Degree Centrality 
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Betweenness centrality 

 The number of shortest paths in the graph that 

pass through the node divided by the total 

number of shortest paths. 
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Betweenness centrality 

B 

 Shortest paths are: 

 AB, AC, ABD, ABE, BC, 

BD, BE, CBD, CBE, DBE 
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Betweenness centrality 

 Nodes with a high betweenness centrality are 

interesting because they 

 control information flow in a network 

 may be required to carry more information 

 

 And therefore, such nodes 

 may be the subject of targeted attack 



Closeness centrality 
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 The normalised inverse of the sum of 

topological distances in the graph. 
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Closeness centrality 

B 

E D 

C 

A Closeness 

0.67 

1.00 

0.67 

0.57 

0.57 



Node B is the most central one in spreading  

information from it to the other nodes in the  

network. 

Closeness centrality 



B 

E D 

C 

A 

Local metrics 

Node B is the most central one 

 according to the degree,  

 betweenness and closeness 

 centralities. 



Which is the most central node? 

A 

B 

and the winner is… 

A is the most central  

 according to the  

 degree 

 

B is the most central  

 according to closeness  

 and betweenness 



Other Important Graph Algorithms 

• Distributed algorithms 

• Shortest-path algorithms 



Distributed Algorithms 

 Each node does not need complete knowledge of the topology 

 The MST is created in a distributed manner 

 Example of this type of algorithms is the one proposed by 
Gallager, Humblet, and Spira (“Distributed Algorithm for 
Minimum-Weight Spanning Trees,” ACM Transactions on 
Programming Languages and Systems, January 1983, pp. 66-
67). 

 Starts with one or more fragments consisting of single nodes 

 Each fragment selects its minimum weight outgoing edge and 
using control messaging fragments coordinate to merge with a 
neighboring fragment over its minimum weight outgoing edge 

 The algorithm can produce a MST in O(|V |x|V |) time 
provided that the edge weights are unique 

 If these weights are not unique the algorithm still works by 
using the nodes IDs to break ties between edges with equal 
weight 

 The algorithm requires O(|V |xlog|V |) + |E |) message 
overhead  



Distributed Algorithm- Example 
1 

4 3 

3 

6 

5 

V5 V4 

V3 
V2 

V1 

V6 

4 

1 

V7 

2 
5 

2 

1 

4 3 

3 

6 

5 

V5 V4 

V3 
V2 

V1 V6 4 

1 

V7 

2 
5 

2 

1 

4 3 

3 

6 

5 

V5 V4 

V3 
V2 

V1 
V6 4 

1 

V7 

2 
5 

2 

1 

4 3 

3 

6 

5 

V5 V4 

V3 
V2 

V1 V6 4 

1 

V7 

2 
5 

2 

1 

4 3 

3 

6 

5 

V5 V4 

V3 
V2 

V1 V6 4 

1 

V7 

2 
5 

2 

Zero level 

fragments 

1st  level 

fragments 
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fragment that is the MST 



Shortest Path Spanning Tree 

A shortest path spanning tree (SPTS), T, is a spanning tree 

rooted at a particular node such that the |V |-1 minimum weight 

paths from that node to each of the other network nodes is 

contained in T 
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Graph Minimum Spanning Tree 
Shortest Path Spanning Tree 

rooted at vertex 1 

Note that the SPST is not the same as the MST 



Applications of Trees 

• Unicast routing (one to one) → SPST 

• Multicast routing (one to several) 

• Maximum probability of reliable one to all communications → 

maximum weight spanning tree 

• Load balancing → Degree constrained spanning tree 



Shortest Path Algorithms 

• Assume non-negative edge weights 

• Given a weighted graph (G, W ) and a node s, a 

shortest path tree rooted at s is a tree T such that, for 

any other node v  G, the path between s and v in T is 

a shortest path between the nodes 

• Examples of the algorithms that compute these 

shortest path trees are Dijkstra and Bellman-Ford 

algorithms as well as algorithms that find the shortest 

path between all pairs of nodes, e.g. Floyd-Marshall 



Dijkstra Algorithm 
Procedure (assume s to be the root node) 

V’ = {s}; U =V-{s}; 

E’ =  ; 

For v  U do 

    Dv = w(s,v); 

    Pv = s; 

EndFor 

While U ≠  do 

    Find v  U  such that Dv is minimal; 

    V’ = V’  {v}; U = U – {v}; 

    E’ = E’  (Pv,v); 

    For x  U do 

        If Dv + w(v,x) < Dx then 

            Dx = Dv + w(v,x); 

            Px = v; 

        EndIf 

    EndFor 

EndWhile 



Example - Dijkstra 
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Assume V1 is s and Dv 

is the distance from 

node s to node v.   

If there is no edge 

connecting two nodes 

x and y  → w(x,y) = ∞ 
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Example - Dijkstra 
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Example - Dijkstra 
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The algorithm terminates 

when all the nodes have 

been processed and their 

shortest distance to node 1 

has been computed  

V1 

1 

4 3 

3 

6 

4 4 

1 2 
5 

2 

V2 
V3 

V7 
V6 

V5 V4 

Note that the tree computed 

is not a minimum weight 

spanning tree. A MST for the 

given graph is  → 



Bellman-Ford Algorithm 
Find the shortest walk from a source node s to an arbitrary 

destination node v subject to the constraints that the walk 

consist of at most h hops and goes through node v only once 

Procedure  

Dv
-1

 = ∞  v V; 

Ds
0

 = 0 and Dv
0

 = ∞  v ≠ s, v  V ; 

h = 0; 

Until (Dv
h

 = Dv
h-1

  v V ) or (h = |V |) do 

     h = h + 1; 

     For v V do  

            Dv
h+1

 = min{Du
h
 + w(u,v)} u V;  

     EndFor 

EndUntil 

 



Bellman-Ford Algorithm (Example) 
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Until (Dv
h

 = Dv
h-1

  v V ) or (h = |V |) 

do 

     h = h + 1; 

     For v V do  

            Dv
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 = min{Du
h
 + w(u,v)} u V;  

     EndFor 

EndUntil 
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Floyd-Warshall Algorithm 
Find the shortest path between all ordered pairs of nodes 

(s,v), {s,v} v V. Each iteration yields the path with the 

shortest weight between all pair of nodes under the 

constraint that only nodes {1,2,…n}, n  |V |, can be used 

as intermediary nodes on the computed paths. 

Procedure  

D = W; (W is the matrix representation of the edge weights) 

For u = 1 to |V | do  

     For s = 1 to |V | do  

          For v = 1 to |V | do 

                   Ds,v = min{Ds,v , Ds,u+ Wu,v} 

            EndFor  

     EndFor 

EndFor 

Note that this algorithm completes in O(|V |
3
) time 



Floyd-Warshall Algorithm (Example) 
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D = W 

For u = 1 to |V | do  

     For s = 1 to |V | do  

          For v = 1 to |V | do 

                   Ds,v = min{Ds,v , Ds,u+ Wu,v} 

            EndFor  

     EndFor 

EndFor 

V1 V2 V3 V4 V5 

V1 

V2 

V3 

V4 

V5 



Floyd-Warshall Algorithm (Example 
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Distributed Asynchronous Shortest Path 
Algorithms 

• Each node computes the path with the shortest 

weight to every network node 

• There is no centralized computation 

• As for the distributed MST algorithm described in 

[Gallager, Humblet, and Spiral], control messaging 

is required to distributed computation 

• Asynchronous means here that there is no 

requirement of inter-node synchronization for the 

computation performed at each node of for the 

exchange of messages between nodes  



Distributed Dijkstra Algorithm 

• There is no need to change the algorithm 

• Each node floods periodically a control message 
throughout the network containing link state 
information → transmission overhead is O(|V |x|E|) 

• Entire topology knowledge must be maintained at 
each node  

• Flooding of the link state information allows for 
timely dissemination of the topology as perceived by 
each node. Each node has typically accurate 
information to be able to compute the shortest paths 



Distributed Bellman-Ford Algorithm 

• Assume G contains only cycles of non-negative 

weight  

• If  (u,v)  E then so is (v,u) 

• The update equation is  

 

 

N(s) = Neighbors of s → 

• Each node only needs to know the weights of the 

edges that are incident to it, the identity of all the 

network nodes and estimates (received from its 

neighbors) of the distances to all network nodes 
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Distributed Bellman-Ford Algorithm 

• Each node s transmits to its neighbors its current distance 

vector Ds,V 

• Likewise each neighbor node u  N(s) transmits to s its 

distance vector Du,V 

• Node s updates Ds,v,  v  V – {s} in accordance with: 

 

 

If any update changes a distance value then s sends the 

current version of Ds,v to its neighbors  

• Node s updates Ds,v  every time that it receives a distance 

vector information from any of its neighbors 

• A periodic timer prompts node s to recompute Ds,V or to 

transmit a copy of Ds,V to each of its neighbors  
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Distributed Bellman-Ford Algorithm 
Example 

A 

B 

E 

C 

D 

7 

1 

2 

8 

1 

2 

Initial Ds,V 

s A B C D E 

A 0 7 ∞ ∞ 1 

B 7 0 1 ∞ 8 

C ∞ 1 0 2 ∞ 

D ∞ ∞ 2 0 2 

E 1 8 ∞ 2 0 

A 

B 

E 

C 

D 

7 

1 

2 

8 

1 

2 

Ds,V 

s A B C D E 

A 0 7 ∞ ∞ 1 

B 7 0 1 ∞ 8 

C ∞ 1 0 2 ∞ 

D ∞ ∞ 2 0 2 

E 1 8 4 2 0 

E receives D’s routes and updates its Ds,V  



Distributed Bellman-Ford Algorithm 
Example  

A 

B 

E 

C 

D 

7 

1 

2 

8 

1 

2 

Ds,V 

s A B C D E 

A 0 7 8 ∞ 1 

B 7 0 1 ∞ 8 

C ∞ 1 0 2 ∞ 

D ∞ ∞ 2 0 2 

E 1 8 4 2 0 

A receives B’s routes and updates its Ds,V  

A 

B 

E 

C 

D 

7 

1 

2 

8 

1 

2 

Ds,V 

s A B C D E 

A 0 7 5 3 1 

B 7 0 1 ∞ 8 

C ∞ 1 0 2 ∞ 

D ∞ ∞ 2 0 2 

E 1 8 4 2 0 

A receives E’s routes and updates its Ds,V  



Distributed Bellman-Ford Algorithm 
Example  

A 

B 

E 

C 

D 

7 

1 

2 

8 

1 

2 

A’s routing table 

Destination Next Hop Distance 

B E 6 

C E 5 

D E 3 

E E 1 

A 

B 

E 

C 

D 

7 

1 

2 

8 

1 

2 

E’s routing table 

Destination Next Hop Distance 

A A 1 

B D 5 

C D 4 

D D 2 





Distance Vector Protocols 

• Each node maintains a routing table with entries 

{Destination, Next Hop, Distance (cost)} 

• Nodes exchange routing table information with neighbors 

– Whenever table changes 

– Periodically 

• Upon reception of a routing table from a neighbor a node 

updates its routing table if finds a “better” route 

• Entries in the routing table are deleted if they are too old, i.e. 

they  are not “refreshed” within certain time interval by the 

reception of a routing table 



Link Failure 

A 

B 

E 

C 

D 

G 

F 

Simple rerouting case 

• F detects that link to G has failed 

• F sets a distance of ∞ to G and sends 

update to A 

• A sets a distance of ∞ to G since it uses 

F to reach G 

• A receives periodic update from C with 

2-hop path to G (via D) 

• A sets distance to G to 3 and sends 

update to F 

• F decides it can reach G in 4 hops via A 



• Link from A to E fails 

• A advertises distance of ∞ to E 

• B and C had advertised a distance of 2 

to E (prior to the link failure) 

• Upon reception of A’s routing update B 

decides it can reach E in 3 hops; and 

advertises this to A 

• A decides it can read E in 4 hops; 

advertises this to C 

• C decides that it can reach E in 5 

hops… 

Link Failure 

A 

B 

E 

C 

D 

G 

F 

Routing loop case 

This behavior is called count-to-infinity 



Count-to-Infinity Problem 

A B C D E 
(A,1) (A,2) (A,3) 

(A,3) (A,2) (A,1) (A,4) 

Example: routers working in stable state 

Routing updates with distances to A are shown 



Count-to-Infinity Problem 

A B C D E 
(A,3) (A,2) (A,3) 

(A,3) (A,2) (A,4) 

Example: link from A to B fails 

B can no longer reach A directly, but C advertises a 

distance of 2 to A and thus B now believes it can reach A 

via C and advertises it 

updated information 



Count-to-Infinity Problem 

A B C D E (A,3) (A,4) (A,3) 

(A,3) (A,4) (A,4) 

After  2 exchanges of updates 

A B C D E (A,5) (A,4) (A,5) 

(A,5) (A,4) (A,4) 

After 3 exchanges of updates 

A B C D E (A,5) (A,6) (A,5) 

(A,5) (A,6) (A,6) 

After 4 exchanges of updates 



Count-to-Infinity Problem 

A B C D E (A,7) (A,6) (A,7) 

(A,7) (A,6) (A,6) 

After 5 exchanges of updates 

A B C D E (A,7) (A,8) (A,7) 

(A,7) (A,8) (A,8) 

After 6 exchanges of updates 

This continues until the distance to A reaches infinity 



Split Horizon Algorithm 

• Used to avoid (not always) the count-to-infinity 

problem 

• If A routes to C via B, then A tells B that its 

distance to C is ∞ 

A B C 

B will not route to C via A if the link B to C fails 

(C,∞) 

• Works for two node loops 

• Does not work for loops with more than two 

nodes 



Example Where Split Horizon Fails 

A B 

C 

D 

• When link C to D  breaks, C 
marks D as unreachable and 
reports that to A and B. 

• Suppose A learns it first 

• A now thinks best path to D is 
through B  

• A reports D unreachable to B 
and a route of cost 3 to C 

• C thinks D is reachable through 
A at cost 4 and reports that to B. 

• B reports a cost 5 to A who 
reports new cost to C. 

• etc... 



Routing Information Protocol (RIP) 

• Routing Information Protocol (RIP), originally 

distributed with BSD Unix 

• Widely used on the Internet  

– internal gateway protocol 

• RIP updates are exchanged in ordinary IP 

datagrams 

• RIP sets infinity to 16 hops (cost  [0-15]) 

• RIP updates neighbors every 30 seconds, or 

when routing tables change 


