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Overview

e Need for graphical models of computation
- Cloud computing
- Data centres
- Telecommunications networks

e Graph theory

2
Lork Complex Systems Leb




Graph Models for Cloud Computing

e Integration of multiple

networks
- Large ISPs and enterprise
networks
- Large data centers with ]
thousands or tens of thousands — =
machines
- Metro Ethernet
- More and more devices are
“Internet-capable” and
plugged in
e Likely rich and more diverse
network topology and

connectivity
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State of the Practice:
A Hybrid Architecture

Enterprise networks comprised of Ethernet-based
IP subnets interconnected by routers




Cisco Recommended DC Structure:
I[llustration

Internet Internet

Data Center
Layer 3

Layer 2 S S

m Key:

S S S S * CR = L3 Core Router
" |« AR=L3 Access Router
«S=L2 Switch
* LB = Load Balancer
* A = Rack of 20 servers
All A A All A A
with Top of Rack switch
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Graph Models for Computer Networking

Networks can be represented by graphs
The nodes are vertices
The communication links are edges

A <\\Vertlces
\/\\
Edges

e Routing protocols often use shortest path
algorithms

Ve
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Significance of Graphs

o Graph topology makes enormous difference to system
performance

e Topologies differ based on application
- Local area network (LAN)
- Cloud network
- Internet
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Elementary Concepts

A graph G(V,E) Is two sets of object
s Vertices (or nodes) , set V
“*Edges, set E
A graph is represented with dots or circles
(vertices) joined by lines (edges)
The magnitude of graph G Is characterized by

number of vertices |V| (called the order of G) and
number of edges |E| (size of G)

The running time of algorithms are measured In
terms of the order and size

S \%}jgf?
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Graphs < Networks

. e Telephones exchanges, | Cables, fiber optics, | Voice, video,
Communications computers, satellites microwave relays packets
. . Gates, registers, :
Circuits DrOCESSOrs Wires Current
Mechanical Joints Rods, beams, springs | Heat, energy
- Reservoirs, pumping . .
Hydraulic stations, lakes Pipelines Fluid, oil
Financial Stocks, currency Transactions Money
. . . . Freight
: Airports, rail yards, Highways, railbeds, ha
Transportatlon street intersections airway routes vehicles,
passengers




Directed Graph

An edge e < E of a directed graph is represented as an
ordered pair (u,v), where u, v € V. Here u Is the initial
vertex and v iIs the terminal vertex. Also assume here that

U*v /,
0\
‘

V=1{1234}|V|=4
E={(12),(23),(24).(41), (42} |E|=5 %S%gé

Q
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Undirected Graph

An edge e € E of an undirected graph is represented as an
unordered pair (u,v)=(v,u), where u, v € V. Also assume

that u £ v
/‘

\0

V={1,234}|V|=4
E=1(1.2),(23),(24), (41)} |[E|=4

7 \ :\k_
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Degree of a Vertex

Degree of a vertex in an undirected graph is the number of
edges incident on it. In a directed graph, the out degree of a
vertex Is the number of edges leaving it and the in degree is

the number of edges entering it

/ |
The in degree of vertex 2 is 2
and the in degree of vertex 4

IS 1 A jjf
e
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Weighted Graph

A weighted graph is a graph for which each edge has an
assoclated weight, usually given by a weight functionw: E - R

1.2 0.5

b
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Walks and Paths

A walk is an sequence of nodes (vy, V,,..., V) such that
{(v, Vo), (Vo, V3),oo, (Vs, Vo) } © E, €.9. (Vy, V3, Vg, V5, V5)

A simple path is a walk with no repeated nodes,
e.g. (Vi V4Vs, V,,Va)

A cycle is an walk (vq, v,,..., v, ) where v,;=v__with no
other nodes repeated and L>3, e.g. (V, V,, Ve, V,,V))

A graph is called cyclic if it contains a cycle; otherwise i@ %f

Is called acyclic
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Complete Graphs

A complete graph is an undirected/directed graph in which
every pair of vertices is adjacent. If (u,v) isanedgeina
graph G, we say that vertex v Is adjacent to vertex u.

‘/

4 nodes and (4*3)/2 edges 3 nodes and 3*2 edges

V nodes and V*(V-1)/2 edges V nodes and V*(V-1) edges
N
N

e |
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Connected Graphs

An undirected graph is connected
If you can get from any node to
any other by following a sequence
of edges OR any two nodes are
connected by a path

A directed graph is strongly
connected If there Is a directed path
from any node to any other node

*Aqgraphissparseif |E|~|V |
“*Agraphisdenseif |[E|~ |V

e =
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Bipartite Graph

A bipartite graph

IS an undirected graph
G = (V,E) in which V
can be partitioned into
2 sets V1 and V2 such
that ( u,v) € E implies
either

ueVliandv e V2
OR

v eV1 andu € V2.

An example of bipartite graph application to telecommunication problems can be found in,
C.A. Pomalaza-Raez, “A Note on Efficient SS/TDMA Assignment Algorithms,” IEEE Transactions on
Communications, September 1988, pp. 1078-1082.

\~ / e |
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Trees

Let G = (V, E ) be an undirected graph.
The following statements are equivalent,

1. Gisatree
2. Any two vertices in G are connected

by unique simple path

3. G iIs connected, but if any edge is
removed from E, the resulting graph
Is disconnected

G is connected,and |E|=|V|-1

G isacyclic,and |E|=|V|-1

6. G isacyclic, but if any edge is added
to E, the resulting graph contains a

cycle

B

o1
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Example: Routing

e Routing is a key algorithm for all communications
networks

« If links fail, then routing tables must be updated
- How to do this efficiently?

Lonk Gomplex Systems Lab
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Spanning Tree
Atree (T)issaildtospan G =(V,E) If T = (VE’) and E’ CF

For the graph shown on CRE

the right two possible / \
spanning trees are shown v, ‘ Vs

below

For a given graph there are usually
several possible spanning trees

v.@

/ \
N

v, Ve

- E
Lork Gomplex Systsms Lab




Minimum Spanning Tree

Given connected graph G with real-valued edge weights c,, a
Minimum Spanning Tree (MST) is a spanning tree of G whose
sum of edge weights is minimized

’ ol 2:4% Kél o 9)
%166\%118/( 6\8’\ 5\'/11/(

G=(V,E) T=(V,F) [w(T)=50
Cayley's Theorem (1889)
There are n"? spanning trees of a complete graph K,
“*n=|V|, m=|E]|

“*Can't solve MST by brute force (because of n"?)

N2
TV
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Applications of MST

MST is central combinatorial problem with diverse applications

 Designing physical networks
— telephone, electrical, hydraulic, TV cable, computer, road

» Cluster analysis
— delete long edges leaves connected components
— finding clusters of quasars and Seyfert galaxies
— analyzing fungal spore spatial patterns

« Approximate solutions to NP-hard problems
— metric TSP (Traveling Salesman Problem), Steiner tree

 Indirect applications.
— describing arrangements of nuclei in skin cells for cancer research
— learning salient features for real-time face verification
— modeling locality of particle interactions in turbulent fluid flow
— reducing data storage in sequencing amino acids in a protein S

N 35;}%%
LAY N e
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MST Computation

Prim’s Algorithm
1 Select an arbitrary node as the initial tree (T)

d Augment T in an iterative fashion by adding the outgoing
edge (u,v), (i.e.,u e Tand v € G-T ) with minimum cost
(i.e., weight)

1 The algorithm stops after [V | - 1 iterations
A Computational complexity = O (V%)

Kruskal’s Algorithm
] Select the edge e € E of minimum weight — £’ = {e}

] Continue to add the edge e € E — E’of minimum weight
that when added to E’, does not form a cycle

J Computational complexity = O (|E| log|E|) m\%

NZ

NLAP S
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Prim’s Algorithm (example)

\Y,
2 3 ‘ V, V, ‘ v, y
/ \ Algorithm starts ‘ ; ;
3 Ve V
V, ‘\ 1 ‘ /. /
4 / 3
Vv ‘ 1 ‘V5 ) Vi ‘ ‘ Vi
) After the 15t iteration || After the 2" iteration
Vs, Vs,
"9——@| “:0——@| 0@V
1 / / \
O 51| @ 1| @ 1
v O
1 A Vi y
O ,O——0O v @ — @,
V: 4 Ve 4 5
After the 3 iteration After the 4t iteration After the 5 iteration




Kruskal s Algorithm (example)

CRE
/ O v, V. @ 0V
O 3 2 i /
1 v After the 1st
V1\4\ /6‘ Vi v, @ iteration O V, 1
1 4 Vv
V4‘ ‘Vs V2 ‘ Vs ‘ Y ‘V
1 5
Vi After the 2nd | 1 After the 3 iteration
‘ iteration . V,
Vv, O @V V, 0O 0.V:
‘ 1 ‘ . 1 ‘
Vl V6 Vl Vv
1 6
V4‘ ‘Vs v4‘ ‘v5
After the 41 iteration After the 51 iteration N
ﬂw*ﬂmp/a‘frmalab







Graphs and their Properties

e Graph representations
- Weighted graphs
» Adjacency matrix representation
- Multigraphs
- Pseudographs
e Graph properties
- Degree Centrality
- Betweenness Centrality
- Closeness Centrality

e =
LGonk Gomplex Systems Lab




Weighted graph

IS a graph for which each edge has an associated
weight, usually given by a weight function
w: E — R, generally positive

A e e

ax&mmé
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Adjacency Matrix of Weighted

graphs

A e
2.1

Toe

2.1

m O O W >»

A

B

C

D

E

(0 15 O
15 0 34
0 34 O
0 0 21

0

21 0.5 0.7

N
0 O

0 21
21 0.5
0 0.7

0

Y7
I8




Degree of Weighted graphs

=The sum of the weights associated to every edge
Incident to the corresponding node
=The sum of the corresponding row or column of
the adjacency matrix

A(0 15 0 0 0) 15
B 115 0 34 0 O 49
C |0 34 0 21 05 6
D|/0 0 21 0 07 2.8
E |0 21 05 07 O 3.3
\ _J
IR
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Multigraph or pseudograph

=Is a graph which Is permitted to have multiple

edges. Is an ordered pair G:=(V,E) with
=\/ a set of nodes
=E a multiset of unordered pairs of vertices.

.

g \% 2 ~:
NI

V.

Lork
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Adjacency Matrix of Multigraphs

0

LL
O
O
al
<

1

o
o
—
N
<

B|/1 0 3 0 4

C |0 3 0 1

“

QV
o
—i
o
o
o)

E0 4 1 2
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Directed Graph (digraph)

e Edges have directions
- The adjacency matrix is not symmetric

A B CDE
. . A 1 0 0 0)
B|0O 1 0 0 2
Clo 1 0 o0 1
D0 01 0 1

E 0 0 0 1 0

’

mwamgm




|_ocal metrics

= Local metrics provide a measurement of a

structural property of a single node
= Designed to characterise

= Functional role — what part does this node play in

system dynamics?

= Structural importance — how important is this node
to the structural characteristics of the system?

X
N

N

P
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Degree Centrality




Betweenness centrality

= The number of shortest paths in the graph that
pass through the node divided by the total
number of shortest paths.

_ N\ 1p(i,k,j) i~ | =
BC(k)_li‘Zj‘ NS j#Kk

N
LAY T |
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Betweenness centrality

= Shortest paths are:

= AB, AC, ABD, ABE, BC,
BD, BE, CBD, CBE, DBE

-

g ‘\ e :t_.:. > S
¥
NLAY
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Betweenness centrality

= Nodes with a high betweenness centrality are
Interesting because they

= control information flow In a network
= may be required to carry more information

= And therefore, such nodes
= may be the subject of targeted attack

NN

i,
= / \ k_
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Closeness centrality

= The normalised inverse of the sum of
topological distances in the graph.

N -1

2. d(i )

J

CC(i)=

‘\\\\‘, 7[% ,
= . .
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Closeness centrality

MY
A N 4 N O
O 4 d4 O «
M A O A
A/Oll?_

<< O QO




Closeness centrality

Closeness
0.67
1.00
0.67
0.57
0.57




Closeness centrality

=Node B Is the most central one in spreading
Information from it to the other nodes in the
network.

‘\\\\‘, 7[% ,
= . .
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|_ocal metrics

=Node B i1s the most central one
according to the degree,
betweenness and closeness
centralities.

Yo
N




and the winner i1s...

E B ] =A is the most central

\ / A : according to the
: 1 —1 degree
N & |
il B =B Is the most central
according to closeness
. and betweenness
d N\ ]
7] 1
Which is the most central node? 3\\ [F
/ \\im__
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Other Important Graph Algorithms

e Distributed algorithms
e Shortest-path algorithms

7 \ :\k_
Lork Lomplex Systems Lal




Distributed Algorithms

L Each node does not need complete knowledge of the topology
L The MST is created in a distributed manner

L Example of this type of algorithms is the one proposed by
Gallager, Humblet, and Spira (“Distributed Algorithm for
Minimum-Weight Spanning Trees,” ACM Transactions on
Programming Languages and Systems, January 1983, pp. 66-
67).

O Starts with one or more fragments consisting of single nodes

 Each fragment selects its minimum weight outgoing edge and
using control messaging fragments coordinate to merge with a
neighboring fragment over its minimum weight outgoing edge

J The algorithm can produce a MST in O(|V [x|V |) time
provided that the edge weights are unique

O If these weights are not unique the algorithm still works by
usinghthe nodes IDs to break ties between edges with equal
weight

3 The algorithm requires O(|V [xlog|V |) + |E |) message ‘\\%l{f

overhead

£\ e
Lomplex Systems Lab
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Distributed Algorithm- Example

V, 1 \V Zero level
‘ . 3 fragments
/ V6 1 2 3 4
5
V7 @) O v: @ O
\ / \ / iy .4 > Vs
V, 6 ‘V5

V 1 13t level Nodes 3, 4, and

2 ‘ ’ Vs fragments | | 7 join fragment 2 ' Vs,

/ 2 3 4 {1,2yand | | {1,2} 1 2 4
5 {5,6} are 5
. Vi ‘ ’ formed O
V 6
A 5 / ; / Ve

o ¢ @, @,
Fragments {1,2,3,4,7} and Va

{5,6} join to form 2 |evel 1

fragment that is the MST 2

O v: @
V, 6 T —ry




Shortest Path Spanning Tree

A shortest path spanning tree (SPTS), T, Is a spanning tree
rooted at a particular node such that the |V |-1 minimum weight
paths from that node to each of the other network nodes is
contained in T

DG Y

‘ 5

N

®e - ©)

Graph Minimum Spanning Tree

Shortest Path Spanning Tree

rooted at vertex 1

Note that the SPST Is not the same as the MST

Ve
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Applications of Trees

Unicast routing (one to one) — SPST
Multicast routing (one to several)

Maximum probability of reliable one to all communications —

maximum weight spanning tree
Load balancing — Degree constrained spanning tree

X
N

N

VW&

P
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Shortest Path Algorithms

» Assume non-negative edge weights

« Given a weighted graph (G, W) and a node s, a
shortest path tree rooted at s Is a tree T such that, for
any other node v € G, the path betweensand vin T Is
a shortest path between the nodes

« Examples of the algorithms that compute these
shortest path trees are Dijkstra and Bellman-Ford
algorithms as well as algorithms that find the shortest
path between all pairs of nodes, e.g. Floyd-Marshall

X

N2
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Dijkstra Algorithm

Procedure (assume s to be the root node)

V'={s}; U=V-{s};
E'=¢;
Forv e U do
D, = w(s,v);
P,=5s;
EndFor

While U # ¢ do
Find v € U such that D, is minimal;

V=r'u{v} U=U-{v},
E'=E U (P,V),
Forx e U do
If D, + w(v,X) <D, then
D, = D, + W(V,X);
P, =V,
Endlf
EndFor
EndWhile

YYE

- /\‘.\\k_
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Example - Dijkstra

Assume V;iss and D,
IS the distance from
node s to node v.

If there Is no edge
connecting two nodes
xandy — w(x,y) = o

i@ L @
1 2 3 4
5
@ ' ®

3 4 4 D6:OO 4 4 D6:oo
‘ 2
6 ‘ -
D,=3 Dg=o0

v={1}

AP
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Example - Dijkstra

1
D,=1 H D,=2

D,=1 ‘——‘ D,=2

4

2 3
5
@ ° @
4 4

3 2
D4:3 ‘ 6 ‘ D5=OO

7= {1,2,3}

2 3 4

5
@ ° @
4 4
2
® @
D,=3 D=7

S

V’=4{1,2,3,4,7}

2 3
5
@
4 4
3

4

2

D,=3 ‘ 6 ‘ Ds=9

Vy'={1,2,3,4}

2 3
5
-
4 4
3

® - ©
D,=3 Ds=

2
7

V'={1,2,3,4,7,6}




Example - Dijkstra

D,=1 D,=2

s The algorithm terminates
2 3
‘)/ 5 when all the nodes have
D=3 . ‘_ been processed and their
X ) , 2°  shortest distance to node 1
‘ ; ‘ has been computed
D,=3 D=7

V'={12,3,4,7,6,5}

1

Note that the tree computed ‘/ NN
IS not a minimum weight ‘
spanning tree. A MST for the x 4 4 0

given graph is — . - .

e |
ystams Lab
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Bellman-Ford Algorithm

Find the shortest walk from a source node s to an arbitrary
destination node v subject to the constraints that the walk
consist of at most h hops and goes through node v only once

Procedure

D, =0V VeV,

D=0and D, =0V Vv#s veV;

h=0;

Until (D,"=D,"* v veV)or(h=|V|) do
h=h+1;
Forve Vdo

D! = min{D," + w(u,v)}ue V;

v

EndFor
EndUntil

m?%%égf

\~ / e |
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Bellman-Ford Alg

orithm

(Example)
Until (D,"=D,"' vveV)or(h=1|V|
do
h=h+1;
Forve V do
D, = min{D," + w(u,V)} ue V;

Vv

EndFor
EndUntil

=2

=3

8/ 88| w|8

w8 |lww|lw| M|+

Wl O N W[N]

T <, » N,
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Floyd-Warshall Algorithm

Find the shortest path between all ordered pairs of nodes
(s,v), {s,v} ve V. Each iteration yields the path with the
shortest weight between all pair of nodes under the
constraint that only nodes {1,2,...n}, n |V |, can be used
as Intermediary nodes on the computed paths.

Procedure
D =W, (W is the matrix representation of the edge weights)
Foru=1to|V|do
Fors=1to|V|do
Forv=1to|V|do
DS,V = min{DS,V ! DS,U+ WU,V}
EndFor

EndFor
EndFor

Note that this algorithm completes in O(|V |°) time ‘\\%j/fgg

NI
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Floyd-Warshall Algogi:tvlom (Example)

Foru=1to|V|do
Fors=1to|V|do
Forv=1to|V|do
DS,V - rnin{DS,V ) DS,U+ WU,V}

EndFor
EndFor
EndFor
(0 2 4 oo 3
2 0 8 o 1
D,=|6 2 0 4 3
1 (3| |5/ 0 4
w o o 1 0

- RN/ f
e
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Floyd-Warshall Algorithm (Example

M 1 M I O
o

0o ¥ O
<t © O 1 §
N O AN o §
O N < K
1

Il

o

A
|
M M I O
T R < O -
<t © O 1 §
N O N o §
O N I -
L

Il

N

O

M A M I O
< [N < ©
<t © O 1 ©
N O N o <
O N < «

Il

Lo

)
M M < O

o

o S < o -
<+ © O w [©
N O N ™ <
O N < [N
|

|l

<

)

L/

N

o
2SN

1

(LAY,
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Distributed Asynchronous Shortest Path
Algorithms

» Each node computes the path with the shortest
weight to every network node

» There Is no centralized computation

 As for the distributed MST algorithm described In
|Gallager, Humblet, and Spiral], control messaging
IS required to distributed computation

» Asynchronous means here that there Is no
requirement of inter-node synchronization for the
computation performed at each node of for the
exchange of messages between nodes

JIRNR
N

"\
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Distributed Dijkstra Algorithm

There Is no need to change the algorithm

Each node floods periodically a control message
throughout the network containing link state
Information — transmission overhead 1s O(|V |X|E|)

Entire topology knowledge must be maintained at
each node

Flooding of the link state information allows for
timely dissemination of the topology as perceived by
each node. Each node has typically accurate
Information to be able to compute the shortest paths

NP
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Distributed Bellman-Ford Algorithm

» Assume G contains only cycles of non-negative
weight

* If (u,v) e Ethensois (v,u)
« The update equation is

D,, = min{w(s,u)+D, },VveV —{s}

SV UeN(s)

N(s) = Neighbors of s — vy e N(s), (s,u) E

« Each node only needs to know the weights of the
edges that are incident to It, the identity of all the
network nodes and estimates (received from its
neighbors) of the distances to all network nodes

SRLZ
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Distributed Bellman-Ford Algorithm

« Each node s transmits to its neighbors its current distance
vector Dy,

 Likewise each neighbor node u & N(s) transmits to s its
distance vector D,

 Node s updates D, V v € V—{s} In accordance with:
D,, = min{w(s,u)+ D, },VveV —{s}

SV UeN(s)

If any update changes a distance value then s sends the
current version of D, to its neighbors

 Node s updates D, every time that it receives a distance
vector information from any of its neighbors

A periodic timer prompts node s to recompute Dy, or to
transmit a copy of Dy, to each of its neighbors
WY /g

-
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Distributed Bellman-Ford Algorithm

Example

; —®

E recetves D’s routes and updates its DS v ——

Initial Dy,
S A B C D E
A 0 7 00 00 1
B 7 0 1 00 8
C 00 1 0 2 00
D 0 0 2 0 2
E 1 8 o0 2 0

D,

S A B C D E
A 0 7 00 00 1
B 7 0 1 0 8
C o0 1 0 2 o0
D 00 00 2 0 2
E 1 8 4 2 0

W) S

-
LGonk Gomplex Systems Lab




Distributed Bellman-Ford Algorithm

E

| -
A receives B’s routes and updates its Ds V

/010

®—©®

A receives E’s routes and updates its DS V

(B)——)

\DS’
S A B C D E
A 0 7 8 0 1
B 7 0 1 00 8
C 00 1 0 2 0
D 00 00 2 0 2
E 1 8 4 2 0
D,
S A B C D E
A 0 7 5 3 1
B 7 0 1 00 8
C 00 1 0 2 00
D 00 00 2 0 2
E|1]8]4] 2R
NP

-
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Distributed Bellman-Ford Algorithm

Example
A’s routing table
L o
Destination | Next Hop | Distance
B E 6
2 C E 5
D E 3
E E 1

E’s routing table

;7 ®
©

1
Destination | Next Hop | Distance
A A 1
2 B D 5
C D 4
D D 2
—®
b?*ﬂmp/axf;m







Distance Vector Protocols

Each node maintains a routing table with entries
{Destination, Next Hop, Distance (cost)}
Nodes exchange routing table information with neighbors
— Whenever table changes
— Periodically
Upon reception of a routing table from a neighbor a node
updates its routing table 1f finds a “better” route

Entries in the routing table are deleted if they are too old, I.e.
they are not “refreshed” within certain time interval by the
reception of a routing table

IS

-
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Link Failure

Simple rerouting case ‘\‘/‘\

e F detects that link to G has failed

e [ sets a distance of «o to G and sends
update to A

e A sets adistance of oo to G since it uses
F to reach G

« Areceives periodic update from C with
2-hop path to G (via D)

« Asets distance to G to 3 and sends
update to F

» F decides it can reach G in 4 hops via A =

Ve

Lork Gomplex Systsms Lab

0\®\‘




Link Failure

Routing loop case ‘\
Link from A to E fails \®\

« Aadvertises distance of o to E

« B and C had advertised a distance of 2
to E (prior to the link failure)

« Upon reception of A’s routing update B ‘
decides it can reach E in 3 hops; and \
advertises this to A ‘

« Adecides it can read E in 4 hops;

advertises this to C

e Cdecidesthatitcanreach Ein5
hops...

This behavior is called count-to-infinity

Ve
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Count-to-Infinity Problem

Example: routers working in stable state

(A1) A2 A3 - BY

o
(@)
O
m

AL A2) (A3)

Routing updates with distances to A are shown

TV

/ \\im__
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Count-to-Infinity Problem

Example: link from A to B falils

(A2) (A3 (A4

A3) A2) (A3)

updated information

B can no longer reach A directly, but C advertises a
distance of 2 to A and thus B now believes it can reach A
via C and advertises it

T2
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Count-to-Infinity Problem

After 2 exchanges of updates
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After 3 exchanges of updates
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Count-to-Infinity Problem

After 5 exchanges of updates
(A/6) (A7) (A,6)

Q—@ Q( Q( Q( ®
A

B__ W) C_®8 pD_ (&N _E

After 6 exchanges of updates
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This continues until the distance to A reaches infinity
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Split Horizon Algorithm

 Used to avoid (not always) the count-to-infinity
problem

e |f A routes to C via B, then A tells B that its
distance to C IS «©

®-H-©
(C,0) S

B will not route to C via A if the link B to C fails

« Works for two node loops

» Does not work for loops with more than two
nodes NN
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Example Where Split Horizon Fails

Q\ /Q

When link C to D breaks, C
marks D as unreachable and

reports that to A and B.
Suppose A learns it first

A now thinks best path to D is

through B

A reports D unreachable to
and a route of cost 3to C

B

C thinks D is reachable through

A at cost 4 and reports that

B reports a cost 5 to Awho
reports new cost to C.

etc...

to B.
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Routing Information Protocol (RIP)

* Routing Information Protocol (RIP), originally
distributed with BSD Unix

« Widely used on the Internet
— Internal gateway protocol

» RIP updates are exchanged in ordinary IP
datagrams

* RIP sets infinity to 16 hops (cost € [0-15])

» RIP updates neighbors every 30 seconds, or
when routing tables change
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