Map-Reduce Applications: PageRank

Adapted from Nets212 (Univ. of Pennsylvania) and CS290N courses

Overview

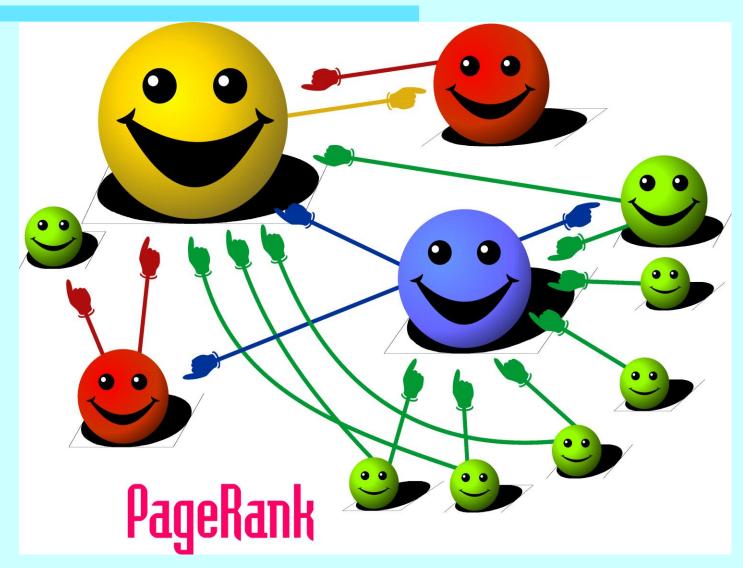
- PageRank
- MapReduce for PageRank

MapReduce: Recap

Programmers must specify:

```
map (k, v) \rightarrow \langle k', v' \rangle^*
reduce (k', v') \rightarrow \langle k', v' \rangle^*
```

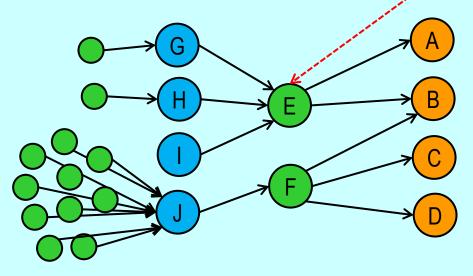
- All values with the same key are reduced together
- Optionally, also:
 - partition (k', number of partitions) → partition for k'
 - Often a simple hash of the key, e.g., hash(k') mod n
 - Divides up key space for parallel reduce operations combine $(k', v') \rightarrow \langle k', v' \rangle^*$
 - Mini-reducers that run in memory after the map phase
 - Used as an optimization to reduce network traffic
- The execution framework handles everything else...



CS 6323, Algorithms University College Cork, Gregory M. Provan PageRank: Intuition

Shouldn't E's vote be worth more than F's?

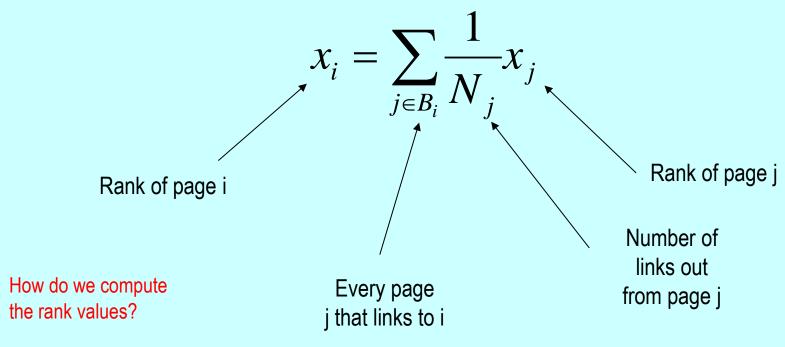
How many levels should we consider?



- Imagine a contest for The Web's Best Page
 - Initially, each page has one vote
 - Each page votes for all the pages it has a link to
 - To ensure fairness, pages voting for more than one page must split their vote equally between them
 - Voting proceeds in rounds; in each round, each page has the number of votes it received in the previous round

PageRank

- Each page i is given a rank x_i
- Goal: Assign the x_i such that the rank of each page is governed by the ranks of the pages linking to it:



MapReduce: PageRank

PageRank models the behavior of a "random surfer".

$$PR(x) = (1-d) + d\sum_{i=1}^{n} \frac{PR(t_i)}{C(t_i)}$$

- C(t) is the out-degree of t, and (1-d) is a damping factor (random jump)
- The "random surfer" keeps clicking on successive links at random not taking content into consideration.
- Distributes its pages rank equally among all pages it links to.
- The dampening factor takes the surfer "getting bored" and typing arbitrary URL.

Computing PageRank

Each target page adds up "credit" from multiple in-bound links to compute PR_{i+1}

Each page distributes PageRank "credit" to all pages it points to.

PageRank: Key Insights

- Effects at each iteration is local.
 - i+1th iteration depends only on ith iteration
- At iteration i, PageRank for individual nodes can be computed independently

PageRank using MapReduce

- Use Sparse matrix representation (M)
- Map each row of M to a list of PageRank "credit" to assign to out link neighbours.
- These prestige scores are reduced to a single PageRank value for a page by aggregating over them.

PageRank: Example

- Show PageRank computation
 - Simple example

Random Surfer Model

- PageRank has an intuitive basis in random walks on graphs
- Imagine a random surfer, who starts on a random page and, in each step,
 - with probability d, clicks on a random link on the page
 - with probability 1-d, jumps to a random page (bored?)
- The PageRank of a page can be interpreted as the fraction of steps the surfer spends on the corresponding page
 - Transition matrix can be interpreted as a Markov Chain

Iterative PageRank (simplified)

Initialize all ranks to be equal, e.g.:

$$x_i^{(0)} = \frac{1}{n}$$

Iterate until convergence

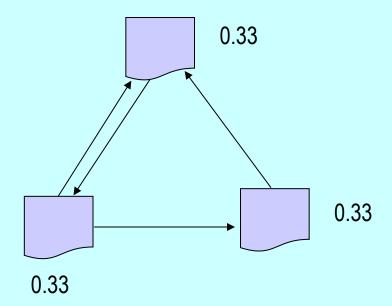
No need to decide how many levels to consider!

$$x_i^{(k+1)} = \sum_{j \in B_i} \frac{1}{N_j} x_j^{(k)}$$

Example: Step 0

Initialize all ranks to be equal

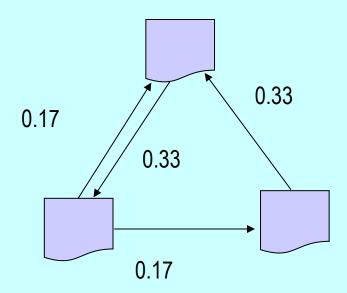
$$x_i^{(0)} = \frac{1}{n}$$



Example: Step 1

Propagate weights across out-edges

$$x_i^{(k+1)} = \sum_{j \in B_i} \frac{1}{N_j} x_j^{(k)}$$

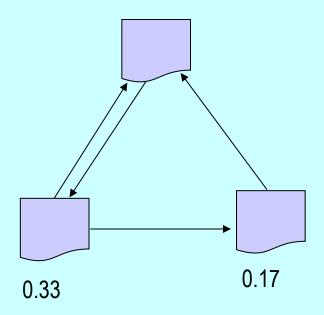


Example: Step 2

Compute weights based on in-edges

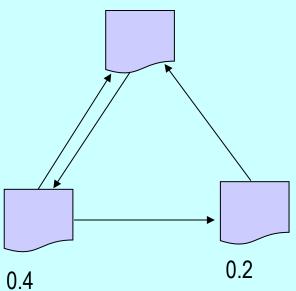
$$x_i^{(1)} = \sum_{j \in B_i} \frac{1}{N_j} x_j^{(0)}$$

0.50



Example: Convergence

$$x_i^{(k+1)} = \sum_{j \in B_i} \frac{1}{N_j} x_j^{(k)}$$



0.4

Naïve PageRank Algorithm Restated

Let

- N(p) = number outgoing links from page p
- B(p) = number of back-links to page p

$$PageRank(p) = \sum_{b \in B(p)} \frac{1}{N(b)} PageRank(b)$$

- Each page b distributes its importance to all of the pages it points to (so we scale by 1/N(b))
- Page p's importance is increased by the importance of its back set

In Linear Algebra formulation

Create an m x m matrix M to capture links:

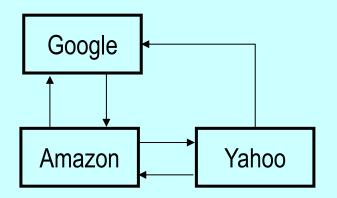
-
$$M(i, j) = 1 / n_j$$
 if page i is pointed to by page j
and page j has n_j outgoing links
= 0 otherwise

Initialize all PageRanks to 1, multiply by M repeatedly until all values converge:

$$\begin{bmatrix} PageRank (p_1') \\ PageRank (p_2') \\ ... \\ PageRank (p_m') \end{bmatrix} = M \begin{bmatrix} PageRank (p_1) \\ PageRank (p_2) \\ ... \\ PageRank (p_m) \end{bmatrix}$$

Computes principal eigenvector via power iteration

A brief example

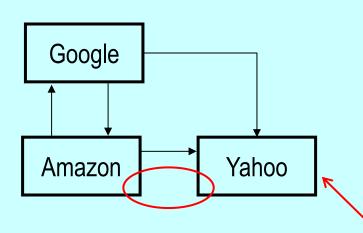


Running for multiple iterations:

Total rank sums to number of pages

Oops #1

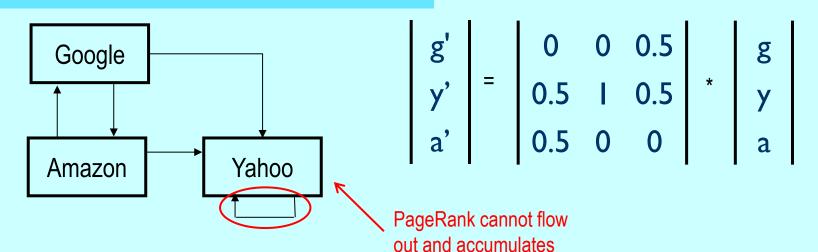
PageRank sinks



'dead end' - PageRank is lost after each round

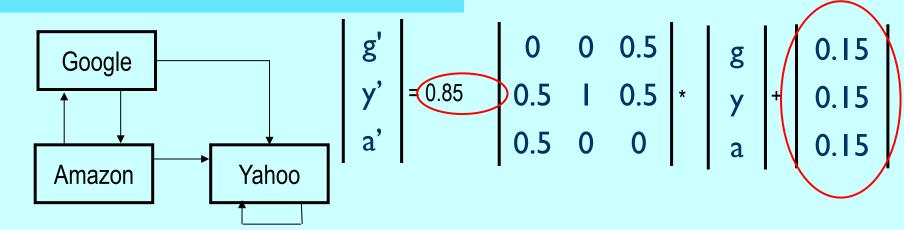
Running for multiple iterations:

Oops #2 – PageRank hogs



Running for multiple iterations:

Stopping the Hog



Running for multiple iterations:

... though does this seem right?

Improved PageRank

- Remove out-degree 0 nodes (or consider them to refer back to referrer)
- Add decay factor d to deal with sinks

$$PageRank(p) = (1-d) + d\sum_{b \in B_p} \frac{1}{N(b)} PageRank(b)$$

- Typical value: d=0.85
- Intuition in the idea of the "random surfer":
 - Surfer occasionally stops following link sequence and jumps to new random page, with probability 1 - d

PageRank on MapReduce

Inputs

Of the form: page → (currentWeightOfPage, {adjacency list})

Map

 Page p "propagates" 1/N_p of its d * weight(p) to the destinations of its out-edges (think like a vertex!)

Reduce

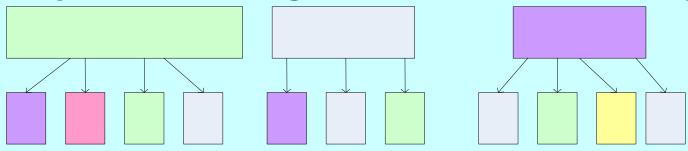
 p-th page sums the incoming weights and adds (1-d), to get its weight'(p)

Iterate until convergence

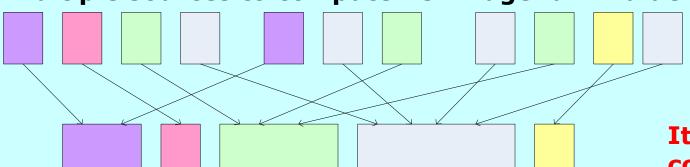
- Common practice: run some fixed number of times, e.g., 25x
- Alternatively: Test after each iteration with a second MapReduce job, to determine the maximum change between old and new weights

PageRank using MapReduce

Map: distribute PageRank "credit" to link targets



Reduce: gather up PageRank "credit" from multiple sources to compute new PageRank value



Iterate until convergence

Phase 1: Process HTML

- Map task takes (URL, page-content) pairs and maps them to (URL, (PR_{init}, list-of-urls))
 - PR_{init} is the "seed" PageRank for URL
 - list-of-urls contains all pages pointed to by URL
- Reduce task is just the identity function

Phase 2: PageRank Distribution

- Reduce task gets (URL, url_list) and many (URL, val) values
 - Sum vals and fix up with d to get new PR
 - Emit (URL, (new_rank, url_list))
- Check for convergence using non parallel component

PageRank Calculation: Preliminaries

One PageRank iteration:

- Input:
 - (id₁, [score₁^(t), out₁₁, out₁₂, ..]), (id₂, [score₂^(t), out₂₁, out₂₂, ..]) ..
- Output:
 - (id₁, [score₁^(t+1), out₁₁, out₁₂, ..]), (id₂, [score₂^(t+1), out₂₁, out₂₂, ..]) ..

MapReduce elements

- Score distribution and accumulation
- Database join
- Side-effect files

PageRank: Score Distribution and Accumulation

Map

- In: (id₁, [score₁^(t), out₁₁, out₁₂, ..]), (id₂, [score₂^(t), out₂₁, out₂₂, ..])
- Out: $(out_{11}, score_1^{(t)}/n_1)$, $(out_{12}, score_1^{(t)}/n_1)$..., $(out_{21}, score_2^{(t)}/n_2)$, ...

Shuffle & Sort by node_id

- In: (id₂, score₁), (id₁, score₂), (id₁, score₁), ...
- Out: (id₁, score₁), (id₁, score₂), .., (id₂, score₁), ...

Reduce

- In: (id₁, [score₁, score₂, ..]), (id₂, [score₁, ..]), ...
- Out: (id₁, score₁^(t+1)), (id₂, score₂^(t+1)), ...

PageRank:

Database Join to associate outlinks with score

Map

In & Out: (id₁, score₁^(t+1)), (id₂, score₂^(t+1)), ..., (id₁, [out₁₁, out₁₂, ..]), (id₂, [out₂₁, out₂₂, ..])

Shuffle & Sort by node_id

- Out: $(id_1, score_1^{(t+1)})$, $(id_1, [out_{11}, out_{12}, ..])$, $(id_2, [out_{21}, out_{22}, ..])$, $(id_2, score_2^{(t+1)})$, ...

Reduce

- In: (id₁, [score₁^(t+1), out₁₁, out₁₂, ..]), (id₂, [out₂₁, out₂₂, .., score₂^(t+1)]), ...
- Out: $(id_1, [score_1^{(t+1)}, out_{11}, out_{12}, ..]), (id_2, [score_2^{(t+1)}, out_{21}, out_{22}, ..])$...

PageRank: Side Effect Files for dangling nodes

Dangling Nodes

- Nodes with no outlinks (observed but not crawled URLs)
- Score has no outlet
 - need to distribute to all graph nodes evenly
- Map for dangling nodes:
 - In: .., (id₃, [score₃]), ...
 - Out: .., ("*", 0.85×score₃), ...
- Reduce
 - In: .., ("*", [score₁, score₂, ..]), ..
 - Out: .., everything else, ..
 - Output to side-effect: ("*", score), fed to Mapper of next iteration

