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Overview

e PageRank
e MapReduce for PageRank
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MapReduce: Recap

e Programmers must specify:
map (k, v) — <k’, v'>*
reduce (k’, v') — <k’, v’>*
All values with the same key are reduced together
e Optionally, also:
partition (k’, number of partitions) — partition for k’
Often a simple hash of the key, e.g., hash(k’) mod n
Divides up key space for parallel reduce operations
combine (k', v') — <k’, v’>*
Mini-reducers that run in memory after the map phase
Used as an optimization to reduce network traffic

e The execution framework handles everything else...
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PageRank: Intuition
Shouldn't E's vote be

/" worth more than F's?

How many levels
should we consider?

e Imagine a contest for The Web's Best Page
Initially, each page has one vote
Each page votes for all the pages it has a link to
To ensure fairness, pages voting for more than one page must split their
vote equally between them
Voting proceeds in rounds; in each round, each page has the number of
votes it received in the previous round

CS 6323, Algorithms
University College Cork, 5
Gregory M. Provan




PageRank

e Each page i is given a rank x;
e Goal: Assign the x; such that the rank of each page is
governed by the ranks of the pages linking to it:
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Number of

How d t c links out
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MapReduce : PageRank

PageRank models the behavior of a “random surfer”.

PR(x) = (@A—d)+ dzn: ':C’:R(Et))

C(t) is the out-degree of t, and (1-d) is a damping factor
(random jump)

The “random surfer” keeps clicking on successive links at
random not taking content into consideration.

{)istributes its pages rank equally among all pages it links
o.

The dampening factor takes the surfer “'getting bored”
and typing arbitrary URL.
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Computing PageRank
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PageRank : Key Insights

Effects at each iteration is local.

At iteration i, PageRank for individual nodes can be
computed independently
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PageRank using MapReduce

e Use Sparse matrix representation (M)

e Map each row of M to a list of PageRank
“credit” to assign to out link neighbours.

e These prestige scores are reduced to a single
PageRank value for a page by aggregating over
them.
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PageRank: Example

e Show PageRank computation
Simple example
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Random Surfer Model

e PageRank has an intuitive basis in random walks on graphs

e Imagine a , who starts on a random page and,
in each step,
with probability d, clicks on a random link on the page
with probability 1-d, jumps to a random page (bored?)

e The PageRank of a page can be interpreted as the fraction of
steps the surfer spends on the corresponding page
Transition matrix can be interpreted as a Markov Chain
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lterative PageRank (simplified)

1

N

Initialize all ranks to
be equal, e.g.:

x® —

| 1
Iterate until (k+1) 2 : (k)

convergence

\ jeB Nj

No need to decide
how many levels
to consider!
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Example: Step 0

Initialize all ranks X(O) _ E
to be equal P N
F 0.33
D 0.33
0.33
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Example: Step 1

Propagate weights (k+1) 1 (k)
across out-edges Xi — Z Xj
J€B; Nj
0.33
0.17
0.33

o

0.17
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Example: Step 2

Compute weights 1
based on in-edges x O — Z x . ©
| N - J
J

J€B;
0.50

0

0.33 0.17
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Example: Convergence

1
Xi — E N—Xj

/
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Naive PageRank Algorithm Restated

o Let

N(p) = number outgoing links from page p
B(p) = number of back-links to page p

PageRank (p) = > ﬁPageRank (b)

beB(p)

Each page b distributes its importance to all of the pages it
points to (so we scale by 1/N(b))

Page p’s importance is increased by the importance of its
back set
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In Linear Algebra formulation

e Create an m x m matrix M to capture links:

M(i, j) =1/n; if page i is pointed to by page j
and page j has n, outgoing links
=0 otherwise

Initialize all PageRanks to 1, multiply by M repeatedly until all values

converge:
" PageRank (p,") | | PageRank (p,) |
PageRank (p,") | y PageRank (p,)
 PageRank(p,')] [ PageRank(p,)
Computes via
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A brief example

Google
T g 0O 05 05
e y|[lo o o5
Amazon | [ Yahoo 2 | 05 0
Running for multiple iterations:
g | | | |
=1 |05} |075]... 0.67
a I .5 |.25 .33

Total rank sums to number of pages
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Oops #1  — PageRank sinks

-~ g| |0 oos| |
v [= 105 0 05
T v ‘ a’ 05 0 0 a

Amazon {——_ Yahoo
d D
— 'dead end' - PageRank

is lost after each round

Running for multiple iterations:

g 1 | los| | o025 0

=11 050, 0

a | 0.5 0.25 0
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Oops#2 - PageRank hogs

Google g 0 0 05 8
4 1~ {05 | 05]°
- . ok 05 0 O a
Amazon Yahoo

&T) \ PageRank cannot flow

out and accumulates
Running for multiple iterations:

g 1| o5 | 025 0

=120 25 (... 3

a | 0.5 0.25 0
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Stopping the Hog

Google

Amazon

Yahoo

(.

Running for multiple iterations:

&

0.57

0.57

= | 1.85]

0.39
2.21
0.39

... though does this seem right?
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Improved PageRank

e Remove out-degree 0 nodes (or consider them to refer back
to referrer)

e Add to deal with sinks

PageRank (p) = (1—d)+d ZﬁPageRank (b)

beBp

e Typical value: d=0.85

e Intuition in the idea of the *

Surfer occasionally stops following link sequence and jumps to new
random page, with probability 1 - d
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PageRank on MapReduce

Inputs
Of the form: page — (currentWeightOfPage, {adjacency list})

Map
Page p “propagates” 1/N, of its d * weight(p) to the destinations of its
out-edges (think like a vertex!)

Reduce
p-th page sums the incoming weights and adds (1-d), to get its
weight’(p)

Iterate until convergence
Common practice: run some fixed number of times, e.g., 25x

Alternatively: Test after each iteration with a second MapReduce job,
to determine the maximum change between old and new weights
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PageRank using MapReduce

Map: distribute PageRank “"credit” to link targets

N IEVARINIEN

Reduce: gather up PageRank “credit” from
multiple sources to compute new PageRank value

N\ e

Iterate until
convergence
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Phase 1: Process HTML

e Map task takes (URL, page-content) pairs and maps them to
(URL, (PR, list-of-urls))
PR, . is the “seed” PageRank for URL
list-of-urls contains all pages pointed to by URL

e Reduce task is just the identity function
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Phase 2: PageRank Distribution

e Reduce task gets (URL, url_list) and many (URL, val) values

Sum vals and fix up with d to get new PR
Emit (URL, (new_rank, url_list))

e Check for convergence using non parallel component
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PageRank Calculation: Preliminaries

One PageRank iteration:
e Input:

(id,, [score, ", out,,, out,,, ..]), (id,, [score,t), out,,, out,,, ..]) ..
e Output:

(id,, [score,*1), out,,, out,,, ..]), (id,, [score,*), out,,, out,,, ..]) ..

MapReduce elements
e Score distribution and accumulation
e Database join

e Side-effect files

30 CS 6323, Algorithms
University College Cork,
Gregory M. Provan




PageRank:
Score Distribution and Accumulation

e Map
In: (id,, [score, ), out,,, out,,, ..]), (id,, [score,{, out,,, out,,, ..]) ..
Out: (out,,, score,/n,), (out,,, score,®/n,) .., (out,,, score,t/n,), ..

e Shuffle & Sort by node_id

In: (id,, score,), (id,, score,), (id,, score,), ..
Out: (id,, score,), (id,, score,), .., (id,, score,), ..

e Reduce

In: (id,, [score,, score,, ..]), (id,, [score,, ..]), ..
Out: (id,, score,t*1), (id,, score,*1), ..
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PageRank:
Database Join to associate outlinks with score

e Map
In & Out: (id,, score,t*1), (id,, score,t*1), .., (id,, [out,,, out,,, ..]), (id,,
[out,,, out,,, ..]) ..

e Shuffle & Sort by node_id
Out: (id,, score,t*1), (id,, [out,,, out,,, ..]), (id,, [out,,, out,,, ..]), (id,,
score,t*1)), ..

e Reduce
In: (id,, [score,*"), out,,, out,,, ..]), (id,, [out,,, out,,, .., score,*1)]), ..
Out: (id,, [score,t*1), out,,, out,,, ..]), (id,, [score,t*1), out,,, out,,, ..]) ..
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PageRank:
Side Effect Files for dangling nodes

e Dangling Nodes
Nodes with no outlinks (observed but not crawled URLS)
Score has no outlet

e Map for dangling nodes:
In: .., (id;, [score;]), ..
Out: .., ("*", 0.85xscore,), ..

e Reduce
In: .., ("*", [score,, score,, ..]), ..
Out: .., everything else, ..
Output to side-effect: ("*", score), fed to Mapper of next iteration
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