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Overview 

 PageRank 

 MapReduce for PageRank 
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MapReduce: Recap 

 Programmers must specify: 
map (k, v) → <k’, v’>* 
reduce (k’, v’) → <k’, v’>* 
– All values with the same key are reduced together 

 Optionally, also: 
partition (k’, number of partitions) → partition for k’ 
– Often a simple hash of the key, e.g., hash(k’) mod n 
– Divides up key space for parallel reduce operations 
combine (k’, v’) → <k’, v’>* 
– Mini-reducers that run in memory after the map phase 
– Used as an optimization to reduce network traffic 

 The execution framework handles everything else… 
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PageRank: Intuition 

 Imagine a contest for The Web's Best Page 

– Initially, each page has one vote 

– Each page votes for all the pages it has a link to 

– To ensure fairness, pages voting for more than one page must split their 

vote equally between them 

– Voting proceeds in rounds; in each round, each page has the number of 

votes it received in the previous round 
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PageRank 

 Each page i is given a rank xi 

 Goal: Assign the xi such that the rank of each page is 

governed by the ranks of the pages linking to it: 
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MapReduce :  PageRank 
 

 

 PageRank models the behavior of a “random surfer”. 
 
 
 
 
 

 C(t) is the out-degree of t, and (1-d) is a damping factor 
(random jump) 
 

 The “random surfer”  keeps clicking on successive links at 
random not taking content into consideration. 
 

 Distributes its pages rank  equally among all pages it links 
to. 
 

 The dampening factor  takes the surfer “getting bored” 
and typing arbitrary URL. 
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Computing PageRank 

Start with seed 
PageRank values 

Each page distributes 
PageRank “credit” to 
all pages it points to. 

Each target page 
adds up “credit” from 

multiple in-bound 
links to compute PRi+1 
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PageRank :  Key Insights 

   

 Effects at each iteration is local.  

 i+1th iteration depends only on ith iteration 

 

 At iteration i, PageRank for individual nodes can be 

computed independently  
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PageRank  using  MapReduce 

   

 Use Sparse matrix representation (M) 

 Map each row of M to a list of PageRank 

“credit” to assign to out link neighbours. 

 These prestige scores are reduced to a single 
PageRank value for a page by aggregating over 
them. 
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PageRank: Example 

 Show PageRank computation 

– Simple example 
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Random Surfer Model 

 PageRank has an intuitive basis in random walks on graphs 
 

 Imagine a random surfer, who starts on a random page and, 

in each step, 

– with probability d, clicks on a random link on the page 

– with probability 1-d, jumps to a random page (bored?) 

 

 The PageRank of a page can be interpreted as the fraction of 

steps the surfer spends on the corresponding page 

– Transition matrix can be interpreted as a Markov Chain 
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Iterative PageRank (simplified) 
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Example: Step 1 
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Example: Step 2 
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Example: Convergence 
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Naïve PageRank Algorithm Restated 

 Let 

– N(p) = number outgoing links from page p 

– B(p) = number of back-links to page p 

 

  

 

– Each page b distributes its importance to all of the pages it 

points to (so we scale by 1/N(b)) 

– Page p’s importance is increased by the importance of its 

back set 
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In Linear Algebra formulation 

 Create an m x m matrix M to capture links: 

– M(i, j)  = 1 / nj  if page i is pointed to by page j  

 and page j has nj outgoing links 

           = 0       otherwise 

 

– Initialize all PageRanks to 1, multiply by M repeatedly until all values 

converge: 

 

 

 

 

 

– Computes principal eigenvector via power iteration 
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A brief example 
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Running for multiple iterations: 
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Oops #1 
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Running for multiple iterations: 

'dead end' - PageRank 

is lost after each round 

– PageRank sinks 
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Oops #2 
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Running for multiple iterations: 

PageRank cannot flow 

out and accumulates 

– PageRank hogs 
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Stopping the Hog 
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Improved PageRank 

 Remove out-degree 0 nodes (or consider them to refer back 

to referrer) 

 Add decay factor d to deal with sinks 

 

 

 

 Typical value: d=0.85 

 

 Intuition in the idea of the “random surfer”: 

– Surfer occasionally stops following link sequence and jumps to new 

random page, with probability 1 - d 
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PageRank on MapReduce 

 Inputs 

– Of the form: page  (currentWeightOfPage, {adjacency list}) 

 Map 

– Page p “propagates” 1/Np of its d * weight(p) to the destinations of its 

out-edges (think like a vertex!) 

 Reduce 

– p-th page sums the incoming weights and adds (1-d), to get its 

weight’(p) 

 Iterate until convergence 

– Common practice: run some fixed number of times, e.g., 25x 

– Alternatively: Test after each iteration with a second MapReduce job, 

to determine the maximum change between old and new weights 
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 PageRank  using  MapReduce 

Map: distribute PageRank “credit” to link targets 

Reduce: gather up PageRank “credit” from 
multiple sources to compute new PageRank value 

Iterate until 
convergence 

Source of Image: Lin 2008 
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Phase 1: Process HTML 

   

 Map task takes (URL, page-content) pairs and maps them to 
(URL, (PR

init
, list-of-urls)) 

– PR
init

 is the “seed” PageRank for URL 

– list-of-urls contains all pages pointed to by URL 

 

 Reduce task is just the identity function 
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Phase 2: PageRank Distribution 

   

 Reduce task gets (URL, url_list) and many (URL, val) values 
– Sum vals and fix up with d to get new PR 

– Emit (URL, (new_rank, url_list)) 

 

 Check for convergence using non parallel component 
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PageRank Calculation: Preliminaries 

One PageRank iteration: 

 Input: 

– (id1, [score1
(t), out11, out12, ..]), (id2, [score2

(t), out21, out22, ..]) .. 

 Output: 

– (id1, [score1
(t+1), out11, out12, ..]), (id2, [score2

(t+1), out21, out22, ..]) .. 

 

MapReduce elements 

 Score distribution and accumulation 

 Database join 

 Side-effect files 

30 



CS 6323, Algorithms 
University College Cork, 

 Gregory M. Provan 

PageRank:  

Score Distribution and Accumulation 

 Map 

– In: (id1, [score1
(t), out11, out12, ..]), (id2, [score2

(t), out21, out22, ..]) .. 

– Out: (out11, score1
(t)/n1), (out12, score1

(t)/n1) .., (out21, score2
(t)/n2), .. 

 Shuffle & Sort by node_id 

– In: (id2, score1), (id1, score2), (id1, score1), .. 

– Out: (id1, score1), (id1, score2), .., (id2, score1), .. 

 Reduce 

– In: (id1, [score1, score2, ..]), (id2, [score1, ..]), .. 

– Out: (id1, score1
(t+1)), (id2, score2

(t+1)), .. 

31 
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PageRank:  

Database Join to associate outlinks with score 

 Map 

– In & Out: (id1, score1
(t+1)), (id2, score2

(t+1)), .., (id1, [out11, out12, ..]), (id2, 

[out21, out22, ..]) .. 

 Shuffle & Sort by node_id 

– Out: (id1, score1
(t+1)), (id1, [out11, out12, ..]), (id2, [out21, out22, ..]), (id2, 

score2
(t+1)), .. 

 Reduce 

– In: (id1, [score1
(t+1), out11, out12, ..]), (id2, [out21, out22, .., score2

(t+1)]), .. 

– Out: (id1, [score1
(t+1), out11, out12, ..]), (id2, [score2

(t+1), out21, out22, ..]) .. 
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PageRank:  

Side Effect Files for dangling nodes 

 Dangling Nodes 

– Nodes with no outlinks (observed but not crawled URLs) 

– Score has no outlet 

• need to distribute to all graph nodes evenly 

 Map for dangling nodes: 

– In: .., (id3, [score3]), .. 

– Out: .., ("*", 0.85×score3), .. 

 Reduce 

– In: .., ("*", [score1, score2, ..]), .. 

– Out: .., everything else, .. 

– Output to side-effect: ("*", score), fed to Mapper of next iteration 
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