Adapted from Nets212 (Univ. of Pennsylvania) and CS290N courses

Overview

e PageRank
e MapReduce for PageRank

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

MapReduce: Recap

e Programmers must specify:
map (k, v) — <k’, v'>*
reduce (k’, v') — <k’, v’>*
All values with the same key are reduced together
e Optionally, also:
partition (k’, number of partitions) — partition for k’
Often a simple hash of the key, e.g., hash(k’) mod n
Divides up key space for parallel reduce operations
combine (k', v') — <k’, v’>*
Mini-reducers that run in memory after the map phase
Used as an optimization to reduce network traffic

e The execution framework handles everything else...

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

\\..

PageRank

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

PageRank: Intuition
Shouldn't E's vote be

/" worth more than F's?

How many levels
should we consider?

e Imagine a contest for The Web's Best Page
Initially, each page has one vote
Each page votes for all the pages it has a link to
To ensure fairness, pages voting for more than one page must split their
vote equally between them
Voting proceeds in rounds; in each round, each page has the number of
votes it received in the previous round

CS 6323, Algorithms
University College Cork, 5
Gregory M. Provan

PageRank

e Each page i is given a rank x;
e Goal: Assign the x; such that the rank of each page is
governed by the ranks of the pages linking to it:

= Zixj

/ JeB; N j \
il e / \ Rank of page |

Number of

How d t c links out
Ow 4o we compute Vew page .
the rank values? j that links to i from page

CS 6323, Algorithms
University College Cork, &)
Gregory M. Provan

MapReduce : PageRank

PageRank models the behavior of a “random surfer”.

PR(x) = (@A—d)+ dzn: ':C’:R(Et))

C(t) is the out-degree of t, and (1-d) is a damping factor
(random jump)

The “random surfer” keeps clicking on successive links at
random not taking content into consideration.

{)istributes its pages rank equally among all pages it links
o.

The dampening factor takes the surfer “'getting bored”
and typing arbitrary URL.

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Computing PageRank

/ N | \
‘ |
\8 \
€_______'__,/
CS 6323, Algorithms

University College Cork,
Gregory M. Provan

PageRank : Key Insights

Effects at each iteration is local.

At iteration i, PageRank for individual nodes can be
computed independently

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

PageRank using MapReduce

e Use Sparse matrix representation (M)

e Map each row of M to a list of PageRank
“credit” to assign to out link neighbours.

e These prestige scores are reduced to a single
PageRank value for a page by aggregating over
them.

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

PageRank: Example

e Show PageRank computation
Simple example

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Random Surfer Model

e PageRank has an intuitive basis in random walks on graphs

e Imagine a , who starts on a random page and,
in each step,
with probability d, clicks on a random link on the page
with probability 1-d, jumps to a random page (bored?)

e The PageRank of a page can be interpreted as the fraction of
steps the surfer spends on the corresponding page
Transition matrix can be interpreted as a Markov Chain

CS 6323, Algorithms
University College Cork, 12
Gregory M. Provan

lterative PageRank (simplified)

1

N

Initialize all ranks to
be equal, e.g.:

x® —

| 1
Iterate until (k+1) 2 : (k)

convergence

\ jeB Nj

No need to decide
how many levels
to consider!

CS 6323, Algorithms
University College Cork, 13
Gregory M. Provan

Example: Step 0

Initialize all ranks X(O) _ E
to be equal P N
F 0.33
D 0.33
0.33

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

14

Example: Step 1

Propagate weights (k+1) 1 (k)
across out-edges Xi — Z Xj
J€B; Nj
0.33
0.17
0.33

o

0.17

CS 6323, Algorithms 15
University College Cork,
Gregory M. Provan

Example: Step 2

Compute weights 1
based on in-edges x O — Z x . ©
| N - J
J

J€B;
0.50

0

0.33 0.17

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

16

Example: Convergence

1
Xi — E N—Xj

/

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

0

0.2

Naive PageRank Algorithm Restated

o Let

N(p) = number outgoing links from page p
B(p) = number of back-links to page p

PageRank (p) = > ﬁPageRank (b)

beB(p)

Each page b distributes its importance to all of the pages it
points to (so we scale by 1/N(b))

Page p’s importance is increased by the importance of its
back set

CS 6323, Algorithms
University College Cork, 18
Gregory M. Provan

In Linear Algebra formulation

e Create an m x m matrix M to capture links:

M(i, j) =1/n; if page i is pointed to by page j
and page j has n, outgoing links
=0 otherwise

Initialize all PageRanks to 1, multiply by M repeatedly until all values

converge:
" PageRank (p,") | | PageRank (p,) |
PageRank (p,") | y PageRank (p,)
 PageRank(p,')] [PageRank(p,)
Computes via

CS 6323, Algorithms
University College Cork, 19
Gregory M. Provan

A brief example

Google
T g 0O 05 05
e y|[lo o o5
Amazon | [Yahoo 2 | 05 0
Running for multiple iterations:
g | | | |
=1 |05} |075]... 0.67
a I .5 |.25 .33

Total rank sums to number of pages

CS 6323, Algorithms
University College Cork, 20
Gregory M. Provan

Oops #1 — PageRank sinks

-~ g| |0 oos| |
v [= 105 0 05
T v ‘ a’ 05 0 0 a

Amazon {——_ Yahoo
d D
— 'dead end' - PageRank

is lost after each round

Running for multiple iterations:

g 1 | los| | o025 0

=11 050, 0

a | 0.5 0.25 0
CS 6323, Algorithms 21

University College Cork,
Gregory M. Provan

Oops#2 - PageRank hogs

Google g 0 0 05 8
4 1~ {05 | 05]°
- . ok 05 0 O a
Amazon Yahoo

&T) \ PageRank cannot flow

out and accumulates
Running for multiple iterations:

g 1| o5 | 025 0

=120 25 (... 3

a | 0.5 0.25 0
CS 6323, Algorithms 29

University College Cork,
Gregory M. Provan

Stopping the Hog

Google

Amazon

Yahoo

(.

Running for multiple iterations:

&

0.57

0.57

= | 1.85]

0.39
2.21
0.39

... though does this seem right?

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

g 0O 0 05
y (085 D05 | 05
a’ 05 0 O
0.32 0.26
236 [| 248
0.32 0.26

23

o o
»viow;

(g

Improved PageRank

e Remove out-degree 0 nodes (or consider them to refer back
to referrer)

e Add to deal with sinks

PageRank (p) = (1—d)+d ZﬁPageRank (b)

beBp

e Typical value: d=0.85

e Intuition in the idea of the *

Surfer occasionally stops following link sequence and jumps to new
random page, with probability 1 - d

CS 6323, Algorithms 24
University College Cork,
Gregory M. Provan

PageRank on MapReduce

Inputs
Of the form: page — (currentWeightOfPage, {adjacency list})

Map
Page p “propagates” 1/N, of its d * weight(p) to the destinations of its
out-edges (think like a vertex!)

Reduce
p-th page sums the incoming weights and adds (1-d), to get its
weight’(p)

Iterate until convergence
Common practice: run some fixed number of times, e.g., 25x

Alternatively: Test after each iteration with a second MapReduce job,
to determine the maximum change between old and new weights

CS 6323, Algorithms
University College Cork, 25
Gregory M. Provan

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

PageRank using MapReduce

Map: distribute PageRank “"credit” to link targets

N IEVARINIEN

Reduce: gather up PageRank “credit” from
multiple sources to compute new PageRank value

N\ e

Iterate until
convergence

CS 6323 Algor'i‘rhms Source of Image: Lin 2008
University College Cork,
Gregory M. Provan

Phase 1: Process HTML

e Map task takes (URL, page-content) pairs and maps them to
(URL, (PR, list-of-urls))
PR, . is the “seed” PageRank for URL
list-of-urls contains all pages pointed to by URL

e Reduce task is just the identity function

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Phase 2: PageRank Distribution

e Reduce task gets (URL, url_list) and many (URL, val) values

Sum vals and fix up with d to get new PR
Emit (URL, (new_rank, url_list))

e Check for convergence using non parallel component

CS 6323, Algorithms
University College Cork,
Gregory M. Provan

PageRank Calculation: Preliminaries

One PageRank iteration:
e Input:

(id,, [score, ", out,,, out,,, ..]), (id,, [score,t), out,,, out,,, ..]) ..
e Output:

(id,, [score,*1), out,,, out,,, ..]), (id,, [score,*), out,,, out,,, ..]) ..

MapReduce elements
e Score distribution and accumulation
e Database join

e Side-effect files

30 CS 6323, Algorithms
University College Cork,
Gregory M. Provan

PageRank:
Score Distribution and Accumulation

e Map
In: (id,, [score,), out,,, out,,, ..]), (id,, [score,{, out,,, out,,, ..]) ..
Out: (out,,, score,/n,), (out,,, score,®/n,) .., (out,,, score,t/n,), ..

e Shuffle & Sort by node_id

In: (id,, score,), (id,, score,), (id,, score,), ..
Out: (id,, score,), (id,, score,), .., (id,, score,), ..

e Reduce

In: (id,, [score,, score,, ..]), (id,, [score,, ..]), ..
Out: (id,, score,t*1), (id,, score,*1), ..

31 CS 6323, Algorithms
University College Cork,
Gregory M. Provan

PageRank:
Database Join to associate outlinks with score

e Map
In & Out: (id,, score,t*1), (id,, score,t*1), .., (id,, [out,,, out,,, ..]), (id,,
[out,,, out,,, ..]) ..

e Shuffle & Sort by node_id
Out: (id,, score,t*1), (id,, [out,,, out,,, ..]), (id,, [out,,, out,,, ..]), (id,,
score,t*1)), ..

e Reduce
In: (id,, [score,*"), out,,, out,,, ..]), (id,, [out,,, out,,, .., score,*1)]), ..
Out: (id,, [score,t*1), out,,, out,,, ..]), (id,, [score,t*1), out,,, out,,, ..]) ..

32 CS 6323, Algorithms
University College Cork,
Gregory M. Provan

PageRank:
Side Effect Files for dangling nodes

e Dangling Nodes
Nodes with no outlinks (observed but not crawled URLS)
Score has no outlet

e Map for dangling nodes:
In: .., (id;, [score;]), ..
Out: .., ("*", 0.85xscore,), ..

e Reduce
In: .., ("*", [score,, score,, ..]), ..
Out: .., everything else, ..
Output to side-effect: ("*", score), fed to Mapper of next iteration

33 CS 6323, Algorithms
University College Cork,
Gregory M. Provan

Wi

