
Map-Reduce Applications:

PageRank

Adapted from Nets212 (Univ. of Pennsylvania) and CS290N courses

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Overview

 PageRank

 MapReduce for PageRank

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

MapReduce: Recap

 Programmers must specify:
map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
– All values with the same key are reduced together

 Optionally, also:
partition (k’, number of partitions) → partition for k’
– Often a simple hash of the key, e.g., hash(k’) mod n
– Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
– Mini-reducers that run in memory after the map phase
– Used as an optimization to reduce network traffic

 The execution framework handles everything else…

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

PageRank: Intuition

 Imagine a contest for The Web's Best Page

– Initially, each page has one vote

– Each page votes for all the pages it has a link to

– To ensure fairness, pages voting for more than one page must split their

vote equally between them

– Voting proceeds in rounds; in each round, each page has the number of

votes it received in the previous round

5

A

B E

C

D

F

G

H

I

J

Shouldn't E's vote be

worth more than F's?

How many levels

should we consider?

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

PageRank

 Each page i is given a rank xi

 Goal: Assign the xi such that the rank of each page is

governed by the ranks of the pages linking to it:

6

j

Bj j

i x
N

x
i





1

Rank of page j
Rank of page i

Every page

j that links to i

Number of

links out

from page j How do we compute

the rank values?

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

MapReduce : PageRank

 PageRank models the behavior of a “random surfer”.

 C(t) is the out-degree of t, and (1-d) is a damping factor
(random jump)

 The “random surfer” keeps clicking on successive links at
random not taking content into consideration.

 Distributes its pages rank equally among all pages it links
to.

 The dampening factor takes the surfer “getting bored”
and typing arbitrary URL.





n

i i

i

tC

tPR
ddxPR

1)(

)(
)1()(

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Computing PageRank

Start with seed
PageRank values

Each page distributes
PageRank “credit” to
all pages it points to.

Each target page
adds up “credit” from

multiple in-bound
links to compute PRi+1

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

PageRank : Key Insights

 Effects at each iteration is local.

 i+1th iteration depends only on ith iteration

 At iteration i, PageRank for individual nodes can be

computed independently

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

PageRank using MapReduce

 Use Sparse matrix representation (M)

 Map each row of M to a list of PageRank

“credit” to assign to out link neighbours.

 These prestige scores are reduced to a single
PageRank value for a page by aggregating over
them.

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

PageRank: Example

 Show PageRank computation

– Simple example

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Random Surfer Model

 PageRank has an intuitive basis in random walks on graphs

 Imagine a random surfer, who starts on a random page and,

in each step,

– with probability d, clicks on a random link on the page

– with probability 1-d, jumps to a random page (bored?)

 The PageRank of a page can be interpreted as the fraction of

steps the surfer spends on the corresponding page

– Transition matrix can be interpreted as a Markov Chain

12

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan
13

Iterative PageRank (simplified)

)()1(1 k

j

Bj j

k

i x
N

x
i




 

n
xi

1)0(
Initialize all ranks to

be equal, e.g.:

Iterate until

convergence

No need to decide

how many levels

to consider!

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

14

Example: Step 0

0.33

0.33

0.33

Initialize all ranks

to be equal
n

xi

1)0(

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

15

Example: Step 1

0.17

0.33

0.33

)()1(1 k

j

Bj j

k

i x
N

x
i




 

0.17

Propagate weights

across out-edges

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

16

Example: Step 2

0.17

0.50

0.33

Compute weights

based on in-edges)0()1(1
j

Bj j

i x
N

x
i






CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

17

Example: Convergence

0.2

0.4

0.4

)()1(1 k

j

Bj j

k

i x
N

x
i




 

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

18

Naïve PageRank Algorithm Restated

 Let

– N(p) = number outgoing links from page p

– B(p) = number of back-links to page p

– Each page b distributes its importance to all of the pages it

points to (so we scale by 1/N(b))

– Page p’s importance is increased by the importance of its

back set

)(
)(

1
)(

)(

bPageRank
bN

pPageRank
pBb






CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

19

In Linear Algebra formulation

 Create an m x m matrix M to capture links:

– M(i, j) = 1 / nj if page i is pointed to by page j

 and page j has nj outgoing links

 = 0 otherwise

– Initialize all PageRanks to 1, multiply by M repeatedly until all values

converge:

– Computes principal eigenvector via power iteration







































)(

...

)(

)(

)'(

...

)'(

)'(

2

1

2

1

mm pPageRank

pPageRank

pPageRank

M

pPageRank

pPageRank

pPageRank

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan
20

A brief example

Google

Amazon Yahoo

0 0.5 0.5

0 0 0.5

1 0.5 0

g'

y’

a’

g

y

a

= *

Total rank sums to number of pages

g

y

a

1

1

1

=

1

0.5

1.5

,

1

0.75

1.25

,

1

0.67

1.33

, …

Running for multiple iterations:

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

21

Oops #1

Google

Amazon Yahoo

0 0 0.5

0.5 0 0.5

0.5 0 0

g'

y’

a’

g

y

a

= *

g

y

a

1

1

1

=

0.5

1

0.5

,

0.25

0.5

0.25

,

0

0

0

, … ,

Running for multiple iterations:

'dead end' - PageRank

is lost after each round

– PageRank sinks

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

22

Oops #2

Google

Amazon Yahoo

0 0 0.5

0.5 1 0.5

0.5 0 0

g'

y’

a’

g

y

a

= *

g

y

a

1

1

1

=

0.5

2

0.5

,

0.25

2.5

0.25

,

0

3

0

, … ,

Running for multiple iterations:

PageRank cannot flow

out and accumulates

– PageRank hogs

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

23

Stopping the Hog

0 0 0.5

0.5 1 0.5

0.5 0 0

g'

y’

a’

g

y

a

= 0.85 *

g

y

a

=

0.26

2.48

0.26

,

0.15

0.15

0.15

+

Running for multiple iterations:

… though does this seem right?

Google

Amazon Yahoo

0.57

1.85

0.57

0.39

2.21

0.39

0.32

2.36

0.32

, , , … ,

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

24

Improved PageRank

 Remove out-degree 0 nodes (or consider them to refer back

to referrer)

 Add decay factor d to deal with sinks

 Typical value: d=0.85

 Intuition in the idea of the “random surfer”:

– Surfer occasionally stops following link sequence and jumps to new

random page, with probability 1 - d

)(
)(

1
)1()(bPageRank

bN
ddpPageRank

pBb






CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

PageRank on MapReduce

 Inputs

– Of the form: page  (currentWeightOfPage, {adjacency list})

 Map

– Page p “propagates” 1/Np of its d * weight(p) to the destinations of its

out-edges (think like a vertex!)

 Reduce

– p-th page sums the incoming weights and adds (1-d), to get its

weight’(p)

 Iterate until convergence

– Common practice: run some fixed number of times, e.g., 25x

– Alternatively: Test after each iteration with a second MapReduce job,

to determine the maximum change between old and new weights

25

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

 PageRank using MapReduce

Map: distribute PageRank “credit” to link targets

Reduce: gather up PageRank “credit” from
multiple sources to compute new PageRank value

Iterate until
convergence

Source of Image: Lin 2008

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Phase 1: Process HTML

 Map task takes (URL, page-content) pairs and maps them to
(URL, (PR

init
, list-of-urls))

– PR
init

 is the “seed” PageRank for URL

– list-of-urls contains all pages pointed to by URL

 Reduce task is just the identity function

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

Phase 2: PageRank Distribution

 Reduce task gets (URL, url_list) and many (URL, val) values
– Sum vals and fix up with d to get new PR

– Emit (URL, (new_rank, url_list))

 Check for convergence using non parallel component

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

PageRank Calculation: Preliminaries

One PageRank iteration:

 Input:

– (id1, [score1
(t), out11, out12, ..]), (id2, [score2

(t), out21, out22, ..]) ..

 Output:

– (id1, [score1
(t+1), out11, out12, ..]), (id2, [score2

(t+1), out21, out22, ..]) ..

MapReduce elements

 Score distribution and accumulation

 Database join

 Side-effect files

30

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

PageRank:

Score Distribution and Accumulation

 Map

– In: (id1, [score1
(t), out11, out12, ..]), (id2, [score2

(t), out21, out22, ..]) ..

– Out: (out11, score1
(t)/n1), (out12, score1

(t)/n1) .., (out21, score2
(t)/n2), ..

 Shuffle & Sort by node_id

– In: (id2, score1), (id1, score2), (id1, score1), ..

– Out: (id1, score1), (id1, score2), .., (id2, score1), ..

 Reduce

– In: (id1, [score1, score2, ..]), (id2, [score1, ..]), ..

– Out: (id1, score1
(t+1)), (id2, score2

(t+1)), ..

31

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

PageRank:

Database Join to associate outlinks with score

 Map

– In & Out: (id1, score1
(t+1)), (id2, score2

(t+1)), .., (id1, [out11, out12, ..]), (id2,

[out21, out22, ..]) ..

 Shuffle & Sort by node_id

– Out: (id1, score1
(t+1)), (id1, [out11, out12, ..]), (id2, [out21, out22, ..]), (id2,

score2
(t+1)), ..

 Reduce

– In: (id1, [score1
(t+1), out11, out12, ..]), (id2, [out21, out22, .., score2

(t+1)]), ..

– Out: (id1, [score1
(t+1), out11, out12, ..]), (id2, [score2

(t+1), out21, out22, ..]) ..

32

CS 6323, Algorithms
University College Cork,

 Gregory M. Provan

PageRank:

Side Effect Files for dangling nodes

 Dangling Nodes

– Nodes with no outlinks (observed but not crawled URLs)

– Score has no outlet

• need to distribute to all graph nodes evenly

 Map for dangling nodes:

– In: .., (id3, [score3]), ..

– Out: .., ("*", 0.85×score3), ..

 Reduce

– In: .., ("*", [score1, score2, ..]), ..

– Out: .., everything else, ..

– Output to side-effect: ("*", score), fed to Mapper of next iteration

33

