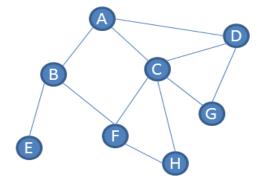
CS 6323 PROBLEM SET: PROBABILITY, GRAPH THEORY, NETWORK TOPOLOGY

- 1. Consider three events: A, B, C.
 - Pr(A) = Pr(B) = Pr(C) = 1/5
 - Pr(A,C) = Pr(B,C) = 1/25, Pr(A,B) = 1/10
 - Pr(A,B,C) = 1/125
 - a. Are A, B independent?
 - b. Are A, B conditionally independent given C?
- 2. Consider two binary-valued events, R: It is a rainy day, W: The grass is wet. We have priors for Pr(R) = (0.8,0.2), and a conditional probability table Pr(W|R), as given below. Compute Pr(R|W).

Pr(W R)	R	$\neg R$
W	0.7	0.4
$\neg W$	0.3	0.6


3. Consider three events: R (rain), W (grass is wet), U (bring umbrella). We have We have priors for Pr(R) = (0.8,0.2), and conditional probability tables for Pr(W|R) and Pr(U|R), as given below.

Pr(W R)	R	¬R
W	0.7	0.4
$\neg W$	0.3	0.6

Pr(U R)	R	$\neg R$
U	0.9	0.2
¬U	0.1	0.8

Compute the following:

- a. Pr(W)
- b. Pr(U|W)
- 4. The **distance** between two vertices in a graph is the number of edges in a shortest path connecting them.
- Compute the mean distance of the graph below.
- Compute the graph diameter, i.e., the greatest distance between any two vertices.

