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Overview

*Queuing Models
*Birth-Death Process
*Poisson Process
*Task Graphs
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Network Modelling

* We model the transmission of packets through a
network using Queueing Theory

e Enables us to determine several QoS metrics
 Throughput times, delays, etc.
* Predictive Model
* Properties of queueing network depends on
* Network topology
* Performance for each “path” in network
* Network interactions
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Queuing Networks

* A queuing network consists of service centers
and customers (often called jobs)

e A service center consists of one or more
servers and one or more queues to hold
customers waiting for service.
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Interarrival

* [nterarrival time: the time between successive customer
arrivals

* Arrival process: the process that determines the interarrival
times

* |tis common to assume that interarrival times are
exponentially distributed random variables. In this case, the
arrival process is a Poisson process

111> [0~

A: customers arrival rate LL: service rate
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Service Time

e The service time depends on how much
work the customer needs and how fast
the server is able to perform the work

e Service times are commonly assumed to
be independent, identically distributed
(iid) random variables.
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A Queuing Model Example
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Terminology

Term Explanations

Buffer size | The fotal number of customers allowed at a service
center. The buffer size usually includes the ones
waiting for service and receiving service

Population The total number of potential customers that may

size want to enter the service center. When it is large
enough, it is usually assumed to be infinite.

Queuing The algorithm that determines the order in which

discipline customers are served. Some common recognized
queuing disciplines: FCFS, priority, round robin (time
sharing), etc.

Preemptive | A queuing discipline is called "preemptive” when the

service being provided to a customer can be suspended
if some higher priority customer arrives.

R 12472014
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Open vs. Closed Queues

e Open:
e the customers arrive from an external source

e Closed:

* N0 external source of customers and no
departures

Lty 1/24/2014
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Measures of Interest

= O
e queue length : :

________________________________________ | :
* response time :_i

e throughput: the number of customers
served per unit of time

e utilization: the fraction of time that a
service center is busy

A relationship between throughput and
response time — Little’s law.

ey /24/2014
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Little’s Law

* The mean number of jobs in a queuing system
In the steady state is equal to the product of
the arrival rate and the mean response time

L=AeW

|_ : The average number of customers in a queuing system

A : the average arrival rate of customers admitted to the system

W : The average time spent by a customer in the queuing system

Cel™ 1/24/2014
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Example using Little’'s law

e Cork Tunnel
* Observe 120 cars queued in the Cork Tunnel
e Observe 32 cars/minute arrive at the tunnel
* What is average waiting time before and in the
tunnel?

L =()=3.75min
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Model Queuing System

Queuing System

- T O

Queue Server

Queuing System Server System
Strategy:

Use Little's law on both the complete system and its parts
to reason about average time in the queue
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Queuing Notation

T W

e Called anfM/I\él/lv.queue

L 4 ’0
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Complex Networks and Systems

14



M/M/1 Queue
2> —Q—)

L

0
\

> >0

M/M/1 queue
 The first ‘M’ means the arrival process is
exponential distributed

* The second ‘M’ means the service process is
exponential distributed

‘1T’ means the number of serversis 1
 Assuming buffer size and population size are infinity
e First-Come First-Served discipline is applied

Lealey 1/24/2014
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M/M/2 Queue
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General (Kendal) Notation

Queuing Model is usually described as

X/X/Z/K/L/D

(M denotes the exponential distribution,
E for Erlang, H for hyperexponential, D for

X: Arrlyal Process  deterministic and G for general)
Y: Service process

Z: Number of servers at the service center
K: Buffer size
L: Population size
D: The queuing discipline
K, L and D are often omitted,
which means K, L are « and D is FCFS

Complex Networks and Systems
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Distributions

* M: Exponential

e D: Deterministic (e.g. fixed constant)
* E,: Erlang with parameter k

* H,: Hyperexponential with param. k
* G: General (anything)

 M/M/1 is the simplest ‘realistic’ queue

Complex Networks and Systems



Kendal Notation Examples

e M/M/1:
e Exponential arrivals and service, 1 server, infinite
capacity and population, FCFS (FIFO)
* M/M/m
e Same, but M servers
e G/G/3/20/1500/SPF
* General arrival and service distributions, 3 servers, 17

queue slots (20-3), 1500 total jobs, Shortest Packet
First

Complex Networks and Systems



M/M/1 queue model
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Analysis of M/M/1 queue

e Goal: A closed form expression of the probability
of the number of jobs in the queue (P;) given only
A and p

Complex Networks and Systems



Solving queuing systems

e Given:
« A: Arrival rate of jobs (packets on input link)
e u: Service rate of the server (output link)
e Solve:
e |: average number in queuing system
* L, average number in the queue
 W: average waiting time in whole system
* W, average waiting time in the queue
e 4 unknowns: need 4 equations

Complex Networks and Systems



Solving queuing systems

* 4 unknowns: L, L, W, W,

* Relationships using Little’s law:
o | =AW
* L,=AW, (steady-state argument)
cW=W,+(1/p)

e |[f we know any 1, can find the others

* Finding L is hard or easy depending on
the type of system. In general:

L = inPn
n=0

Complex Networks and Systems



Equilibrium conditions
A A

A A
§> n+1
ol H

u
)

1
inflow = outflow

1: (/1 + ,Ll) I:)n — ﬂ’Pn—l + :upn+1
2: ﬂ“Pn — IUP

n+1

stability: 3: ﬂgy,p:%,pgl
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Solving for P, and P,

. R=pR , B= (P)Z R, R= (P)n B

2 Y P =1R>p'=1,p=-1
n=0 S an
N n 1 1 .nzo :
3: Z o, 1 , O < (geometric series)
n=0 £

i PT35S P 5B =(p) (- p)

Complex Networks and Systems



Solving for L

L=inP inp 1-p) =(1—p)rf)ij:np”‘l

n=0

L-P)rd; Zp”j =(-p)risle)

n=0

— P A
-P)Plty) = a5y = 77
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Solving W, W, and L,
W= :(yszﬁ):ﬁ

W, =W 5 = ()=

pH—A H pH(p—=A1)

L, =AW, =2 £

ﬂ(ﬂ—i) — u(u-2)
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Response Time vs. Arrivals
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Stable Region
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Key Parameters of Interest

The service rate = u
utilization = P = (%)

P(n) packets in the gateway = PP = (1— p)(p0")

0

Mean # in gateway (L) = 1-p

Complex Networks and Systems
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Example

* Measurement of a network gateway:
e mean arrival rate (A): 125 Packets/s
°* mean response time per packet: 2 ms

e Assuming
e What is t
e What is t
e What is t

exponential arrivals & departures:
ne service rate, u ?
ne gateway’s utilization?

ne probability of n packets in the gateway?

* mean number of packets in the gateway?
e The number of buffers so P(overflow) is <10?

Complex Networks and Systems



Example (cont)

The service rate, p =1 _500pps
0.002

utilization = 0= (%) —0.25%

P(n) packets in the gateway =

RP =0-p)(p")=(0.75)(0.25")

Complex Networks and Systems



Example (cont)

Mean # in gateway (L) =

P _ 025 __
1-p — 1-025 — 0.33

to limit loss probability to less
than 1 in a million:

p" <107

Complex Networks and Systems



M/M/1 Queue
2> —Q—)

L

0
\

> >0

M/M/1 queue
 The first ‘M’ means the arrival process is
exponential distributed

* The second ‘M’ means the service process is
exponential distributed

‘1T’ means the number of serversis 1
 Assuming buffer size and population size are infinity
e First-Come First-Served discipline is applied

Lealey 1/24/2014
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Solving M/M/1 queue

e o O
TR
A Solved for:
H * The steady-state probability in each state
e Server Utilization
 The expected number of customers in the
system
e The average response time
v Construct the corresponding Markov Chain
A A A /x\ /7\\‘
OBOIROTRPEE NN
n H H H H

A typical birth-death process

1/24/2014
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Birth-Death Process

Ao M Ay Mt My
/\ /\
oo TR T e
- —_ )\ -
Hq Mo H3 My Hi+1

A Birth-Death Process is a Markov chain where the transitions can occur
only between adjacent states.

You can solve the Markov chain analytically by solving the set of ‘balance

t1 .
equations . 1
T KL
1+
2
k-1 .
Pe=Po[ | &

i=0 \ A +1




Solving M/M/1 Queue

Define the ratio p= 4 called the utilisation rate, or
M traffic intensity

When p <1 (meaning A<u), the system is called “stable”, and

the steady state probabilities can be determined by

Po= 1 = 1

Complex Networks and Systems 39



M/M/1 Queue Property
SIS es

L

-

Steady State Probability for state k (k>0): (1-p)pk

Server Utilization: 1-P,=1- (1-p) = p

crni_NLo _ P
- /x\ v/k\.
Q G‘g .v\_/®v\/ ‘e
T W W

The mean of number of customers in the system E[N]

LMy 1/24/2014
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M/M/1 Queue Property:
Average Response Time

4 i Little’s Formula

...9 - o
iff L= 1 eW

L

1
1
1
1
p !
.

1-p

From previous discussion

Average Response Time:

41
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M/M/1 Performance Figure 1

M/M/1 Queue lambda=1, mu varies
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mu=1/service time

response time
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M/M/1 Performance Figure 2

Performance Measures

0.5

M/M/1 Queue Mu=1, Lambda varies

= E[L]

0.4 0.33 0.29 0.25 0.22 0.2 0.18 0.17 0.15 0.14 0.13

Lambda (1/arrival time)

I 1/24/2014

Complex Networks and Systems

43



Example: How does a “Fast Lane”
work in Disneyland?

Construct an M/M/1 queue
Solve for the average response time, as a function of the inter-arrival time
Control the “people flow” to assure the response time

35

30 A

Average Response Time
|_\
()]

NSNS N N B S L VB, < <

Interarrival Time (min)
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Properties of a Poisson processes

* Poisson process = exponential distribution
between arrivals/departures/service

P(arrival <t) =1—e ™"

* Key properties:

* memoryless
- Past state does not help predict next arrival

e Closed under:
- Addition
- Subtraction

Complex Networks and Systems



A Special birth-death process:

Poisson Process

e A(n)=Aforalln>0
e u(n)=0foralln=>0
* Pure birth process

e Definition of the Poisson process:

The counting process {N(t), t > O} is said to be a Poisson process
having rate A, A>0, if
* N(O)=0
* The process has independent increments

* The number of events in any interval of length t is Poisson distributed
with mean At.

Lelehy 1/24/2014
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Poisson Process (continued)

For all s, t >0 o (ﬂt)n
e P{N(t+s)-N(s) =n}=e Al
e EIN(t)]=At
e Poisson properties:
* Inter-arrival times are exponentially distributed

e Memoryless property: the prob. of occurrence of an
event is independent of how many events have
occurred in the past and the time since the last

event

Complex Networks and Systems
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Queuing Networks:
Rate Addition and Subtraction

* Merge:
* two Poisson streams with arrival rates A, and A:
* new Poisson stream: A;=A,+A,

e Split :
* [f any given item has a probability P, of “leaving” the

stream with rate A;.
M=(1-P)A,

Complex Networks and Systems



Queuing Networks

" —HTB~ O ——HIB~0
0.7
A3 A4
—TD~ 0 558~ 0

A=A+ A 5] 0.5 .7
A=A + A T O|—
A=A+,

Jo =2
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Open Queuing Networks

e Example: Messages arrive at a concentrator according to
a Poisson process of rate a. The time required to
transmit a message and receive an acknowledgment is
exponentially distributed with mean 1/m. Suppose that a
message need to be retransmitted with probability p.
Find the steady state pdf for the number of messages in
the concentrator.

e Solution: The overall system can be represented by the
simple queue with feedback shown below.

o | | /\
A \__/
n




Open Queuing Networks

e The net arrival rate into the queueis A = o +
AD, that is,

. @
1—p

A

* Thus, the pdf for the number of messages in
the concentrator is

PIN=n]=1—0p)p" n=01,...
where p=A/u=al(l— p)u




Open Queuing Networks

 Example: New programs arrive at a CPU according to a Poisson
process of rate a as shown in below fig. A program spends as
exponentially distributed execution time of mean 1/, in the
CPU. At the end of this service time, the program execution is
complete with probability p or it requires retrieving additional
information from secondary storage with probability 1-p.
Suppose that the retrieval of information from secondary
storage requires an exponentially distributed amount of time
with mean 1/, Find the mean time that each program spends
In the system.

X CPU 1-p 1/0
] ) |

Hy P . Ha




Open Queuing Networks
e Solution: the net arrival rates into the two queues are
A=a+d, and A4, =01-p)4
A, :% and A, = 1= pa

P
e Each queue behaves like an M/M/1 system so,

e Thus

E[L]=77- and  E[L]= 72
1 2




Open Queuing Networks

e Little’s formula then gives
e E[W,]=1/AE[L,], E[W,]=1/A,E[L,],

e Little's formula then gives the mean for total time spent in the
system:

e E[W] = E[W,] + E[W,]

— L1 1-p,




Applications:

Queues and Traffic shaping

* Big ldeas:

 Traffic shaping;:
* Modify traffic at entrance points in the network

e Can reason about states of the interior and link properties,
loads. (E.g. Leaky, Token bucket)

* Modify traffic in the routers
- Enforce policies on “flows”
e Queuing theory:
e Analytic analysis of properties of queues as functions of the
inputs and service types




Congestion Control

Too many packets in some part of the system

B

Congestion




Simplified Network Model

T — s B B
T —

[ N e — 1T ]

[ | — [ 11T ]

Goal:
Move packets across the system from the inputs to output

System could be a single switch, or entire network




Problems with Congestion

* Performance

e Low Throughput

* Long Latency

e High Variability (jitter)
* Lost data

e Policy enforcement:

e User X pays more than user Y, X should get more
bandwidth than Y.

e Fairness

* One user/flow getting much more throughput or better
latency than the other flows




Congestion Control

e Causes of congestion
e Types of congestion control schemes
e Solving congestion




Causes of Congestion

e Many ultimate causes:

New applications, new users, bugs, faults, viruses, spam,
stochastic (time based) variations, unknown randomness.

* Congestion can be long-lived or transient

* Timescale of the congestion is important
* Microseconds vs seconds vs hours vs days
 Different solutions to all the above!




Exhaustion of Buffer Space (cont’d)

\ Router
50 Mbps e 50 Mbps
"""" \
50 Mbps

Buffer




Types of Congestion Control
Strategies

 Terminate existing resources
* Drop packets
* Drop circuits

e Limit entry into the system

* Packet level (layer 3)
* Leaky Bucket, token bucket, WFQ

* Flow/conversation level (layer 4)

e Resource reservation
e TCP backoff/reduce window

* Application level (layer 7)
e Limit types/kinds of applications




Leaky Bucket

e Across a single link, only allow packets across at a
constant rate

 Packets may be generated in a bursty manner,
but after they pass through the leaky bucket, they
enter the network evenly spaced

e If all inputs enforce a leaky bucket, its easy to
reason about the total resource demand on the
rest of the system




Leaky Bucket: Analogy

Packets from input

4
4
4
4
Leaky
Bucket W

Output




Leaky Bucket (contq)

 The leaky bucket is a “traffic shaper”: It changes the
characteristics of a packet stream

e Traffic shaping makes the network more manageable and
predictable

e Usually the network tells the leaky bucket the rate at which it may
send packets when a connection is established




Leaky Bucket:
Doesn’t allow bursty transmissions

* I[n some cases, we may want to allow short bursts
of packets to enter the network without
smoothing them out

e For this purpose we use a token bucket, which is
a modified leaky bucket




Summary

e Key assumptions
e Steady-state conditions
 Exponential arrival and service rates
e Little’'s Law
 M/M/1 Queue
* Fundamental equations for W, L
 Networks of Queues
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Addition Notes: Traffic Shaping

 Material is for general interest
 Will not be tested on this material
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Token Bucket

The bucket holds logical tokens instead of packets

Tokens are generated and placed into the token bucket at a
constant rate

When a packet arrives at the token bucket, it is transmitted if there
is a token available. Otherwise it is buffered until a token
becomes available.

The token bucket holds a fixed number of tokens, so when it
becomes full, subsequently generated tokens are discarded

Can still reason about total possible demand




Token Bucket

Packets from input
.

<L H M

Token Generator ——> © oo
(Generates a token ¢
once every T seconds)

—L H 1T I F

output




Token Bucket vs. Leaky Bucket

Case 1: Short burst arrivals

—. I I I I I I > Arrival time at bucket

—. Tt > Departure time from a leaky bucket

0 1 2 3 4 5 6 Leaky bucket rate = 1 packet / 2 time units
Leaky bucket size = 4 packets

_. T N I I » Departure time from a token bucket
Token bucket rate = 1 tokens / 2 time units
Token bucket size = 2 tokens




Token Bucket vs. Leaky Bucket

Case 2: Large burst arrivals

—. I I I I I I > Arrival time at bucket

—. Tt > Departure time from a leaky bucket

0 1 2 3 4 5 6 Leaky bucket rate = 1 packet / 2 time units
Leaky bucket size = 2 packets

_. - » Departure time from a token bucket
Token bucket rate = 1 token / 2 time units
Token bucket size = 2 tokens




Multi-link congestion management

 Token bucket and leaky bucket manage traffic
across a single link.

 But what if we do not trust the incoming traffic to
behave?

* Must manage across multiple links
* Round Robin
e Fair Queuing




Multi-queue management

* [f one source is sending too many packets, can we
allow other sources to continue and just drop the
“bad” source?

e First cut: round-robin
e Service input queues in round-robin order

 What if one flow/link has all large packets,
another all small packets?
» Smaller packets get more link bandwidth




ldealized flow model

* For N sources, we would like to give each host or
input source 1/N of the link bandwidth

* [mage we could squeeze factions of a bits on the
link at once
e ->fluid model
e E.g. “fluid” would interleave the bits on the link
 But we must work with packets
 Want to approximate fairness of the fluid flow
model, but still have packets




Fluid model vs. Packet Model

Flow 1
(arrivals)

Flow 2
(arrivals )

Service
in fluid
system

Service in
Packet
system

time

time

time

time



Fair Queuing vs. Round Robin

* Advantages: protection among flows

* Misbehaving flows will not affect the performance of
well-behaving flows
* Misbehaving flow - a flow that does not implement
congestion control

* Disadvantages:

e More complex: must maintain a queue per flow per
output instead of a single queue per output

* Biased toward large packets - a flow receives service
proportional to the number of packets




Virtual Time

 How to keep track of service delivered on each
queue”?

e Virtual Time is the number of rounds of queue
service completed by a bit-by-bit Round Robin
(RR) scheduler

* May not be an integer
* increases/decreases with # of active queues




Approximate bit-bit RR

Virtual time is incremented each time a bit is
transmitted for all flows

e [f we have 3 active flows, and transmit 3 bits, we
Increment virtual time by 1.

* If we had 4 flows, and transmit 2 bits, increment Vt by
0.b.

At each packet arrival, compute time packet would
have exited the router during virtual time.

This is the packet finish number




