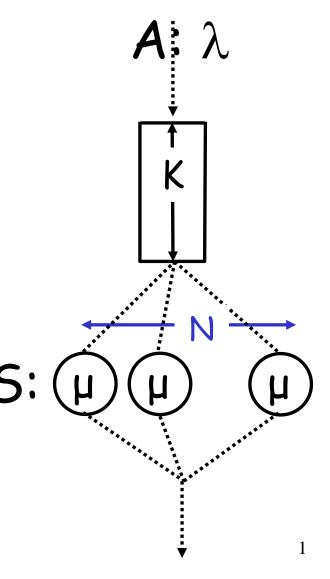
A/S/N/K systems (Kendall's notation)

- A/S/N/K gives a theoretical description of a system
- A is the arrival process
 - M = Markovian = Poisson Arrivals
 - D = deterministic (constant time bet. arrivals)
 - G = general (anything else)
- □ 5 is the service process
 - M,D,G same as above
- □ N is the number of parallel processors
- K is the buffer size of the queues
 - K term can be dropped when buffer size is infinite

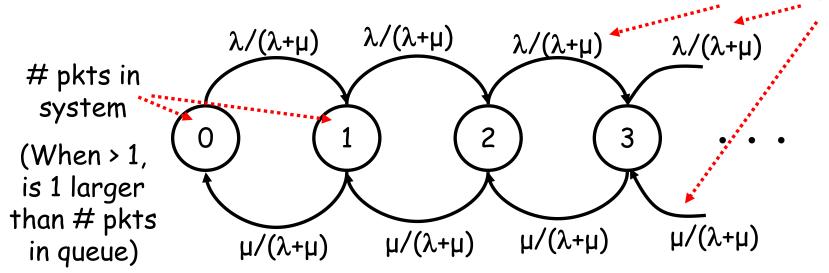


The M/M/1 Queue (a.k.a., birth-death process)

- □ a.k.a., M/M/1/∞
 - Poisson arrivals
 - Exponential service time
 - 1 processor, infinite length queue
- □ Can be modeled as a Markov Chain (because of memorylessness!)

□ Distribution of time spent in state n the same for all n > 0 (why? why different for state 0?)

transition probs



M/M/1 cont'd

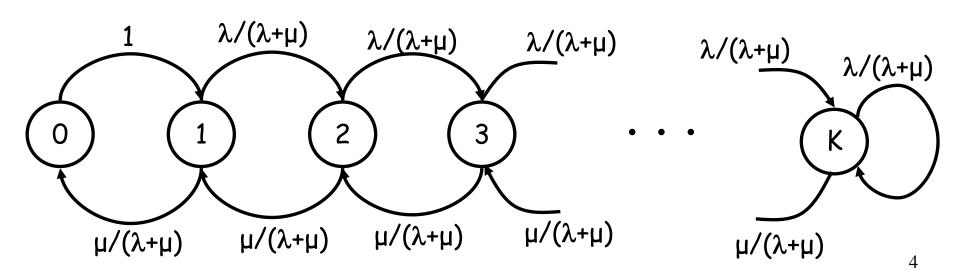
As long as λ < μ, queue has following steady-state average properties

- □ Defs:
 - \circ $\rho = \lambda/\mu$
 - N = # pkts in system
 - T = packet time in system
 - \circ N_Q = # pkts in queue
 - W = waiting time in queue

- $P(N=n) = \rho^n(1-\rho)$
 - (indicates fraction of time spent w/ n pkts in queue)
 - Utilization factor = 1 $P(N=0) = \rho$
- $\square E[N] \equiv \sum_{n=0}^{\infty} n P(N=n) = \rho/(1-\rho)$
- \Box E[T] = E[N] / λ (Little's Law) = ρ /(λ (1- ρ)) = 1 / (μ λ)
- \square $E[N_Q] = \sum_{n=1}^{\infty} (n-1) P(N=n) = \rho^2/(1-\rho)$
- □ E[W] = E[T] $1/\mu$ (or = E[N_Q]/λ by Little's Law) = ρ / (μ λ)

M/M/1/K queue

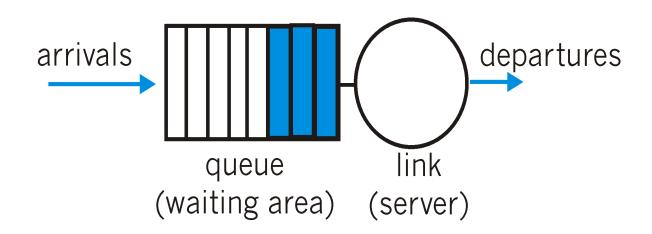
- Also can be modeled as a Markov Model
 - requires K+1 states for a system (queue + processor) that holds K packets (why?)
 - Stay in state K upon a packet arrival
 - \circ Note: $\rho \ge 1$ permitted (why?)



M/M/1/K properties

Scheduling And Policing Mechanisms

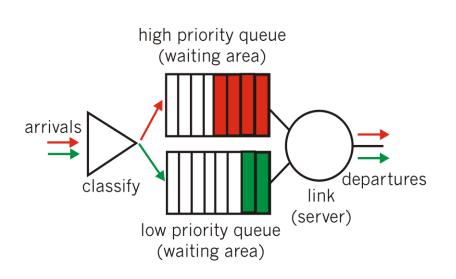
- Scheduling: choosing the next packet for transmission on a link can be done following a number of policies;
- □ FIFO (First In First Out) a.k.a. FCFS (First Come First Serve): in order of arrival to the queue
 - o packets that arrive to a full buffer are discarded
 - another option: discard policy determines which packet to discard (new arrival or something already queued)

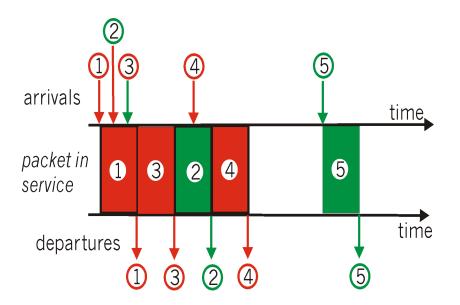


Scheduling Policies

Priority Queuing:

- Classes have different priorities
- May depend on explicit marking or other header info, eg IP source or destination, TCP Port numbers, etc.
- Transmit a packet from the highest priority class with a nonempty queue



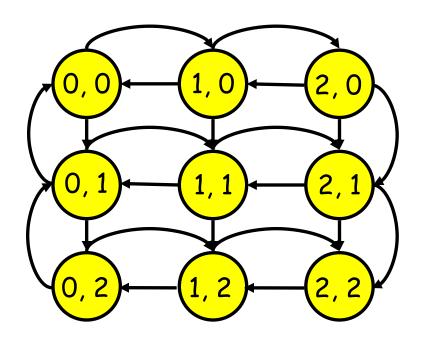


Scheduling Policies

□ Priority Queueing cont'd:

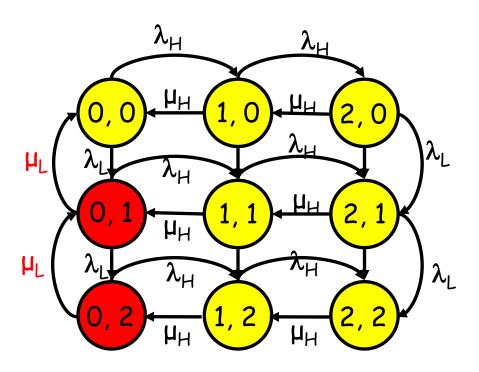
- 2 versions:
 - Preemptive: (postpone low-priority processing if highpriority pkt arrives)
 - non-preemptive: any packet that starts getting processed finishes before moving on

Modeling priority queues as M/M/1/K



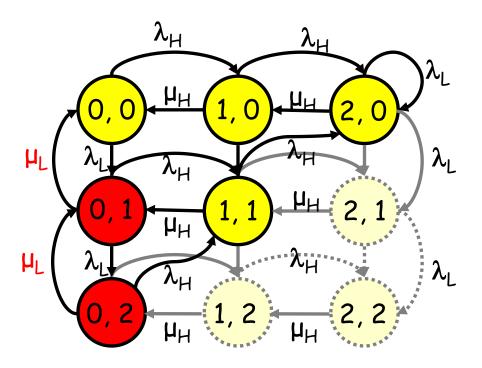
- preemptive version (K=2): assuming preempted packet placed back into queue
 - o state w/x,y indicates x priority queued, y non-priority queued
 - what are the transition probabilities?
 - what if preempted is discarded?

Modeling priority queues as M/M/1/K



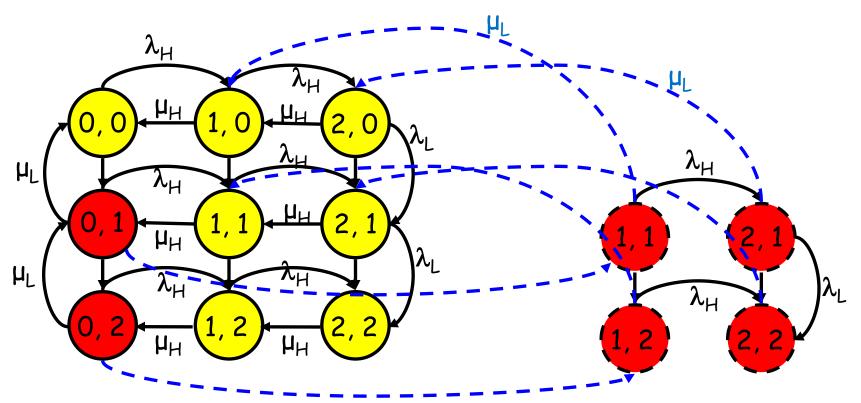
- preemptive version (K=2 for each priority)
 - state w/x,y indicates x priority queued, y non-priority queued

M/M/1/K Priority Queue: Pre-empted Job Discarded



- □ preemptive version (K=2): assuming preempted packet placed back into queue
 - o state w/x,y indicates x priority queued, y non-priority queued

Modeling priority queues as M/M/1/K

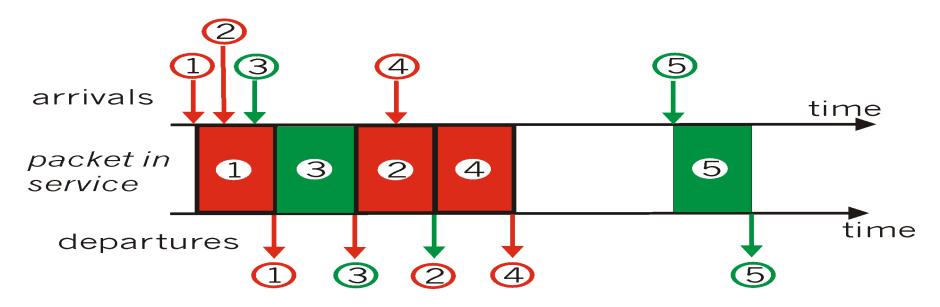


- □ Non-preemptive version (K=2)
 - o yellow (solid border) = nothing or high-priority being proc'd
 - o red (solidborder) = low-priority being processed
 - o red (dashed border) = nothing/high-priority being processed
 - what are the transition probabilities?

Scheduling Policies (more)

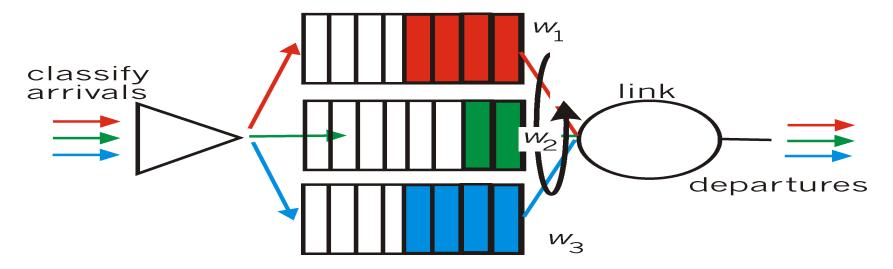
□ Round Robin:

- each flow gets its own queue
- circulate through queues, process one pkt (if queue nonempty), then move to next queue



Scheduling Policies (more)

Weighted Fair Queuing: is a generalized Round Robin in which an attempt is made to provide a class with a differentiated amount of service over a given period of time



WFQ details

- \square Each flow, i, has a weight, $W_i > 0$
- □ A Virtual Clock is maintained: V(t) is the "clock" at time t
- Each packet k in each flow i has
 - o virtual start-time: $S_{i,k}$
 - o virtual finish-time: Fik
- ☐ The Virtual Clock is restarted each time the queue is empty
- □ When a pkt arrives at (real) time t, it is assigned:
 - \circ $S_{i,k} = \max\{F_{i,k-1}, V(t)\}$
 - \circ $F_{i,k} = S_{i,k} + length(k) / W_i$
 - $V(t) = V(t') + (t-t') / \sum_{B(t',t)} W_{j}$
 - t' = last time virtual clock was updated
 - B(t',t) = set of sessions with pkts in queue during (t',t]

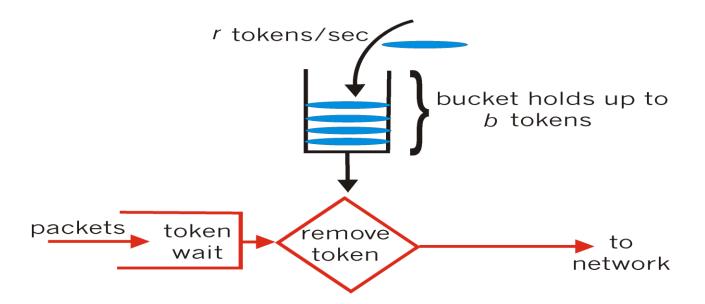
Policing Mechanisms

□ Three criteria:

- (Long term) Average Rate (100 packets per sec or 6000 packets per min??), crucial aspect is the interval length
- Peak Rate: e.g., 6000 p p minute Avg and 1500 p p sec
 Peak
- (Max.) Burst Size: Max. number of packets sent consecutively, ie over a short period of time

Policing Mechanisms

□ Token Bucket mechanism, provides a means for limiting input to specified Burst Size and Average Rate.



Policing Mechanisms (more)

- Bucket can hold b tokens; token are generated at a rate of r token/sec unless bucket is full of tokens.
- \square Over an interval of length t, the number of packets that are admitted is less than or equal to (r + b).
- □ Token bucket and WFQ can be combined to provide upper bound on delay.

