A/S/N/K SySTemS (Kendall's notation)

A/S/N/K gives a theoretical A: A
description of a system
3 A is the arrival process

o M = Markovian = Poisson Arrivals

O D = deterministic (constant time bet.
arrivals)

O G = general (anything else)
3 S is the service process
o M,D,G same as above

3 N is the number of parallel S. @ @ @
processors :

3 K is the buffer size of the queues

o K term can be dropped when buffer
size is infinite

""-:::.4_ K =Pl

*
-
.
0’ “
. **
.
. . **
.
. . 3
L 4 . ¢‘
.
- .
., o*
*s o

The M/M/l QUZUZ (a.k.a., birth-death process)

J ak.a., M/M/1/e 3 Distribution of time

o Poisson arrivals 3penT in state n the

O Exponential service time : Irs0
o 1processor, infinite length same tor all n

queue (why? why different

0 Can be modeled as a for state 0?)
Markov Chain (because of

memorylessness!) transition probs

.....

(When > 1,
is 1 larger
than # pkts
in queue)

M/M/1 cont'd

As long as A < {4, queue
has following
steady-state
average properties

7 Defs:
Q p =Ny
O N = # pkts in system

O T = packet time in
system

O Ng = # pkts in queue
O W = waiting time in
queue

O

P(N=n) = p"(1-p)
O (indicates fraction of time spent w/
n pkts in queue)
o Utilization factor =1-P(N=0)=p

E[N] =2 n P(N=n) = p/(1-p)

E[T]=E[N]/ A (Little's Law) = p/(A
(1-p))=1/(u-n)

ElNgI= 2 (n-1) P(N=n) = p2/(1-p)

E[W]=E[T] - 1/u (or = E[NQ)/A by
Little's Law) = p / (u -)

M/M/1/K queue

7 Also can be modeled as a Markov Model

O requires K+1 states for a system (queue +
processor) that holds K packets (why?)

O Stay in state K upon a packet arrival
O Note: p > 1 permitted (why?)

M/M/1/K properties

(p(1-p) / (1 - p*+1), p21
3 P(N=n) =<

1/ (K+1), p=1

(0/((1-p)(1 - p*1)), p2l
0 E[N] =<

17 (K+1), p=1
J i.e., divide M/M/1 values by (1 - pk+1)

Scheduling And Policing Mechanisms

Scheduling: choosing the next packet for
transmission on a link can be done following a
number of policies;

0 FIFO (First In First Out) a.k.a. FCFS (First Come
First Serve): in order of arrival to the queue
O packets that arrive to a full buffer are discarded

O another option: discard policy determines which packet
to discard (new arrival or something already queued)

arrivals
—_—

departures

queue link
(waiting area) (server)

Scheduling Policies

O Priority Queuing:
O Classes have different priorities

O May depend on explicit marking or other header info, eg IP
source or destination, TCP Port numbers, etc.

O Transmit a packet from the highest priority class with a non-
empty queue

high priority queue @
(waiting area) @ @ @
arrivals
arrivals / B
_’)
— | > acketin
- — gervice 0600
classify - departures

== (server)
low priority queue departures

(waiting area) @ @ @ @

Scheduling Policies

3 Priority Queueing cont'd:
O 2 versions:
* Preemptive: (postpone low-priority processing if high-
priority pkt arrives)

* non-preemptive: any packet that starts getting
processed finishes before moving on

Modeling priority queues as M/M/1/K

O preemptive version (K=2): assuming preempted packet
placed back into queue
O state w/ x.,y indicates x priority queued, y non-priority queued
O what are the transition probabilities?
O what if preempted is discarded?

Modeling priority queues as M/M/1/K

O preemptive version (K=2 for each priority)
O state w/ x.,y indicates x priority queued, y non-priority queued

10

M/M/1/K Priority Queue: Pre-empted
Job Discarded

O preemptive version (K=2): assuming preempted packet
placed back into queue
O state w/ x,y indicates x priority queued, y non-priority queued

11

Modeling priority queues as M/M/1/K

3 Non-preemptive version (K=2)
O yellow (solid border) = nothing or high-priority being proc'd
O red (solidborder) = low-priority being processed
O red (dashed border) = nothing/high-priority being processed
O what are the transition probabilities?

12

Scheduling Policies (more)

3 Round Robin:

o each flow gets its own queue

O circulate through queues, process one pkt (if queue non-
empty), then move to next queue

S

DD @ &)

arrivals i
time
P

packetin & © o @D

service

departures

o e e @ S

13

Scheduling Policies (more)

0 Weighted Fair Queuing: is a generalized Round
Robin in which an attempt is made to provide a
class with a differentiated amount of service over
a given period of time

classifty _
arrivals link

W2

14

WFQ details

3 Each flow, i, has a weight, W.> 0

3 A Virtual Clock is maintained: V(1) is the "clock” at
time t

7 Each packet k in each flow i has
O virtual start-time: S;,
O virtual finish-time: F;

3 The Virtual Clock is restarted each time the queue
IS empty

3 When a pkt arrives at (real) time t, it is assighed:
O S; = max{F; 1, V(1)}
O Fi\ = Sk *+ length(k) / W,
o V(1) = V(') + (+-1) / ZW,

B(t',1)
* t' = last time virtual clock was updated

 B(¥',1) = set of sessions with pkts in queue during (1',1]

15

Policing Mechanisms

3 Three criteria:

O (Long term) Average Rate (100 packets per sec or 6000
packets per min??), crucial aspect is the interval length

O Peak Rate: e.g., 6000 p p minute Avg and 1500 p p sec
Peak

O (Max.) Burst Size: Max. number of packets sent
consecutively, ie over a short period of time

16

Policing Mechanisms

O Token Bucket mechanism, provides a means
for limiting input to specified Burst Size
and Average Rate.

r tokens/sec{
bucket holds up to
b tokens

packetS token ‘ ; remove

p to
network

wait token

17

Policing Mechanisms (more)

O Bucket can hold b tokens; token are generated at
a rate of r token/sec unless bucket is full of
tokens.

3 Over an interval of length #, the number of
packets that are admitted is less than or equal to

(rt+b)

0 Token bucket and
WFQ can be
combined to
provide upper
bound on delay.

18

