NP-Complete Reductions 1

Prof. Gregory Provan
Department of Computer Science
University College Cork
NP-Complete Reductions

- Notion of reduction
- Circuit Satisfiability: the first NP-complete problem
- Reduction process
- Sample reductions
 - Circuit-SAT \rightarrow SAT
 - 2SAT Vertex \rightarrow Cover
 - Vertex Cover \rightarrow Clique
Today’s Learning Objectives

● Definitions
 - NP is the set of all problems (languages) that can be
 • accepted non-deterministically (using “choose” operations) in polynomial time.
 • verified in polynomial-time given a certificate y.

● Reduction techniques
 - Local replacement
 - Component design

● Some NP-complete problem reductions
 - Problem reduction
 - SAT (and CNF-SAT and 3SAT)
 - Vertex Cover
 - Clique
 - Hamiltonian Cycle
Some Thoughts about P and NP

- Belief: P is a proper subset of NP.
- Implication: the NP-complete problems are the hardest in NP.
- Why: Because if we could solve an NP-complete problem in polynomial time, we could solve every problem in NP in polynomial time.
- That is, if an NP-complete problem is solvable in polynomial time, then P=NP.
- Since so many people have attempted without success to find polynomial-time solutions to NP-complete problems, showing your problem is NP-complete is equivalent to showing that a lot of smart people have worked on your problem and found no polynomial-time algorithm.
A language M is polynomial-time reducible to a language L if an instance x for M can be transformed in polynomial time to an instance x' for L such that x is in M if and only if x' is in L.

Denote this by $M \rightarrow_L L$.

A problem (language) L is NP-hard if every problem in NP is polynomial-time reducible to L.

A problem (language) is NP-complete if it is in NP and it is NP-hard.

CIRCUIT-SAT is NP-complete:

- CIRCUIT-SAT is in NP
- For every M in NP, $M \rightarrow$ CIRCUIT-SAT.
Transitivity of Reducibility

- If \(A \rightarrow B \) and \(B \rightarrow C \), then \(A \rightarrow C \).
 - An input \(x \) for \(A \) can be converted to \(x' \) for \(B \), such that \(x \) is in \(A \) if and only if \(x' \) is in \(B \). Likewise, for \(B \) to \(C \).
 - Convert \(x' \) into \(x'' \) for \(C \) such that \(x' \) is in \(B \) iff \(x'' \) is in \(C \).
 - Hence, if \(x \) is in \(A \), \(x' \) is in \(B \), and \(x'' \) is in \(C \).
 - Likewise, if \(x'' \) is in \(C \), \(x' \) is in \(B \), and \(x \) is in \(A \).
 - Thus, \(A \rightarrow C \), since polynomials are closed under composition.

- Types of reductions:
 - Local replacement: Show \(A \rightarrow B \) by dividing an input to \(A \) into components and show how each component can be converted to a component for \(B \).
 - Component design: Show \(A \rightarrow B \) by building special components for an input of \(B \) that enforce properties needed for \(A \), such as “choice” or “evaluate.”
History

- Cook proved the first problem to be NP-Complete (1970)
 - Satisfiability

- Karp (1972) then showed a number of decision problems were also NP-Complete

- Since then, hundreds of problems have been shown to be NP-complete
Satisfiability

- **Literal**: A variable or a negated variable. E.g. x, $\neg y$

- **Clause**: Literals connected with \lor
 - E.g. $(x \lor \neg y \lor \neg z)$

- A Boolean formula is in **conjunctive normal form**, or a **CNF-formula**, if it consists of clauses connected by \land
 - E.g. $\phi(x,y,z,w) = (x \lor \neg y \lor \neg z \lor w) \land (x \lor y \lor z \lor \neg w)$

- A CNF-formula ϕ is a **3-CNFS-formula** if each clause of ϕ has 3 literals.
 - E.g. $\phi(x,y,z,w) = (x \lor y \lor z) \land (x \lor \neg y \lor w)$

- **CNF-SAT** = $\{\langle \phi \rangle : \phi$ is a satisfiable CNF-formula$\}$

- **3-SAT** = $\{\langle \phi \rangle : \phi$ is a satisfiable 3-CNFS-formula$\}$
The Cook-Levin Theorem

- Theorem (Cook 1970, Levin 1972) SAT is NP-Complete. Further, CNF-SAT is also NP-Complete.

- Corollary 3-SAT is NP-Complete.

 - Proof of Corollary (next lecture)
Cook-Levin Theorem

- SAT is NP-complete.
 - We already showed it is in NP.
- To prove it is NP-hard, we have to show that every language in NP can be reduced to it.
 - Let M be in NP, and let x be an input for M.
 - Let y be a certificate that allows us to verify membership in M in polynomial time, $p(n)$, by some algorithm D.
 - Let S be a circuit of size at most $O(p(n)^2)$ that simulates a computer (details omitted...)

CIRCUIT-SAT
A First NP-Complete Problem

A Boolean circuit is a circuit of AND, OR, and NOT gates; the CIRCUIT-SAT problem is to determine if there is an assignment of 0’s and 1’s to a circuit’s inputs so that the circuit outputs 1.

Logic Gates:
- NOT
- OR
- AND

Inputs:
- 0 → NOT → 1
- 1 → OR → 1
- 0 → AND → 0
- 1 → AND → 0

Output:
1
CIRCUIT-SAT is in NP

- Non-deterministically choose a set of inputs and the outcome of every gate, then test each gate’s I/O.
Lemma 34.5. The circuit-satisfiability problem belongs to the class NP.

Lemma 34.6. The circuit-satisfiability problem is NP-hard.

Proof. $L \leq_P CIRCUIT_SAT \quad \forall L \in NP.$

Theorem 34.7. The circuit-satisfiability problem is NP-Complete.
Reducibility Chart

- CIRCUIT-SAT
 - SAT
 - 3CNF-SAT
 - Clique
 - VERTEX COVER
 - HAM-CYCLE
 - TSP
 - SUBSET-SUM
SAT

- A Boolean formula is a formula where the variables and operations are Boolean (0/1):
 - \((a+b+\neg d+e)(\neg a+\neg c)(\neg b+c+d+e)(a+\neg c+\neg e)\)
 - OR: +, AND: (times), NOT: \(\neg\)

- SAT: Given a Boolean formula \(S\), is \(S\) satisfiable, that is, can we assign 0’s and 1’s to the variables so that \(S\) is 1 ("true")?
 - Easy to see that CNF-SAT is in NP:
 - Non-deterministically choose an assignment of 0’s and 1’s to the variables and then evaluate each clause. If they are all 1 ("true"), then the formula is satisfiable.
SAT is NP-complete

- Reduce CIRCUIT-SAT to SAT.

 - Given a Boolean circuit, make a variable for every input and gate.

 - Create a sub-formula for each gate, characterizing its effect. Form the formula as the output variable AND-ed with all these sub-formulas:

 • Example: \(m((a+b)\leftrightarrow e)(c\leftrightarrow \neg f)(d\leftrightarrow \neg g)(e\leftrightarrow \neg h)(ef\leftrightarrow i) \ldots \)

The formula is satisfiable if and only if the Boolean circuit is satisfiable.
Vertex Cover

- A vertex cover of graph $G=(V,E)$ is a subset W of V, such that, for every edge (a,b) in E, a is in W or b is in W.

- **VERTEX-COVER**: Given a graph G and an integer K, is does G have a vertex cover of size at most K?

- **VERTEX-COVER** is in NP: Non-deterministically choose a subset W of size K and check that every edge is covered by W.
Vertex-Cover is NP-complete

- Reduce 3SAT to VERTEX-COVER.
 - Let S be a Boolean formula in CNF with each clause having 3 literals.
 - For each variable x, create a node for x and $\neg x$, and connect these two:

```
X    ¬X
```

- For each clause $(a+b+c)$, create a triangle and connect these three nodes.

```
a
  /\  /
 /   \
 b---c
```
Completing the construction

Connect each literal in a clause triangle to its copy in a variable pair.

E.g., a clause (¬x+y+z)

Let n= # of variables
Let m= # of clauses
Set K = n + 2m
Vertex-Cover is NP-complete

Example: \((a+b+c)(\neg a+b+\neg c)(\neg b+\neg c+\neg d)\)

Graph has vertex cover of size \(K=4+6=10\) iff formula is satisfiable.
Clique

- A clique of a graph $G=(V,E)$ is a subgraph C that is fully-connected (every pair in C has an edge).
- CLIQUE: Given a graph G and an integer K, is there a clique in G of size at least K?
- CLIQUE is in NP: non-deterministically choose a subset C of size K and check that every pair in C has an edge in G.

This graph has a clique of size 5

CS 4407, Algorithms
University College Cork,
Gregory M. Provan
CLIQUE is NP-Complete

- Reduction from VERTEX-COVER.
- A graph G has a vertex cover of size K if and only if its complement has a clique of size $n-K$.

![Graph G](image)

![Graph G'](image)
Lecture Summary

- **NP-Completeness proof steps for problem Q**
 - Q is in NP
 - Some NP-complete problem reduces to Q in polynomial time

- **Study of Reduction techniques**
 - Local replacement
 - Component design

- **Some NP-complete problem reductions**
 - Circuit-SAT → SAT
 - 3SAT → Vertex Cover
Some Other NP-Complete Problems

- **SET-COVER**: Given a collection of m sets, are there K of these sets whose union is the same as the whole collection of m sets?
 - NP-complete by reduction from VERTEX-COVER

- **SUBSET-SUM**: Given a set of integers and a distinguished integer K, is there a subset of the integers that sums to K?
 - NP-complete by reduction from VERTEX-COVER
Some Other NP-Complete Problems

- **0/1 Knapsack**: Given a collection of items with weights and benefits, is there a subset of weight at most W and benefit at least K?
 - NP-complete by reduction from SUBSET-SUM

- **Hamiltonian-Cycle**: Given an graph G, is there a cycle in G that visits each vertex exactly once?
 - NP-complete by reduction from VERTEX-COVER

- **Traveling Salesperson Tour**: Given a complete weighted graph G, is there a cycle that visits each vertex and has total cost at most K?
 - NP-complete by reduction from Hamiltonian-Cycle.