Graphs and Data Structures
A graph is a pair \((V, E)\), where
- \(V\) is a set of nodes, called vertices
- \(E\) is a collection of pairs of vertices, called edges
- Vertices and edges are positions and store elements

Example:
- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route
Edge Types

- **Directed edge**
 - ordered pair of vertices \((u,v)\)
 - first vertex \(u\) is the origin
 - second vertex \(v\) is the destination
 - e.g., a flight

- **Undirected edge**
 - unordered pair of vertices \((u,v)\)
 - e.g., a flight route

- **Directed graph**
 - all the edges are directed
 - e.g., route network

- **Undirected graph**
 - all the edges are undirected
 - e.g., flight network
Applications

- **Electronic circuits**
 - Printed circuit board
 - Integrated circuit

- **Transportation networks**
 - Highway network
 - Flight network

- **Computer networks**
 - Local area network
 - Internet
 - Web

- **Databases**
 - Entity-relationship diagram
Terminology

- **End vertices (or endpoints) of an edge**
 - U and V are the endpoints of an edge.
- **Edges incident on a vertex**
 - a, d, and b are incident on V.
- **Adjacent vertices**
 - U and V are adjacent.
- **Degree of a vertex**
 - X has degree 5.
- **Parallel edges**
 - h and i are parallel edges.
- **Self-loop**
 - j is a self-loop.
Terminology (cont.)

- **Path**
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints

- **Simple path**
 - path such that all its vertices and edges are distinct

- **Examples**
 - \(P_1 = (V,b,X,h,Z) \) is a simple path
 - \(P_2 = (U,c,W,e,X,g,Y,f,W,d,V) \) is a path that is not simple
Cycle
- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints

Simple cycle
- cycle such that all its vertices and edges are distinct

Examples
- $C_1 = (V, b, X, g, Y, f, W, c, U, a, c)$ is a simple cycle
- $C_2 = (U, c, W, e, X, g, Y, f, W, d, V, a, c)$ is a cycle that is not simple
Properties

Property 1

\[\sum_v \deg(v) = 2m \]

Proof: each edge is counted twice

Property 2

In an undirected graph with no self-loops and no multiple edges

\[m \leq n \frac{(n - 1)}{2} \]

Proof: each vertex has degree at most \((n - 1) \)

What is the bound for a directed graph?
Main Methods of the Graph ADT

- **Vertices and edges**
 - are positions
 - store elements

- **Accessor methods**
 - `endVertices(e)`: an array of the two endvertices of e
 - `opposite(v, e)`: the vertex opposite of v on e
 - `areAdjacent(v, w)`: true iff v and w are adjacent
 - `replace(v, x)`: replace element at vertex v with x
 - `replace(e, x)`: replace element at edge e with x

- **Update methods**
 - `insertVertex(o)`: insert a vertex storing element o
 - `insertEdge(v, w, o)`: insert an edge (v,w) storing element o
 - `removeVertex(v)`: remove vertex v (and its incident edges)
 - `removeEdge(e)`: remove edge e

- **Iterator methods**
 - `incidentEdges(v)`: edges incident to v
 - `vertices()`: all vertices in the graph
 - `edges()`: all edges in the graph
Edge List Structure

- **Vertex object**
 - element
 - reference to position in vertex sequence

- **Edge object**
 - element
 - origin vertex object
 - destination vertex object
 - reference to position in edge sequence

- **Vertex sequence**
 - sequence of vertex objects

- **Edge sequence**
 - sequence of edge objects

10
Adjacency List Structure

- Edge list structure
- Incidence sequence for each vertex
 - sequence of references to edge objects of incident edges
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices
Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non-adjacent vertices
- The “old fashioned” version just has 0 for no edge and 1 for edge
Asymptotic Performance

- **n** vertices, **m** edges
- no parallel edges
- no self-loops
- Bounds are “big-Oh”

<table>
<thead>
<tr>
<th></th>
<th>Edge List</th>
<th>Adjacency List</th>
<th>Adjacency Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>$n + m$</td>
<td>$n + m$</td>
<td>n^2</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>m</td>
<td>$\text{deg}(v)$</td>
<td>n</td>
</tr>
<tr>
<td>areAdjacent (v, w)</td>
<td>m</td>
<td>$\min(\text{deg}(v), \text{deg}(w))$</td>
<td>1</td>
</tr>
<tr>
<td>insertVertex(o)</td>
<td>1</td>
<td>1</td>
<td>n^2</td>
</tr>
<tr>
<td>insertEdge(v, w, o)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>m</td>
<td>$\text{deg}(v)$</td>
<td>n^2</td>
</tr>
<tr>
<td>removeEdge(e)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>