- 1. [30] Assume that we have a large undirected graph G(V,E), from which we can compute the neighbours  $\rho(v)$  of a node  $v \in V$  as the nodes adjacent to v in G. The common neighbours of (u,v) consist of those vertices in the intersection  $\rho(u) \cap \rho(v)$ .
  - (i) [20] Define the MapReduce pseudo-code for computing the common neighbours  $\chi$  between every two vertices in a graph G.
  - (ii) [10] Apply your code to the example graph given below.



- 2. [30] We are interested in specifying how to process a simple web network using a MapReduce implementation of PageRank. Assume that we have the network shown in Figure 1.
  - [10] Write out the pseudo-code for a MapReduce implementation of PageRank.
  - b. [10] Apply the MapReduce algorithm to the network to compute the network weights, showing the weights at each step of MapReduce, for the first 3 steps of MapReduce.
  - c. [10] Is MapReduce guaranteed to compute the same result as a centralised algorithm? Does it compute the same result in this example?



Figure 1: MapReduce network

- 3. [30] The company Amazon wants to calculate the number of times customers ordered pairs of goods at the same time. For a set of goods  $G=\{G_1, G_2, ..., G_m\}$ , and a set of customer orders  $O=\{O_1, O_2, ..., O_n\}$ , with n > m, Amazon wants to know the number of times customers ordered multiple items from G in an order in the set O of orders. We have up to  $n^2$  CPUs available for processing at any time.
  - a. [10] Draw a figure showing the architecture of using MapReduce for solving the Amazon problem.
  - b. [10] Write out the pseudo-code for applying MapReduce to compute when customers ordered any two items together. In other words, we want to return the vector  $\{(G_1, \Omega_1), (G_2, \Omega_2)..., (G_m, \Omega_m)\}$ , where  $\Omega_i$  is the number of times good  $G_i \in G$  was ordered with one other good.
  - c. [10] Extend this to compute the number of times a customer ordered three or more goods containing  $G_i$  (denoted  $\#_i$ ), for each  $G_i \in G$ . In other words, we want to return the vector  $\{(G_1, \#_1), (G_2, \#_2)..., (G_m, \#_m)\}$ .