#### Algorithms in MapReduce

Analytics Algorithms



### Plan for today

• Analytics algorithms



- k-means clustering
- Classification with Naïve Bayes



#### Analytics Toolbox

- We need a toolbox of algorithms useful for analyzing data that has both relationships and properties
- Learning algorithms are critical



#### **C1: Collaborative Filtering**

- Extensive framework for collaborative filtering (recommenders)
- Recommenders
  - User based
  - Item based
- Online and Offline support
  - Offline can utilize Hadoop
- Many different Similarity measures
  - Cosine, LLR, Tanimoto, Pearson, others





### C2: Clustering

- Group similar objects together
- K-Means, Fuzzy K-Means, Density-Based,...
- Different distance measures
  - Manhattan, Euclidean, ...







### C3: Classification

- Place new items into predefined categories:
  - Sports, politics, entertainment
  - Recommenders
- Implementations
  - Naïve Bayes (M/R)
  - Compl. Naïve Bayes (M/R)
  - Decision Forests (M/R)
  - Linear Regression (Seq. but Fast!)





Cork Complex Systems Leb

#### FPM: Frequent Pattern Mining

#### • Find the frequent itemsets

- <milk, bread, cheese> are sold frequently together
- Very common in market analysis, access pattern analysis, etc...





## Learning (clustering / classification)

- Sometimes our goal is to take a set of entities, possibly related, and group them
  - If the groups are based on similarity, we call this clustering
  - If the groups are based on putting them into a semantically meaningful class, we call this classification
- Both are instances of machine learning



#### The k-clustering Problem



- Given: A set of items in a n-dimensional feature space
  - Example: data points from survey, people in a social network
- Goal: Group the items into k "clusters"
  - What would be a 'good' set of clusters?



### **K-Means Algorithm**

- **Step 1:** Select K points at random (Centers)
- **Step 2**: For each data point, assign it to the closest center
  - Now we formed K clusters
- **Step 3:** For each cluster, re-compute the centers
  - E.g., in the case of 2D points  $\rightarrow$ 
    - X: average over all x-axis points in the cluster
    - Y: average over all y-axis points in the cluster
- Step 4: If the new centers are different from the old centers (previous iteration) → Go to Step 2



#### Approach: k-Means

- Let m<sub>1</sub>, m<sub>2</sub>, ..., m<sub>k</sub> be representative points for each of our k clusters
  - Specifically: the centroid of the cluster
- Initialize  $m_1, m_2, ..., m_k$  to random values in the data
- For t = 1, 2, ...:
  - Map each observation to the closest mean

$$S_{i}^{(t)} = \left\{ x_{j} : \left\| x_{j} - m_{i}^{(t)} \right\| \leq \left\| x_{j} - m_{i^{*}}^{(t)} \right\|, i^{*} = 1, \dots, k \right\}$$

- Assign the m<sub>i</sub> to be a new centroid for each set

$$m_i^{(t+1)} = \frac{1}{\left|S_i^{(t)}\right|} \sum_{x_j \in S_i^{(t)}} x_j$$



#### A simple example (1/4)



Cark Camplex Systems Leb

#### A simple example (2/4)





#### A simple example (3/4)





#### A simple example (4/4)



Stable!



### **K-Means in MapReduce**

#### • Input

- Dataset (set of points in 2D) --Large
- Initial centroids (K points) --Small

#### • Map Algorithm

- Each map reads the K-centroids + one block from dataset
- Assign each point to the closest centroid
- Output <centroid, point>





### K-Means in MapReduce (Cont'd)

#### Reduce Algorithm

- Gets all points for a given centroid
- Re-compute a new centroid for this cluster
- Output: <new centroid>
- Iteration Control
  - Compare the old and new set of K-centroids
    - If similar → Stop
    - Else
      - If max iterations has reached → Stop
      - Else → Start another Map-Reduce Iteration





#### k-Means in MapReduce

- Map:#1:
  - Input: node ID  $\rightarrow$  <position, centroid ID, [centroid IDs and positions]>
  - Compute nearest centroid; emit centroid ID → <node ID, position>
- Reduce:#1:
  - Recompute centroid position from positions of nodes in it
  - - Each centroid will need to know where all the other centroids are
- Map #2:
  - Pass through values to Reducer #2
- Reduce #2:
  - For each node in the current centroid, emit node ID → <position, centroid ID, [centroid IDs and positions]>
    - Input for the next map iteration
  - Also, emit <X, <centroid ID, position>>
    - This will be the 'result' (remember that we wanted the centroids!)
- Repeat until no change



#### Plan for today

- A toolbox of algorithms
  - k-means clustering 💉
  - Classification with Naïve Bayes





### Classification

- Suppose we want to learn what is spam (or interesting, or ...)
  - Predefine a set of classes with semantic meanin
  - Train an algorithm to look at data and assign a c
    - Based on giving it some examples of data in each class
    - ... and the sets of features they have
- Many probabilistic techniques exist
  - Each class has probabilistic relationships with others
    - e.g., p (spam | isSentLocally), p (isSentLocally | fromBob), ...
    - Typically represented as a graph(ical model)!
  - But we'll focus on a simple model: Naïve Bayes





### A simple example

• Suppose we just look at the keywords in the email's title:

Message(1, "Won contract") Message(2, "Won award") Message(3, "Won the lottery") Message(4, "Unsubscribe") Message(5, "Millions of customers") Message(6, "Millions of dollars")



- What is probability message "Won Millions" is
   p(spam|containsWon,containsMillions)
  - p(spam) p(containsWon,containsMillions |spam}
     Bayes'
     p(containsWon,containsMillions)
     Theorem





#### **Classification using Naïve Bayes**

- Basic assumption: Probabilities of events are independent
  - This is why it is called 'naïve'
- Under this assumption,

p(spam) p(containsWon,containsMillions | spam) p(containsWon,containsMillions)

= p(spam) p(containsWon | spam) p(containsMillions | spam) p(containsWon) p(containsMillions)

= 0.5 \* 0.67 \* 0.33 / (0.5 \* 0.33) = 0.67

- So how do we "train" a learner (compute the above probabilities) using MapReduce?



#### What do we need to train the learner?

- p(spam)
  - Count how many spam emails there are
  - Count total number of emails
- p(containsXYZ | spam)
  - Count how many spam emails contain XYZ
  - Count how many emails are spam overall
- p(containsXYZ)
  - Count how many emails contain XYZ overall
  - Count total number of emails

Easv







Easy

Easy

Easy

#### Probabilistic relevance feedback

- User has told us some relevant and some irrelevant documents
- Build a probabilistic classifier: Naive Bayes model
- Classifies relevant/irrelevant based on features

Class variable



Feature variables



#### 1. Learning the Model



- Input: Classified data
  - simply compute the frequencies in the data

| Class | X1 | X2 | Х3 | X4 | X5 | X6 |
|-------|----|----|----|----|----|----|
| spam  | Т  | F  | F  | Т  | F  | F  |
| Ham   | F  | Т  | Т  | F  | F  | Т  |
| spam  | Т  | F  | Т  | Т  | F  | F  |
| spam  | Т  | Т  | F  | Т  | Т  | Т  |
| Ham   | F  | Т  | Т  | F  | Т  | Т  |
| Ham   | Т  | F  | Т  | Т  | t  | F  |



#### 1. Learning the Model



• Compute the frequencies in the data

| Class | X1 | X2 | X3 | X4 | X5 | X6 |
|-------|----|----|----|----|----|----|
| spam  | Т  | F  | F  | т  | F  | F  |
| Ham   | F  | т  | т  | F  | F  | т  |
| spam  | т  | F  | т  | т  | F  | F  |
| spam  | т  | т  | F  | т  | т  | т  |
| Ham   | F  | т  | т  | F  | т  | т  |
| Ham   | т  | F  | т  | т  | т  | F  |



26

#### Learning the Model



• Computing the frequencies in the data

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N}$$
$$\hat{P}(x_i | c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_j)}$$



#### 2: Classifying New Instances



- Input: features  $(X_1, ..., X_6)$
- Must compute
  - $P(spam | X_1,...,X_6)$
  - $P(ham | X_1,...,X_6)$
- Class assigned has higher probability



#### 2: Classifying New Instances



- Input: features  $(X_1, ..., X_6)$
- We know:
  - $P(X_1 | spam)..., P(X_6 | spam), P(spam)$
  - $P(X_1 | ham)..., P(X_6 | ham), P(ham)$
- Must compute
  - $P(spam | X_1,...,X_6)$
  - $P(ham | X_1,...,X_6)$
- How to do this?



#### **Bayes' Rule**

# P(C, X) = P(C | X)P(X) = P(X | C)P(C)

 $P(C \mid X) = \frac{P(X \mid C)P(C)}{P(X)}$ 



30

#### The Naïve Bayes Classifier



• Conditional Independence Assumption: Features (term presence) are *independent* of each other given the class:

 $P(X_1,...,X_5 | C) = P(X_1 | C) \bullet P(X_2 | C) \bullet \cdots \bullet P(X_5 | C)$ 

- This model is appropriate for binary variables
  - Multivariate Bernoulli model



#### The Naïve Bayes Classifier



 $P(X_1,...,X_5 | C) = P(X_1 | C) \bullet P(X_2 | C) \bullet \cdots \bullet P(X_5 | C)$ 

• Use Bayes' Rule to "invert" the model

$$P(C \mid X) \propto P(C) \prod_{i=1}^{n} P(X_i \mid C)$$
$$P(\neg C \mid X) \propto P(\neg C) \prod_{i=1}^{n} P(X_i \mid \neg C)$$



#### Summary of model and parameters

• Naïve Bayes model:

$$P(spam \mid message) \propto P(spam) \prod_{i=1}^{n} P(w_i \mid spam)$$

$$P(\neg spam \mid message) \propto P(\neg spam) \prod_{i=1}^{n} P(w_i \mid \neg spam)$$
Model parameters:





#### **Naive Bayes Classifiers**

Task: Classify a new instance D based on a tuple of attribute values  $D = \langle x_1, x_2, \dots, x_n \rangle$  into one of the classes  $c_i \in C$  $\dot{c}_{MAP} = \operatorname{argmax} P(c_i \mid x_1, x_2, \dots, x_n)$  $c_i \in C$  $= \underset{c_{j} \in C}{\operatorname{argmax}} \frac{P(x_{1}, x_{2}, \dots, x_{n} \mid c_{j})P(c_{j})}{P(x_{1}, x_{2}, \dots, x_{n})}$ = argmax  $P(x_1, x_2, \dots, x_n | c_i) P(c_i)$  $c_i \in C$ MAP = Maximum Aposteriori Probability



#### Naive Bayes Classifier: Naïve Bayes Assumption

- $P(c_j)$ 
  - Can be estimated from the frequency of classes in the training examples.
- $P(x_1, x_2, ..., x_n/c_j)$ 
  - $O(|X|^n \cdot |C|)$  parameters
  - Could only be estimated if a very, very large number of training examples was available.

Naïve Bayes Conditional Independence Assumption:

 Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities P(x<sub>i</sub> | c<sub>j</sub>).



#### Example

#### • Example: Play Tennis

| ððð |          |             |          |        |            |
|-----|----------|-------------|----------|--------|------------|
| Day | Outlook  | Temperature | Humidity | Wind   | PlayTennis |
| D1  | Sunny    | Hot         | High     | Weak   | No         |
| D2  | Sunny    | Hot         | High     | Strong | No         |
| D3  | Overcast | Hot         | High     | Weak   | Yes        |
| D4  | Rain     | Mild        | High     | Weak   | Yes        |
| D5  | Rain     | Cool        | Normal   | Weak   | Yes        |
| D6  | Rain     | Cool        | Normal   | Strong | No         |
| D7  | Overcast | Cool        | Normal   | Strong | Yes        |
| D8  | Sunny    | Mild        | High     | Weak   | No         |
| D9  | Sunny    | Cool        | Normal   | Weak   | Yes        |
| D10 | Rain     | Mild        | Normal   | Weak   | Yes        |
| D11 | Sunny    | Mild        | Normal   | Strong | Yes        |
| D12 | Overcast | Mild        | High     | Strong | Yes        |
| D13 | Overcast | Hot         | Normal   | Weak   | Yes        |
| D14 | Rain     | Mild        | High     | Strong | No         |

#### PlayTennis: training examples



#### Example

#### • Learning Phase

| Outlook  | Play=Yes | Play=No | Temperature | Play=Yes | Play=No |
|----------|----------|---------|-------------|----------|---------|
| Sunny    | 2/9      | 3/5     | Hot         | 2/9      | 2/5     |
| Overcast | 4/9      | 0/5     | Mild        | 4/9      | 2/5     |
| Rain     | 3/9      | 2/5     | Cool        | 3/9      | 1/5     |

| Humidity | Play=Yes | Play=No | V |
|----------|----------|---------|---|
| High     | 3/9      | 4/5     | S |
| Normal   | 6/9      | 1/5     |   |

| Wind   | Play=Yes | Play=No |
|--------|----------|---------|
| Strong | 3/9      | 3/5     |
| Weak   | 6/9      | 2/5     |

P(Play=Yes) = 9/14 P(Play=No) = 5/14



### Example

#### Test Phase

Given a new instance, predict its label

**X**'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

Look up tables achieved in the learning phrase

P(Outlook=Sunny | Play=Yes) = 2/9 P(Temperature=Cool | Play=Yes) = 3/9 P(Huminity=High | Play=Yes) = 3/9 P(Wind=Strong | Play=Yes) = 3/9 P(Play=Yes) = 9/14 P(Outlook=Sunny | Play=No) = 3/5 P(Temperature=Cool | Play==No) = 1/5 P(Huminity=High | Play=No) = 4/5 P(Wind=Strong | Play=No) = 3/5 P(Play=No) = 5/14

Decision making with the MAP rule

 $\frac{P(Yes \mid \mathbf{x}'): [P(Sunny \mid Yes)P(Cool \mid Yes)P(High \mid Yes)P(Strong \mid Yes)]P(Play=Yes) = 0.0053$ 

 $P(No \mid \mathbf{x'}): [P(Sunny \mid No) \mid P(Cool \mid No)P(High \mid No)P(Strong \mid No)]P(Play=No) = 0.0206$ 

Given the fact  $P(Yes | \mathbf{x}') < P(No | \mathbf{x}')$ , we label  $\mathbf{x}'$  to be "No".



#### MapReduce for Naïve Bayes



- Example: Medical classification
- Map
  - Learn the probability tables
- Reduce
  - Estimate class posteriors given attribute vector







#### Training Naïve Bayes #1

- map 1:
  - takes messageId  $\rightarrow$  <class, {words}>
  - emits <word, class>  $\rightarrow$  1
- reduce 1:
  - emits <word, class>  $\rightarrow$  <count>
- map 2:
  - takes messageId -> <class, {words}>
  - emits word  $\rightarrow$  1
- reduce 2:
  - emits word  $\rightarrow$  <totalCount>

Count how many emails in the class contain the word (modified WordCount)

Count how many emails contain the word overall (WordCount)



### Summary: Learning and MapReduce

- Clustering algorithms typically have multiple aggregation stages or iterations
  - k-means clustering repeatedly computes centroids, maps items to them
  - Fixpoint computation
- Classification algorithms can be quite complex
  - In general: need to capture conditional probabilities
  - Naïve Bayes assumes everything is independent
  - Training is a matter of computing probability distribution
    - Can be accomplished using two Map/Reduce passes

