
PageRank and Adsorption 

 

MapReduce Framework 
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Plan for today 

• PageRank 

– Different formulations: Iterative, Matrix 

– Complications: Sinks and hogs 

– Implementation in MapReduce 

• Adsorption 

– Label propagation 

– Implementation in MapReduce 
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Background 

• History: 

– Proposed by Sergey Brin and Lawrence Page (Google’s Bosses) in 1998 

at Stanford. 

– Algorithm of the first generation of Google Search Engine. 

– “The Anatomy of a Large-Scale Hypertextual Web Search Engine”. 

 

• Target: 

– Measure the importance of Web page based on the link structure alone. 

– Assign each node a numerical score between 0 and 1: PageRank. 

– Rank Web pages based on PageRank values. 

 



Why link analysis? 

• Suppose a search engine processes a query for "team 

sports" 

– Problem: Millions of pages contain these words! 

– Which ones should we return first? 

• Idea: Hyperlinks encode a considerable amount of 

human judgment 

– What does it mean when a web page links another page? 

– Intra-domain links: Often created primarily for navigation 

– Inter-domain links: Confer some measure of authority 

• So, can we simply boost the rank of pages with lots 

of inbound links? 
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Problem: Popularity  relevance! 

5 

“A-Team”  
page 

Hollywood 

“Series to 

Recycle” page 

Yahoo 

directory 

Wikipedia Mr. T’s 

page 

Team 

Sports 

Cheesy TV 

shows page 

Shouldn't links from Yahoo and  
Wikipedia "count more"? 



Other applications 

• This question occurs in several other areas: 

– How do we measure the "impact" of a researcher? 

(#papers? #citations?) 

– Who are the most "influential" individuals in a social 

network? 

(#friends?) 

– Which programmers are writing the "best" code? 

(#uses?) 

– ... 
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Largest Matrix Computation in the World 

• Computing PageRank done via matrix 
multiplication  
– matrix has 3 billion rows and columns. 

• The matrix is sparse 
– average number of outlinks is between 7 and 8. 

• Researchers still trying to speed-up the 
computation 

• PageRank convergence 
– Setting d = 0.15 (teleportation probability or decay factor for 

loops) or above requires at most 100 iterations to convergence. 

 



Link Spamming to Improve PageRank 

• Spam is the act of trying unfairly to gain a high ranking 

on a search engine for a web page without improving 

the user experience. 

• Link farms  - join the farm by copying a hub page which 

links to all members. 

• Selling links from sites with high PageRank. 



PageRank: Intuition 

• Imagine a contest for The Web's Best Page 

– Initially, each page has one vote 

– Each page votes for all the pages it has a link to 

– To ensure fairness, pages voting for more than one page must 

split their vote equally between them 

– Voting proceeds in rounds; in each round, each page has the 

number of votes it received in the previous round 

– In practice, it's a little more complicated - but not much! 
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PageRank 

• Each page i is given a rank xi 

• Goal: Assign the xi such that the rank of each page 

is governed by the ranks of the pages linking to it: 
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Random Surfer Model 

• PageRank has an intuitive basis in random walks on 

graphs 
 

• Imagine a random surfer, who starts on a random 

page and, in each step, 

– with probability d, clicks on a random link on the page 

– with probability 1-d, jumps to a random page (bored?) 

 

• The PageRank of a page can be interpreted as the 

fraction of steps the surfer spends on the 

corresponding page 

– Transition matrix can be interpreted as a Markov Chain 
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Iterative PageRank (simplified) 
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Example: Step 1 

)()1( 1 k

j

Bj j

k

i x
N

x
i




 

14 

0.17 

0.33 

0.33 

0.17 

Propagate weights 

across out-edges 



Example: Step 2 
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Example: Convergence 
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Naïve PageRank Algorithm Restated 

• Let 

– N(p) = number outgoing links from page p 

– B(p) = number of back-links to page p 

 

  

 

– Each page b distributes its importance to all of the 

pages it points to (so we scale by 1/N(b)) 

– Page p’s importance is increased by the importance 

of its back set 
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In Linear Algebra formulation 

• Create an m x m matrix M to capture links: 

– M(i, j)  = 1 / nj  if page i is pointed to by page j  

 and page j has nj outgoing links 

           = 0       otherwise 

 

– Initialize all PageRanks to 1, multiply by M repeatedly until 

all values converge: 

 

 

 

 

 

– Computes principal eigenvector via power iteration 
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A brief example 
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Oops #1 
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Oops #2 
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Stopping the Hog 
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Improved PageRank 

• Remove out-degree 0 nodes (or consider them to 

refer back to referrer) 

• Add decay factor d to deal with sinks 

 

 

 

• Typical value: d=0.85 

 

• Intuition in the idea of the “random surfer”: 

– Surfer occasionally stops following link sequence and jumps 

to new random page, with probability 1 - d 
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Markov Chains 

• Markov Chain: 

– A Markov chain is a discrete-time stochastic process consisting of N states, 

each Web page corresponds to a state. 

– A Markov chain is characterized by an N*N transition probability matrix P. 

• Transition Probability Matrix: 

– Each entry is in the interval [0,1]. 

–                                  Pij is the probability that the state at the next time-

step is j, conditioned on the current state being i. 

– Each entry Pij is known as a transition probabilit and depends only on the 

current state i. Markov property. 
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Markov Chains 

• Transition Probability Matrix: 

– A matrix with non-negative entries that satisfies  

– is known as a stochastic matrix. 

– Has a principal left eigenvector corresponding to its largest eigenvalue, 

which is 1. 

• Derive the Transition Probability Matrix P: 

– Build the adjacency matrix A of the web graph. 

• There is a hyperlink from page i to page j, Aij = 1, otherwise Aij =0. 

– Divide each 1 in A by the number of 1s in its row. 

– Multiply the resulting matrix by 1- α. 

– Add α/N to every entry of the resulting matrix, to obtain P. 
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Markov Chains 

• Ergodic Markov Chain : 

– Conditions: 

• Irreducibility 

– A sequence of transitions of nonzero probability from any state to any state. 

• Aperiodicity 

– States are not partitioned into sets such that all state transitions occur cyclically 

from one set to another. 

– Property: 

• There is a unique steady-state probability vector π that is the principal left 

eigenvector of P. 

• η(i,t) is the number of visits to state i in t steps. 

• π(i)>0 is the steady-state probability for state i. 
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PageRank Computation 

• Target 

– Solve the steady-state probability vector π, which is the PageRank of 

the corresponding Web page. 

– πP=λ π, λ is 1 for stochastic matrix. 

• Method 

– Power iteration. 

– Given an initial probability distribution vector x0 

– x0*P=x1, x1*P=x2 … Until the probability distribution converges. 

(Variation in the computed values are below some predetermined 

threshold.) 
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PageRank on MapReduce 

• Inputs 

– Of the form: page  (currentWeightOfPage, {adjacency list}) 

• Map 

– Page p “propagates” 1/Np of its d * weight(p) to the destinations 

of its out-edges (think like a vertex!) 

– Output adjacency list 

• Reduce 

– Page p sums the incoming weights and adds (1-d), to get its 

weight’(p) 

• Iterate until convergence 

– Common practice: run some fixed number of times, e.g., 25x 

– Alternatively: Test after each iteration with a second MapReduce 

job, to determine the maximum change between old and new 

weights 
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Plan for today 

• PageRank 

– Different formulations: Iterative, Matrix 

– Complications: Sinks and hogs 

– Implementation in MapReduce 

• Adsorption 

– Label propagation 

– Implementation in MapReduce 
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YouTube Suggestions 

32 What can we leverage to make such recommendations? 



Co-views: Video-video 
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 Idea #1: Keep track of which videos are 

frequently watched together 
 If many users watched both video A and video B, then A should 

be recommended to users who have viewed B, and vice versa  

 If there are many such videos, how can we rank them? 



Co-Views: User-video 
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 Idea #2: Leverage 

similarities between users 

 If Alice and Bob have both 

watched videos A, B, and C, 

and Alice has additionally 

watched video D, then perhaps 

D will interest Bob too? 

 

 How can we see that in the 

graph? 

 Short path between two videos 

 Several paths between 2 

videos 

 Paths that avoid high-degree 

nodes in the graph (why?) 
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More sophisticated link analysis 

• PageRank computes a stationary distribution for the 

random walk:  the probability is independent of 

where you start 

– One authority score for every page 

 

• But here we want to know how likely we are to end 

up at video j given that we started from user i 

– e.g., what are the odds that user i will like video j? 

– this is a probability conditioned on where you start 
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Video-video and user-video combined 

• Our task: 

– Take the video-video co-views and the user-video co-views 

(potentially annotated with weights) 

– Assign to each video a score for each user, indicating the 

likelihood the user will want to view the video 
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Adsorption: Label propagation 

• Adsorption: Adhesion of atoms, ions, etc. to a surface 

– The adsorption algorithm attempts to “adhere” labels and 

weights to various nodes, establishing a connection 

 

• There are three equivalent formulations of the 

method: 

– A random walk algorithm that looks much like PageRank 

– An averaging algorithm that is easily MapReduced  

• This is the one we'll focus on 

– A linear systems formulation 
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Adsorption as an iterative average 

• Easily MapReducible 

 

• Pre-processing step: 

– Create a series of labels L, one for each user or entity 

– Take the set of vertices V 

– For each label l in L: 

• Designate an “origin” node vl  (typically given node label l) 

• Annotate it with the label l and weight 1.0 

– Much like what we do in PageRank to start 
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Adsorption: Propagating labels 

• Iterative process: 

– Compute the likelihood for each vertex v that a user x, in a 

random walk, will arrive at v – call this the probability of  

lx  L associated with node v 
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Adsorption: Propagating labels 

• Iterative process: 

– Compute the likelihood for each vertex v that a user x, in a 

random walk, will arrive at v – call this the probability of  

lx  L associated with node v 
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Adsorption: Propagating labels 

• Iterative process: 

– Compute the likelihood for each vertex v that a user x, in a 

random walk, will arrive at v – call this the probability of  

lx  L associated with node v 

 

41 

0.6 

0.5 

0.8 

0.2 
Bob 

Alice 

Vietnam Trekking 

Global Trekking 

SE Asia Tour 

0.33 0.5 0.4 

0.33 

0.33 

1.0 

B: 0.8 

A: 0.6 

A: 0.4 

B: 0.2 

Normalize 

node weights 
so they sum 

to 1.0 

Assign node labels 

& weights by summing 



Adsorption: Propagating labels 

• Iterative process: 

– Compute the likelihood for each vertex v that a user x, in a 

random walk, will arrive at v – call this the probability of  

lx  L associated with node v 
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Adsorption: Propagating labels 

• Iterative process: 

– Compute the likelihood for each vertex v that a user x, in a 

random walk, will arrive at v – call this the probability of  

lx  L associated with node v 
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Adsorption: Propagating labels 

• Iterative process: 

– Compute the likelihood for each vertex v that a user x, in a 

random walk, will arrive at v – call this the probability of  

lx  L associated with node v 
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Adsorption: Propagating labels 

• Iterative process: 

– Compute the likelihood for each vertex v that a user x, in a 

random walk, will arrive at v – call this the probability of  

lx  L associated with node v 
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Adsorption algorithm formulation 

• Inputs:  G = (V, E, w) where w : E  ; 

L: set of labels; VL  V: nodes with labels 

 

• Repeat 

  foreach v  V do 

 

 

  normalize Lv to have unit L1 norm 

 until convergence 

 

• Output: Distributions {Lv | v  V} 
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Applications of Adsorption 

• Recommendation (YouTube) 

 

• Discovering relationships among data: 

– Classifying types of objects 

– Finding labels for columns in tables 

– Finding similar / related concepts in different tables or  

Web pages 
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Recap and Take-aways 

• Whirlwind tour of common kinds of algorithms used on 

the Web 

– Path analysis: route planning, games, keyword search, etc. 

– Clustering and classification: mining, recommendations, spam 

filtering, context-sensitive search, ad placement, etc. 

– Link analysis: ranking, recommendations, ad placement 

 

• Many such algorithms (though not all) have a 

reasonably straightforward, often iterative, MapReduce 

formulation 
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