### PageRank and Adsorption

MapReduce Framework



# Plan for today

• PageRank



- Different formulations: Iterative, Matrix
- Complications: Sinks and hogs
- Implementation in MapReduce
- Adsorption
  - Label propagation
  - Implementation in MapReduce



## Background

- History:
  - Proposed by Sergey Brin and Lawrence Page (Google's Bosses) in 1998 at Stanford.
  - Algorithm of the first generation of Google Search Engine.
  - "The Anatomy of a Large-Scale Hypertextual Web Search Engine".
- Target:
  - Measure the importance of Web page based on the link structure alone.
  - Assign each node a numerical score between 0 and 1: PageRank.
  - Rank Web pages based on PageRank values.

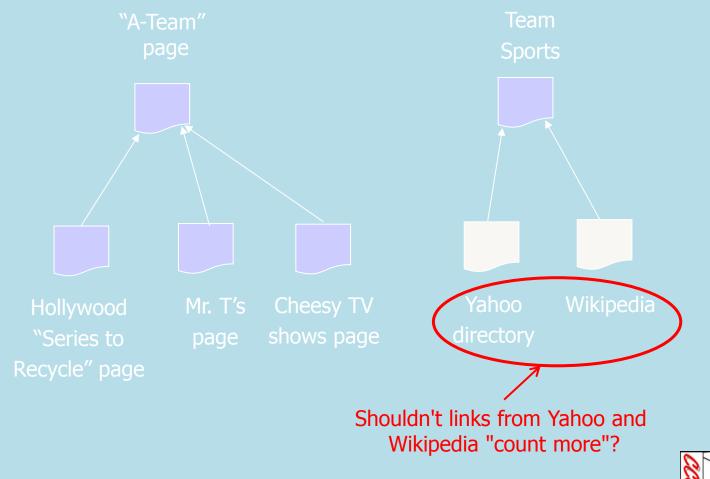


# Why link analysis?

- Suppose a search engine processes a query for "team sports"
  - Problem: Millions of pages contain these words!
  - Which ones should we return first?
- Idea: Hyperlinks encode a considerable amount of human judgment
  - What does it mean when a web page links another page?
  - Intra-domain links: Often created primarily for navigation
  - Inter-domain links: Confer some measure of authority
- So, can we simply boost the rank of pages with lots of inbound links?



# Problem: Popularity $\neq$ relevance!





# Other applications

- This question occurs in several other areas:
  - How do we measure the "impact" of a researcher? (#papers? #citations?)
  - Who are the most "influential" individuals in a social network? (#friends?)
  - Which programmers are writing the "best" code? (#uses?)



## Largest Matrix Computation in the World

- Computing PageRank done via matrix multiplication
  - matrix has **3 billion** rows and columns.
- The matrix is sparse
  - average number of outlinks is between 7 and 8.
- Researchers still trying to speed-up the computation
- PageRank convergence
  - Setting d = 0.15 (teleportation probability or decay factor for loops) or above requires at most 100 iterations to convergence.

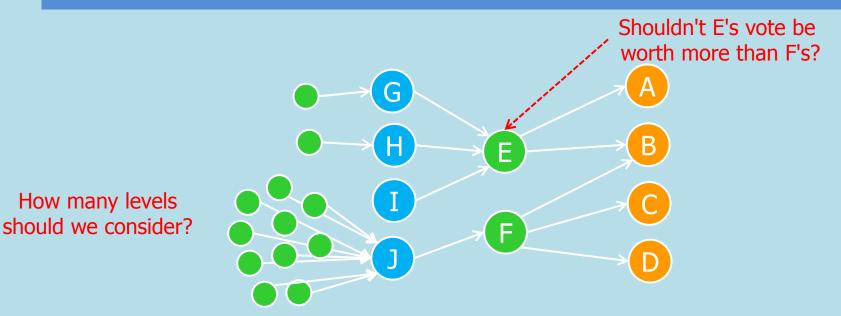


# Link Spamming to Improve PageRank

- Spam is the act of trying unfairly to gain a high ranking on a search engine for a web page without improving the user experience.
- *Link farms* join the farm by copying a hub page which links to all members.
- Selling links from sites with high PageRank.



# PageRank: Intuition

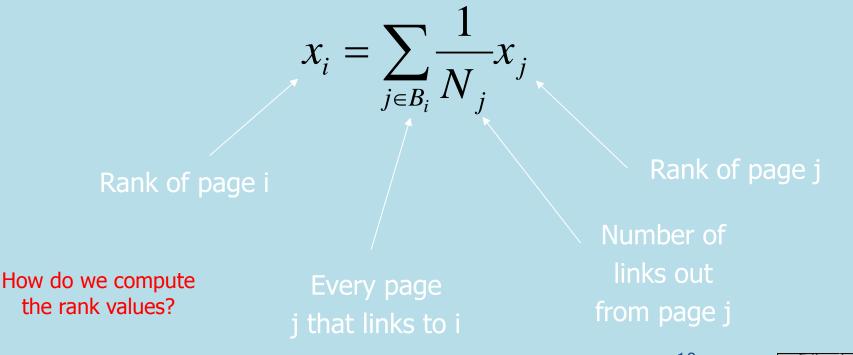


- Imagine a contest for The Web's Best Page
  - Initially, each page has one vote
  - Each page votes for all the pages it has a link to
  - To ensure fairness, pages voting for more than one page must split their vote equally between them
  - Voting proceeds in rounds; in each round, each page has the number of votes it received in the previous round
  - In practice, it's a little more complicated but not much!



# PageRank

- Each page i is given a rank x<sub>i</sub>
- Goal: Assign the x<sub>i</sub> such that the rank of each page is governed by the ranks of the pages linking to it:





# **Random Surfer Model**

- PageRank has an intuitive basis in random walks on graphs
- Imagine a random surfer, who starts on a random page and, in each step,
  - with probability d, clicks on a random link on the page
  - with probability 1-d, jumps to a random page (bored?)

Reason -explained later

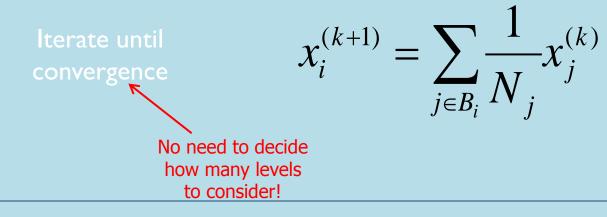
- The PageRank of a page can be interpreted as the fraction of steps the surfer spends on the corresponding page
  - Transition matrix can be interpreted as a Markov Chain

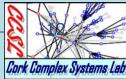


## Iterative PageRank (simplified)

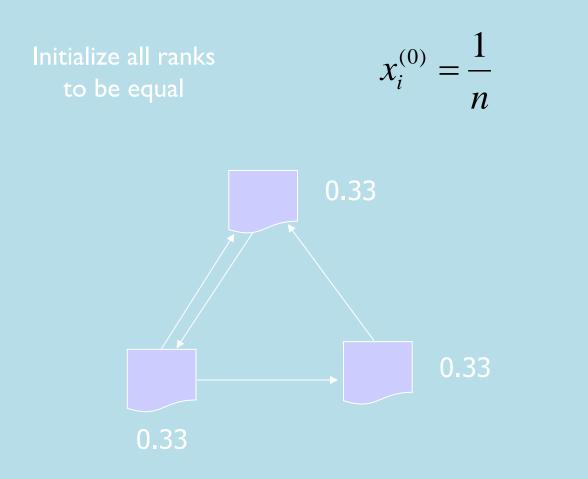
# Initialize all ranks to be equal, e.g.:

 $x_i^{(0)} =$ n





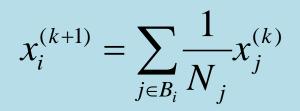
# Example: Step 0

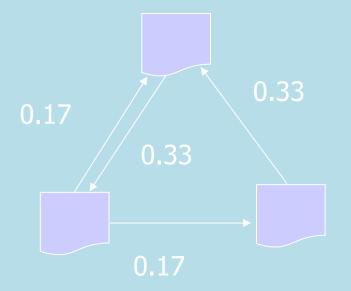




## Example: Step 1

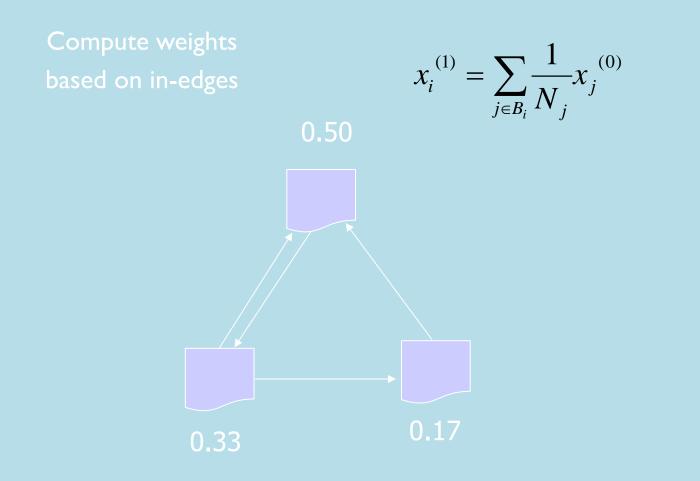
Propagate weights across out-edges





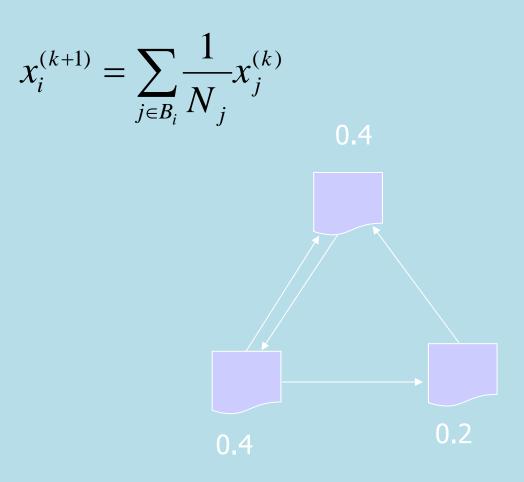


## Example: Step 2





## Example: Convergence





#### Naïve PageRank Algorithm Restated

- Let
  - N(p) = number outgoing links from page p
  - B(p) = number of back-links to page p

$$PageRank(p) = \sum_{b \in B(p)} \frac{1}{N(b)} PageRank(b)$$

- Each page b distributes its importance to all of the pages it points to (so we scale by 1/N(b))
- Page p's importance is increased by the importance of its back set



# In Linear Algebra formulation

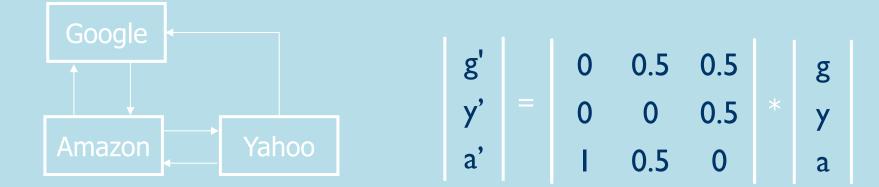
- Create an m x m matrix M to capture links:
  - M(i, j) = 1 / n<sub>j</sub> if page i is pointed to by page j and page j has n<sub>j</sub> outgoing links
    = 0 otherwise
  - Initialize all PageRanks to 1, multiply by M repeatedly until all values converge:

$$\begin{bmatrix} PageRank(p_{1}') \\ PageRank(p_{2}') \\ \dots \\ PageRank(p_{m}') \end{bmatrix} = M \begin{bmatrix} PageRank(p_{1}) \\ PageRank(p_{2}) \\ \dots \\ PageRank(p_{m}) \end{bmatrix}$$

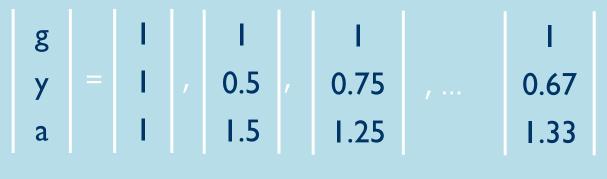
- Computes principal eigenvector via power iteration



# A brief example



#### Running for multiple iterations:

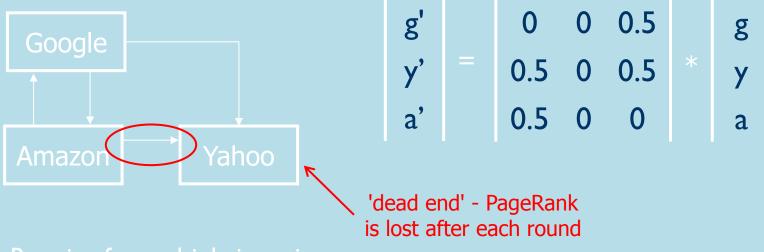


Total rank sums to number of pages

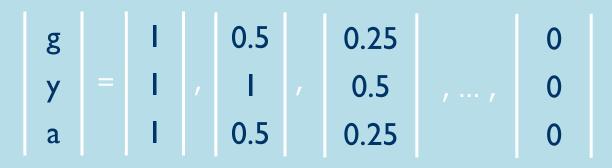


### Oops #1

#### PageRank sinks

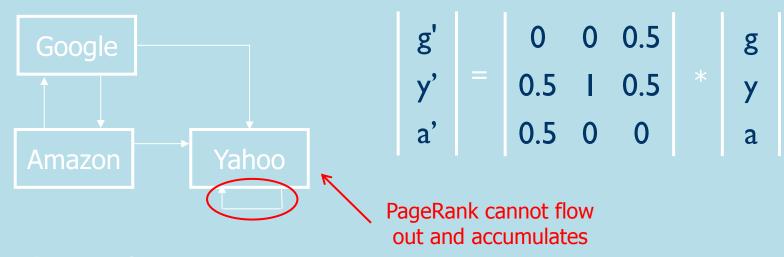


Running for multiple iterations:

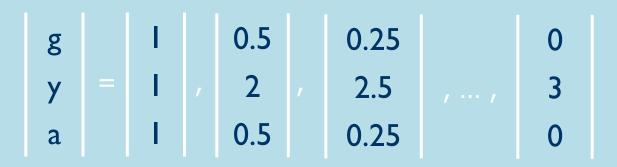




# Oops #2 – PageRank hogs

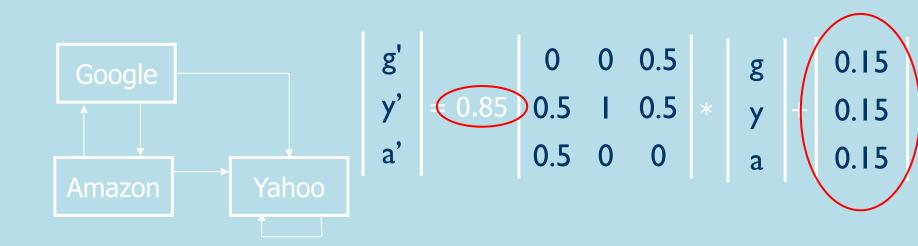


Running for multiple iterations:





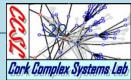
# Stopping the Hog



#### Running for multiple iterations:

| g |   | 0.57 | 0.39 | 0.32 | 0.26 |
|---|---|------|------|------|------|
| у | = | I.85 | 2.21 | 2.36 | 2.48 |
| a |   | 0.57 | 0.39 | 0.32 | 0.26 |

... though does this seem right?



# Improved PageRank

- Remove out-degree 0 nodes (or consider them to refer back to referrer)
- Add decay factor d to deal with sinks

$$PageRank(p) = (1-d) + d\sum_{b \in B_p} \frac{1}{N(b)} PageRank(b)$$

- Typical value: d=0.85
- Intuition in the idea of the "random surfer":
  - Surfer occasionally stops following link sequence and jumps to new random page, with probability 1 *d*





- Markov Chain:
  - A Markov chain is a discrete-time stochastic process consisting of N states, each Web page corresponds to a state.
  - A Markov chain is characterized by an N\*N transition probability matrix P.
- Transition Probability Matrix:
  - Each entry is in the interval [0,1].
  - $\forall i, j, P_{ij} \in [0,1]$  P<sub>ij</sub> is the probability that the state at the next timestep is j, conditioned on the current state being i.
  - Each entry P<sub>ij</sub> is known as a transition probabilit and depends only on the current state i. Markov property.

$$\forall i, \sum_{j=1}^{N} Pij = 1$$



### **Markov Chains**

- Transition Probability Matrix:
  - A matrix with non-negative entries that satisfies  $\forall i, \sum_{i=1}^{n} Pij = 1$
  - is known as a stochastic matrix.
  - Has a principal left eigenvector corresponding to its largest eigenvalue, which is 1.
- Derive the Transition Probability Matrix P:
  - Build the adjacency matrix A of the web graph.
    - There is a hyperlink from page i to page j, Aij = 1, otherwise Aij =0.
  - Divide each 1 in A by the number of 1s in its row.
  - Multiply the resulting matrix by 1-  $\alpha$ .
  - Add  $\alpha/N$  to every entry of the resulting matrix, to obtain P.





- Ergodic Markov Chain :
  - Conditions:
    - Irreducibility
      - A sequence of transitions of nonzero probability from any state to any state.
    - Aperiodicity
      - States are not partitioned into sets such that all state transitions occur cyclically from one set to another.
  - Property:
    - There is a unique steady-state probability vector  $\boldsymbol{\pi}$  that is the principal left eigenvector of P.
    - η(i,t) is the number of visits to state i in t steps.
    - $\pi(i)>0$  is the steady-state probability for state i.

$$\lim_{t\to\infty}\frac{\eta(i,t)}{t}=\pi(i)$$



## **PageRank Computation**

- Target
  - Solve the steady-state probability vector  $\pi$ , which is the PageRank of the corresponding Web page.
  - $\pi P = \lambda \pi$ ,  $\lambda$  is 1 for stochastic matrix.
- Method
  - Power iteration.
  - Given an initial probability distribution vector x0
  - x0\*P=x1, x1\*P=x2 ... Until the probability distribution converges. (Variation in the computed values are below some predetermined threshold.)





# PageRank on MapReduce

- Inputs
  - Of the form: page  $\rightarrow$  (currentWeightOfPage, {adjacency list})
- Map
  - Page p "propagates" 1/N<sub>p</sub> of its d \* weight(p) to the destinations of its out-edges (think like a vertex!)
  - Output adjacency list
- Reduce
  - Page p sums the incoming weights and adds (1-d), to get its weight'(p)
- Iterate until convergence
  - Common practice: run some fixed number of times, e.g., 25x
  - Alternatively: Test after each iteration with a second MapReduce job, to determine the maximum change between old and new weights



# Plan for today

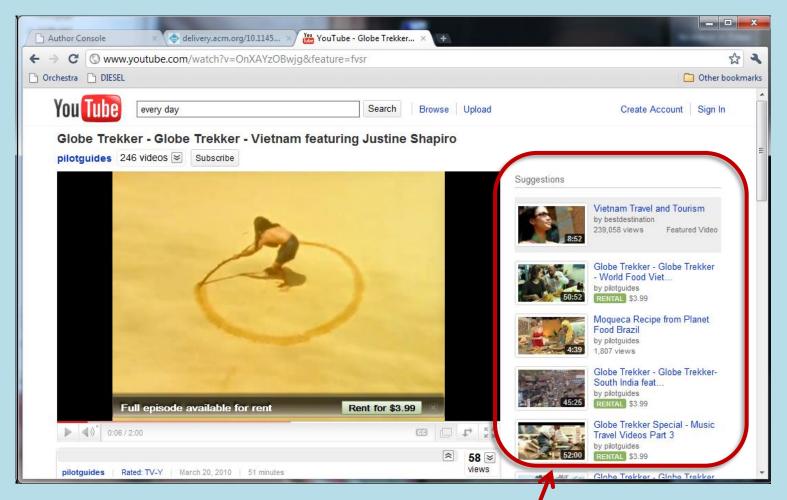
- PageRank
  - Different formulations: Iterative, Matrix 🌱
  - Complications: Sinks and hogs 💜
  - Implementation in MapReduce 🌱
- Adsorption



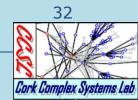
- Label propagation
- Implementation in MapReduce



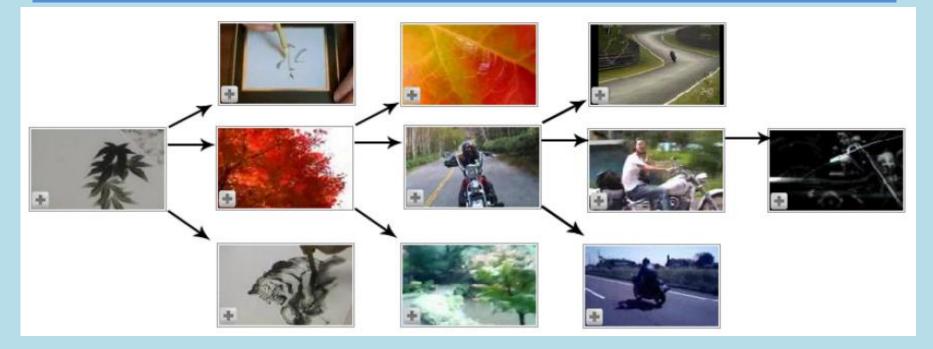
# YouTube Suggestions



#### What can we leverage to make such recommendations?



### Co-views: Video-video



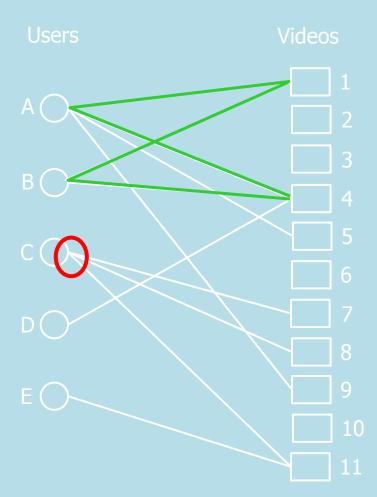
#### Idea #1: Keep track of which videos are frequently watched together

- If many users watched both video A and video B, then A should be recommended to users who have viewed B, and vice versa
- If there are many such videos, how can we rank them?



33

# Co-Views: User-video



#### Idea #2: Leverage similarities between users

 If Alice and Bob have both watched videos A, B, and C, and Alice has additionally watched video D, then perhaps D will interest Bob too?

How can we see that in the graph?

- Short path between two videos
- Several paths between 2 videos
- Paths that avoid high-degree nodes in the graph (why?)

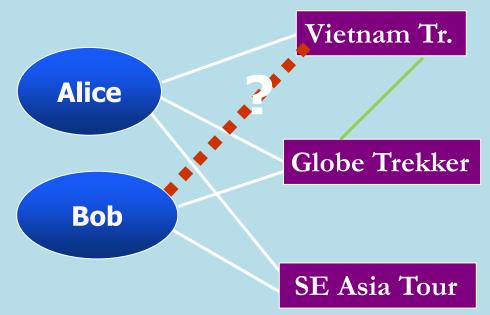


# More sophisticated link analysis

- PageRank computes a stationary distribution for the random walk: the probability is independent of where you start
  - One authority score for every page
- But here we want to know how likely we are to end up at video *j* given that we started from user *i* 
  - e.g., what are the odds that user i will like video j?
  - this is a probability conditioned on where you start



# Video-video and user-video combined



- Our task:
  - Take the video-video co-views <u>and</u> the user-video co-views (potentially annotated with weights)
  - Assign to each video a score for each user, indicating the likelihood the user will want to view the video



# Adsorption: Label propagation

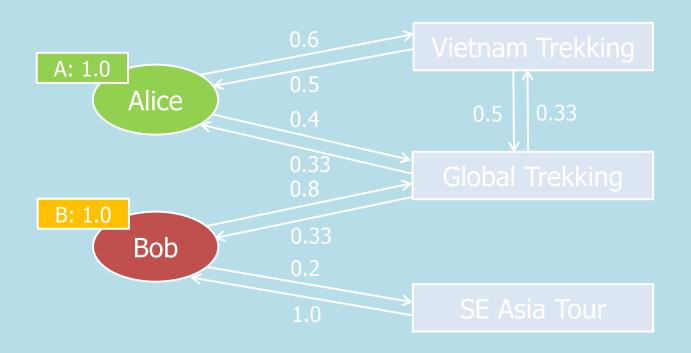
- Adsorption: Adhesion of atoms, ions, etc. to a surface
  - The adsorption algorithm attempts to "adhere" labels and weights to various nodes, establishing a connection
- There are three equivalent formulations of the method:
  - A random walk algorithm that looks much like PageRank
  - An averaging algorithm that is easily MapReduced
    - This is the one we'll focus on
  - A linear systems formulation



# Adsorption as an iterative average

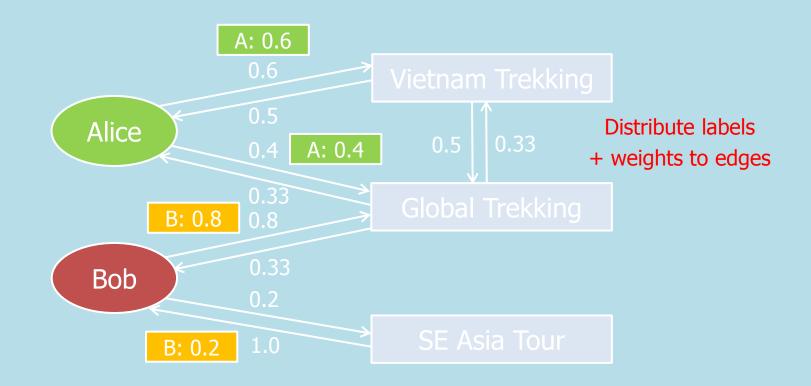
- Easily MapReducible
- Pre-processing step:
  - Create a series of labels L, one for each user or entity
  - Take the set of vertices V
  - For each label l in L:
    - Designate an "origin" node  $v_l$  (typically given node label l)
    - Annotate it with the label l and weight 1.0
  - Much like what we do in PageRank to start



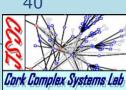


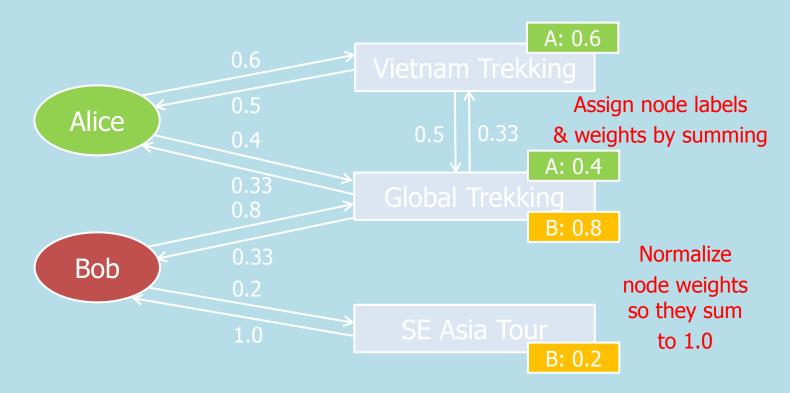
- Iterative process:
  - Compute the likelihood for each vertex v that a user x, in a random walk, will arrive at v call this the probability of  $l_x \in L$  associated with node v 39





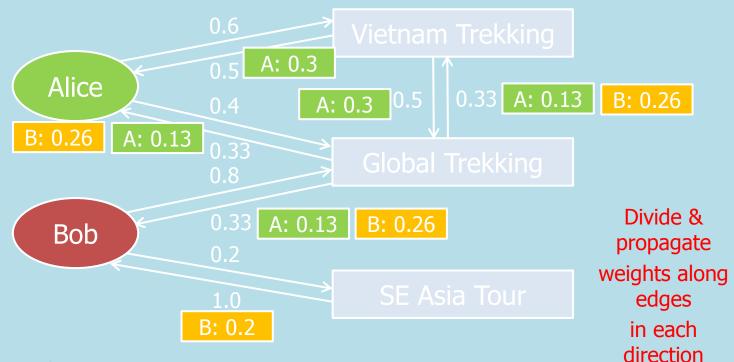
- Iterative process:
  - Compute the likelihood for each vertex v that a user x, in a random walk, will arrive at v call this the probability of  $l_x \in L$  associated with node v 40





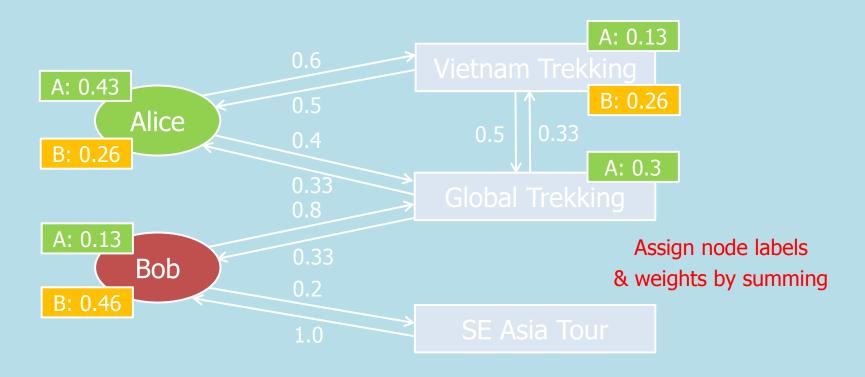
- Iterative process:
  - Compute the likelihood for each vertex v that a user x, in a random walk, will arrive at v call this the probability of  $l_x \in L$  associated with node v 41



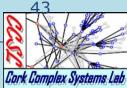


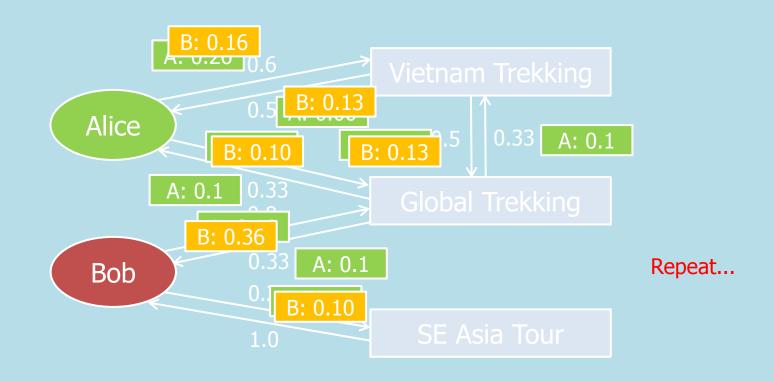
- Iterative process:
  - Compute the likelihood for each vertex v that a user x, in a random walk, will arrive at v call this the probability of  $l_x \in L$  associated with node v 42





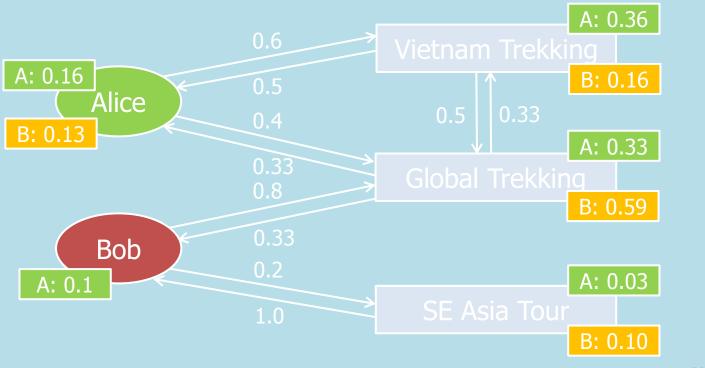
- Iterative process:
  - Compute the likelihood for each vertex v that a user x, in a random walk, will arrive at v call this the probability of  $l_x \in L$  associated with node v





- Iterative process:
  - Compute the likelihood for each vertex v that a user x, in a random walk, will arrive at v call this the probability of  $l_x \in L$  associated with node v 44





... until

• Iterative process:

convergence

- Compute the likelihood for each vertex v that a user x, in a random walk, will arrive at v - call this the probability of  $l_x \in L$  associated with node v 45



# Adsorption algorithm formulation

- Inputs: G = (V, E, w) where  $w : E \rightarrow \Re$ ; L: set of labels;  $V_{L} \subseteq V$ : nodes with labels
- Repeat

 $for each \ v \, \in \, V \ do$ 

$$L_{v}^{new} = \sum_{u} w(u, v)L_{u}$$
  
normalize L<sub>v</sub> to have unit L<sub>1</sub> norm  
until convergence

- Output: Distributions  $\{L_v ~|~ v \in V\}$ 



# **Applications of Adsorption**

- Recommendation (YouTube)
- Discovering relationships among data:
  - Classifying types of objects
  - Finding labels for columns in tables
  - Finding similar / related concepts in different tables or Web pages



# **Recap and Take-aways**

- Whirlwind tour of common kinds of algorithms used on the Web
  - Path analysis: route planning, games, keyword search, etc.
  - Clustering and classification: mining, recommendations, spam filtering, context-sensitive search, ad placement, etc.
  - Link analysis: ranking, recommendations, ad placement
- Many such algorithms (though not all) have a reasonably straightforward, often iterative, MapReduce formulation

