
PageRank and Adsorption

MapReduce Framework

1

Plan for today

• PageRank

– Different formulations: Iterative, Matrix

– Complications: Sinks and hogs

– Implementation in MapReduce

• Adsorption

– Label propagation

– Implementation in MapReduce

2

NEXT

Background

• History:

– Proposed by Sergey Brin and Lawrence Page (Google’s Bosses) in 1998

at Stanford.

– Algorithm of the first generation of Google Search Engine.

– “The Anatomy of a Large-Scale Hypertextual Web Search Engine”.

• Target:

– Measure the importance of Web page based on the link structure alone.

– Assign each node a numerical score between 0 and 1: PageRank.

– Rank Web pages based on PageRank values.

Why link analysis?

• Suppose a search engine processes a query for "team

sports"

– Problem: Millions of pages contain these words!

– Which ones should we return first?

• Idea: Hyperlinks encode a considerable amount of

human judgment

– What does it mean when a web page links another page?

– Intra-domain links: Often created primarily for navigation

– Inter-domain links: Confer some measure of authority

• So, can we simply boost the rank of pages with lots

of inbound links?

4

Problem: Popularity  relevance!

5

“A-Team”
page

Hollywood

“Series to

Recycle” page

Yahoo

directory

Wikipedia Mr. T’s

page

Team

Sports

Cheesy TV

shows page

Shouldn't links from Yahoo and
Wikipedia "count more"?

Other applications

• This question occurs in several other areas:

– How do we measure the "impact" of a researcher?

(#papers? #citations?)

– Who are the most "influential" individuals in a social

network?

(#friends?)

– Which programmers are writing the "best" code?

(#uses?)

– ...

6

Largest Matrix Computation in the World

• Computing PageRank done via matrix
multiplication
– matrix has 3 billion rows and columns.

• The matrix is sparse
– average number of outlinks is between 7 and 8.

• Researchers still trying to speed-up the
computation

• PageRank convergence
– Setting d = 0.15 (teleportation probability or decay factor for

loops) or above requires at most 100 iterations to convergence.

Link Spamming to Improve PageRank

• Spam is the act of trying unfairly to gain a high ranking

on a search engine for a web page without improving

the user experience.

• Link farms - join the farm by copying a hub page which

links to all members.

• Selling links from sites with high PageRank.

PageRank: Intuition

• Imagine a contest for The Web's Best Page

– Initially, each page has one vote

– Each page votes for all the pages it has a link to

– To ensure fairness, pages voting for more than one page must

split their vote equally between them

– Voting proceeds in rounds; in each round, each page has the

number of votes it received in the previous round

– In practice, it's a little more complicated - but not much!

9

A

B E

C

D
F

G

H

I

J

Shouldn't E's vote be
worth more than F's?

How many levels
should we consider?

PageRank

• Each page i is given a rank xi

• Goal: Assign the xi such that the rank of each page

is governed by the ranks of the pages linking to it:

10

j

Bj j

i x
N

x
i





1

Rank of page j
Rank of page i

Every page

j that links to i

Number of

links out

from page j

How do we compute
the rank values?

Random Surfer Model

• PageRank has an intuitive basis in random walks on

graphs

• Imagine a random surfer, who starts on a random

page and, in each step,

– with probability d, clicks on a random link on the page

– with probability 1-d, jumps to a random page (bored?)

• The PageRank of a page can be interpreted as the

fraction of steps the surfer spends on the

corresponding page

– Transition matrix can be interpreted as a Markov Chain

11

Reason
explained

later

Iterative PageRank (simplified)

12

)()1(1 k

j

Bj j

k

i x
N

x
i




 

n
xi

1)0(Initialize all ranks to

be equal, e.g.:

Iterate until

convergence

No need to decide
how many levels

to consider!

Example: Step 0

n
xi

1)0(

13

0.33

0.33

0.33

Initialize all ranks

to be equal

Example: Step 1

)()1(1 k

j

Bj j

k

i x
N

x
i




 

14

0.17

0.33

0.33

0.17

Propagate weights

across out-edges

Example: Step 2

)0()1(1
j

Bj j

i x
N

x
i






15

0.17

0.50

0.33

Compute weights

based on in-edges

Example: Convergence

)()1(1 k

j

Bj j

k

i x
N

x
i




 

16

0.2

0.4

0.4

Naïve PageRank Algorithm Restated

• Let

– N(p) = number outgoing links from page p

– B(p) = number of back-links to page p

– Each page b distributes its importance to all of the

pages it points to (so we scale by 1/N(b))

– Page p’s importance is increased by the importance

of its back set

)(
)(

1
)(

)(

bPageRank
bN

pPageRank
pBb






17

In Linear Algebra formulation

• Create an m x m matrix M to capture links:

– M(i, j) = 1 / nj if page i is pointed to by page j

 and page j has nj outgoing links

 = 0 otherwise

– Initialize all PageRanks to 1, multiply by M repeatedly until

all values converge:

– Computes principal eigenvector via power iteration







































)(

...

)(

)(

)'(

...

)'(

)'(

2

1

2

1

mm pPageRank

pPageRank

pPageRank

M

pPageRank

pPageRank

pPageRank

18

A brief example

0 0.5 0.5

0 0 0.5

1 0.5 0

19

Google

Amazon Yahoo

g'

y’

a’

g

y

a

= *

Total rank sums to number of pages

g

y

a

1

1

1

=

1

0.5

1.5

,

1

0.75

1.25

,

1

0.67

1.33

, …

Running for multiple iterations:

Oops #1

20

Google

Amazon Yahoo

0 0 0.5

0.5 0 0.5

0.5 0 0

g'

y’

a’

g

y

a

= *

g

y

a

1

1

1

=

0.5

1

0.5

,

0.25

0.5

0.25

,

0

0

0

, … ,

Running for multiple iterations:

'dead end' - PageRank
is lost after each round

– PageRank sinks

Oops #2

21

Google

Amazon Yahoo

0 0 0.5

0.5 1 0.5

0.5 0 0

g'

y’

a’

g

y

a

= *

g

y

a

1

1

1

=

0.5

2

0.5

,

0.25

2.5

0.25

,

0

3

0

, … ,

Running for multiple iterations:

PageRank cannot flow
out and accumulates

– PageRank hogs

Stopping the Hog

22

0 0 0.5

0.5 1 0.5

0.5 0 0

g'

y’

a’

g

y

a

= 0.85 *

g

y

a

=

0.26

2.48

0.26

,

0.15

0.15

0.15

+

Running for multiple iterations:

… though does this seem right?

Google

Amazon Yahoo

0.57

1.85

0.57

0.39

2.21

0.39

0.32

2.36

0.32

, , , … ,

Improved PageRank

• Remove out-degree 0 nodes (or consider them to

refer back to referrer)

• Add decay factor d to deal with sinks

• Typical value: d=0.85

• Intuition in the idea of the “random surfer”:

– Surfer occasionally stops following link sequence and jumps

to new random page, with probability 1 - d

23

)(
)(

1
)1()(bPageRank

bN
ddpPageRank

pBb






Markov Chains

• Markov Chain:

– A Markov chain is a discrete-time stochastic process consisting of N states,

each Web page corresponds to a state.

– A Markov chain is characterized by an N*N transition probability matrix P.

• Transition Probability Matrix:

– Each entry is in the interval [0,1].

– Pij is the probability that the state at the next time-

step is j, conditioned on the current state being i.

– Each entry Pij is known as a transition probabilit and depends only on the

current state i. Markov property.

]1,0[,,  ijPji





N

j

Piji
1

1,

Markov Chains

• Transition Probability Matrix:

– A matrix with non-negative entries that satisfies

– is known as a stochastic matrix.

– Has a principal left eigenvector corresponding to its largest eigenvalue,

which is 1.

• Derive the Transition Probability Matrix P:

– Build the adjacency matrix A of the web graph.

• There is a hyperlink from page i to page j, Aij = 1, otherwise Aij =0.

– Divide each 1 in A by the number of 1s in its row.

– Multiply the resulting matrix by 1- α.

– Add α/N to every entry of the resulting matrix, to obtain P.





N

j

Piji
1

1,

Markov Chains

• Ergodic Markov Chain :

– Conditions:

• Irreducibility

– A sequence of transitions of nonzero probability from any state to any state.

• Aperiodicity

– States are not partitioned into sets such that all state transitions occur cyclically

from one set to another.

– Property:

• There is a unique steady-state probability vector π that is the principal left

eigenvector of P.

• η(i,t) is the number of visits to state i in t steps.

• π(i)>0 is the steady-state probability for state i.

)(
),(

lim i
t

ti

t







PageRank Computation

• Target

– Solve the steady-state probability vector π, which is the PageRank of

the corresponding Web page.

– πP=λ π, λ is 1 for stochastic matrix.

• Method

– Power iteration.

– Given an initial probability distribution vector x0

– x0*P=x1, x1*P=x2 … Until the probability distribution converges.

(Variation in the computed values are below some predetermined

threshold.)

29

PageRank on MapReduce

• Inputs

– Of the form: page  (currentWeightOfPage, {adjacency list})

• Map

– Page p “propagates” 1/Np of its d * weight(p) to the destinations

of its out-edges (think like a vertex!)

– Output adjacency list

• Reduce

– Page p sums the incoming weights and adds (1-d), to get its

weight’(p)

• Iterate until convergence

– Common practice: run some fixed number of times, e.g., 25x

– Alternatively: Test after each iteration with a second MapReduce

job, to determine the maximum change between old and new

weights

30

Plan for today

• PageRank

– Different formulations: Iterative, Matrix

– Complications: Sinks and hogs

– Implementation in MapReduce

• Adsorption

– Label propagation

– Implementation in MapReduce

31

NEXT

YouTube Suggestions

32 What can we leverage to make such recommendations?

Co-views: Video-video

33

 Idea #1: Keep track of which videos are

frequently watched together
 If many users watched both video A and video B, then A should

be recommended to users who have viewed B, and vice versa

 If there are many such videos, how can we rank them?

Co-Views: User-video

34

 Idea #2: Leverage

similarities between users

 If Alice and Bob have both

watched videos A, B, and C,

and Alice has additionally

watched video D, then perhaps

D will interest Bob too?

 How can we see that in the

graph?

 Short path between two videos

 Several paths between 2

videos

 Paths that avoid high-degree

nodes in the graph (why?)

1

2

3

4

5

6

7

8

9

10

11

A

B

C

D

E

Users Videos

More sophisticated link analysis

• PageRank computes a stationary distribution for the

random walk: the probability is independent of

where you start

– One authority score for every page

• But here we want to know how likely we are to end

up at video j given that we started from user i

– e.g., what are the odds that user i will like video j?

– this is a probability conditioned on where you start

35

Video-video and user-video combined

• Our task:

– Take the video-video co-views and the user-video co-views

(potentially annotated with weights)

– Assign to each video a score for each user, indicating the

likelihood the user will want to view the video

36

Alice

Bob

Vietnam Tr.

Globe Trekker

SE Asia Tour

?

Adsorption: Label propagation

• Adsorption: Adhesion of atoms, ions, etc. to a surface

– The adsorption algorithm attempts to “adhere” labels and

weights to various nodes, establishing a connection

• There are three equivalent formulations of the

method:

– A random walk algorithm that looks much like PageRank

– An averaging algorithm that is easily MapReduced

• This is the one we'll focus on

– A linear systems formulation

37

Adsorption as an iterative average

• Easily MapReducible

• Pre-processing step:

– Create a series of labels L, one for each user or entity

– Take the set of vertices V

– For each label l in L:

• Designate an “origin” node vl (typically given node label l)

• Annotate it with the label l and weight 1.0

– Much like what we do in PageRank to start

38

Adsorption: Propagating labels

• Iterative process:

– Compute the likelihood for each vertex v that a user x, in a

random walk, will arrive at v – call this the probability of

lx  L associated with node v

39

0.6

0.5

0.8

0.2
Bob

Alice

Vietnam Trekking

Global Trekking

SE Asia Tour

0.33 0.5 0.4

0.33

0.33

1.0

A: 1.0

B: 1.0

Adsorption: Propagating labels

• Iterative process:

– Compute the likelihood for each vertex v that a user x, in a

random walk, will arrive at v – call this the probability of

lx  L associated with node v

40

0.6

0.5

0.8

0.2
Bob

Alice

Vietnam Trekking

Global Trekking

SE Asia Tour

0.33 0.5 0.4

0.33

0.33

1.0

B: 0.8

A: 0.6

A: 0.4

B: 0.2

Distribute labels

+ weights to edges

Adsorption: Propagating labels

• Iterative process:

– Compute the likelihood for each vertex v that a user x, in a

random walk, will arrive at v – call this the probability of

lx  L associated with node v

41

0.6

0.5

0.8

0.2
Bob

Alice

Vietnam Trekking

Global Trekking

SE Asia Tour

0.33 0.5 0.4

0.33

0.33

1.0

B: 0.8

A: 0.6

A: 0.4

B: 0.2

Normalize

node weights
so they sum

to 1.0

Assign node labels

& weights by summing

Adsorption: Propagating labels

• Iterative process:

– Compute the likelihood for each vertex v that a user x, in a

random walk, will arrive at v – call this the probability of

lx  L associated with node v

42

0.6

0.5

0.8

0.2
Bob

Alice

Vietnam Trekking

Global Trekking

SE Asia Tour

0.33 0.5 0.4

0.33

0.33

1.0

A: 0.13

B: 0.2

A: 0.3

A: 0.3 A: 0.13

A: 0.13

B: 0.26

B: 0.26

B: 0.26 Divide &
propagate

weights along
edges

in each
direction

Adsorption: Propagating labels

• Iterative process:

– Compute the likelihood for each vertex v that a user x, in a

random walk, will arrive at v – call this the probability of

lx  L associated with node v

43

0.6

0.5

0.8

0.2
Bob

Alice

Vietnam Trekking

Global Trekking

SE Asia Tour

0.33 0.5 0.4

0.33

0.33

1.0

A: 0.43

A: 0.3

A: 0.13

A: 0.13

B: 0.26

B: 0.26

B: 0.46

Assign node labels

& weights by summing

Adsorption: Propagating labels

• Iterative process:

– Compute the likelihood for each vertex v that a user x, in a

random walk, will arrive at v – call this the probability of

lx  L associated with node v

44

0.6

0.5

0.8

0.2
Bob

Alice

Vietnam Trekking

Global Trekking

SE Asia Tour

0.33 0.5 0.4

0.33

0.33

1.0

A: 0.17 A: 0.1

A: 0.06

A: 0.03

B: 0.13

B: 0.10

B: 0.10

A: 0.06 B: 0.13

A: 0.1

A: 0.1

A: 0.26
B: 0.16

A: 0.10 B: 0.36

Repeat...

Adsorption: Propagating labels

• Iterative process:

– Compute the likelihood for each vertex v that a user x, in a

random walk, will arrive at v – call this the probability of

lx  L associated with node v

45

0.6

0.5

0.8

0.2
Bob

Alice

Vietnam Trekking

Global Trekking

SE Asia Tour

0.33 0.5 0.4

0.33

0.33

1.0

A: 0.33

A: 0.16

A: 0.03

B: 0.13

B: 0.10

A: 0.1

A: 0.36

B: 0.16

B: 0.59

... until

convergence

Adsorption algorithm formulation

• Inputs: G = (V, E, w) where w : E  ;

L: set of labels; VL  V: nodes with labels

• Repeat

 foreach v  V do

 normalize Lv to have unit L1 norm

 until convergence

• Output: Distributions {Lv | v  V}

46

𝐿𝑣
𝑛𝑒𝑤 = 𝑤 𝑢, 𝑣 𝐿𝑢

𝑢

Applications of Adsorption

• Recommendation (YouTube)

• Discovering relationships among data:

– Classifying types of objects

– Finding labels for columns in tables

– Finding similar / related concepts in different tables or

Web pages

47

Recap and Take-aways

• Whirlwind tour of common kinds of algorithms used on

the Web

– Path analysis: route planning, games, keyword search, etc.

– Clustering and classification: mining, recommendations, spam

filtering, context-sensitive search, ad placement, etc.

– Link analysis: ranking, recommendations, ad placement

• Many such algorithms (though not all) have a

reasonably straightforward, often iterative, MapReduce

formulation

48

