CS 4407
Algorithms

Basic Algorithms

% ‘ ‘> -

Lork Complex Systems Lab

Lecture adapted from:NETS 212: Scalable and Cloud Computing 1

e Initial algorithms

- map/reduce model could be used to , , and
data values

o Useful for data with limited structure

- We could extract pieces of input data items and collect them
to run various reduce operations

- We could “join” two different data sets on a common key

e But that’s not enough...

Lk Complex Systems Lab

e Much of the world is a network of relationships and
shared features

- Members of a social network can be friends, and may have
shared interests / memberships / etc.

- Customers might view similar movies, and might even be
clustered by interest groups

- The Web consists of documents with links
- Documents are also related by topics, words, authors, etc.

b% : f; i

LGonk Complex Systems Lab

e« We need a toolbox of algorithms useful for analyzing
data that has both relationships and properties

e For the next ~2 lectures we’ll start to build this toolbox
- Compare the “traditional” and MapReduce solution

Lork Complex Systems Lab

e Representing data in graphs

e Graph algorithms in MapReduce
- Computation model
- lterative MapReduce

e A toolbox of algorithms
- Single-source shortest path (SSSP)

- k-means clustering
- Classification with Naive Bayes

fan-of
fan-of

Q friend-of g friend-of Qfan-of

e« We can represent related objects as a labeled,
directed graph

e Entities are typically represented as nodes;
relationships are typically edges
- Nodes all have IDs, and possibly other properties

- Edges typically have values, possibly IDs and other
properties

8 8 &

e Recall basic definition of a graph:

- G = (V, E) where V is vertices, E is edges of the
form (v,,v,) where v,,v, e V

e Assume we only care about connected vertices
- Then we can capture a graph simply as the edges
- ... or as an adjacency list: v; goes to [v;, Vj.q, ..]

Lork Complex Systems Lab

Alice, Facebook)
Alice, Sunita)

(

(

(Jose, Magna Carta)
(Jose, Sunita)
(Mikhail, Facebook)
(Mikhail, Magna Carta)
(Sunita, Facebook)
(Sunita, Alice)
(Sunita, Jose)

3

NN ==
'; =

A
Lork Complex Systems Lab

fan-of
ENR fan-of

g friend-of Q friend-ofﬂ

(Alice, fan-of, Facebook)
(Alice, friend-of, Sunita)
(Jose, fan-of, Magna Carta)
(Jose, friend-of, Sunita)
(Mikhail, fan-of, Facebook)
(

(

(

(

Mikhail, fan-of, Magna Carta)
Sunita, fan-of, Facebook)
Sunita, friend-of, Alice)

Sunita, friend-of, Jose) g N
N

NN
W E

A
Lork Complex Systems Lab

fan-of 0.5
37| Ehi fan-of

friend-of friend-of
e it

(Alice, fan-of, 0.5, Facebook)
(Alice, friend-of, 0.9, Sunita)
(Jose, fan-of, 0.5, Magna Carta)
(Jose, friend-of, 0.3, Sunita)
(Mikhail, fan-of, 0.8, Facebook)
(Mikhail, fan-of, 0.7, Magna Carta)
(Sunita, fan-of, 0.7, Facebook)
(Sunita, friend-of, 0.9, Alice)
(Sunita, friend-of, 0.3, Jose)

10

b‘m#mplaxmgm

e We can represent the relationships between related
objects as a directed, labeled graph
- Vertices represent the objects
- Edges represent relationships

e We can annotate this graph in various ways
- Add labels to edges to distinguish different types
- Add weights to edges

e We can encode the graph in various ways
- Examples: Edge set, adjacency list

11

Y‘
e Graph algorithms in MapReduce
- Computation model
- lterative MapReduce
e A toolbox of algorithms
- Single-source shortest path (SSSP)

- k-means clustering
- Classification with Naive Bayes

12

0.7 fan-of

friend-of friend-of
0.5

fan-of

e Once the data is encoded in this way, we can
perform various computations on it
- Simple example: Which users are their friends' best friend?
- More complicated examples (later): Page rank, adsorption,

e This is often done by
- annotating the vertices with additional information, and
- propagating the information along the edges
- "Think like a vertex"! 13

lz’m&’mp/ax&mxw

fan-of 0.5

i) jiakeat fan-of

friend-of friend-of
0.5

Slightly more technical:
How many of my friends
have me as their

o Example: Am | my friends’ best friend?

best friend?

14

Lork Complex Systems Leb

map (key: node, value: [<otherNode, relType, strength>])
{

}

reduce (key: , values: list of)

{

o Using adjacency list representation?

ggjﬁgzj '

! .i o
lox Systems Lab

Lork C

map (key: node, value: <otherNode, relType, strength>)
{

}

reduce (key: , values: list of)

{

e Using single-edge data representation?

ggjﬁgzj '

! .i o
lox Systems Lab

Lork C

fan-of 0.5
37| it fan-of

friend-of fr1end of
0.5

o Example: Am | my friends’ best friend?
- Step #1: Discard irrelevant vertices and edges

17

L’M//’Waxmmé

erlend -of g friend- of

alice—»sunita: 0.9 sunita—alice: 0.9 jose—ssunita: 0.3
sunita —jose: 0.3

o Example: Am | my friends’ best friend?
- Step #1: Discard irrelevant vertices and edges
- Step #2: Annotate each vertex with list of friends
- Step #3: Push annotations along each edge

18

EE
mmmmm

erlend of g friend- Of

sunita—alice: 0.9 alice—»sunita: 0.9 sunita—alice: 0.9

sunita »>jose: 0.3 jose—sunita: 0.3 sunita —»jose: 0.3

alice—ssunita: 0.9 Sunita—alice: 0.9 jose—sunita: 0.3
sunita —jose: 0.3

o Example: Am | my friends’ best friend?
- Step #1: Discard irrelevant vertices and edges

- Step #2: Annotate each vertex with list of friends
- Step #3: Push annotations along each edge

1LE)

/:mm/axmm

erlend of g friend- of

) lice—ssunita: 0.9
sunita —>jose: 0.3

alice—sunita: 0.9 Ssunita—alice: 0.9
sunita —jose: 0.3

o Example: Am | my friends’ best friend?

Step #1: Discard irrelevant vertices and edges
Step #2: Annotate each vertex with list of friends
Step #3: Push annotations along each edge

Step #4: Determine result at each vertex

sunita—alice: 0.9
sunita —jose: 0.3
jose—sunita: 0.3

20 VA
mmp/amw

e A variant that is actually used in social networks today:
"Who are the friends of multiple of my friends?”
- Where have you seen this before?

e Friend recommendation!
- Maybe these people should be my friends too!

Lork Complex Systems Lab

« Now suppose we want to go beyond direct friend
relationships

- Example: How many of my friends’ friends (distance-2
neighbors) have me as their best friend's best friend?

- What do we need to do?
e How about distance k>2?

e To compute the answer, we need to run multiple
iterations of MapReduce!

Iterative

e The basic model:

copy files from input dir = staging dir 1
(optional: do some)

while (!'terminating condition) ({
from staging dir 1
into staging dir 2
files from staging dir 2 - staging dirl
}

(optional:)
move files from staging dir 2 - output dir

e Note that reduce output must be compatible with
the map input!

- What can happen if we filter out some information in the mapper or in
the reducer? 23

e A centralized algorithm typically traverses a tree or
a graph one item at a time (there’s only one
“cursor”)

- You’ve learned breadth-first and depth-first traversals

e Most algorithms that are based on graphs make use
of multiple map/reduce stages processing one
“wave” at a time

- Sometimes iterative MapReduce, other times chains of
map/reduce

e Let's think about a different model for a bit:

Suppose we had a network that has exactly the same
topology as the graph, with one node for each vertex

Suppose each vertex A has some (A,s,) tuple in the
local state s, input file
The computation proceeds in rounds. MapReduce
In each round: rounds
« Step #1: Each vertex A reads its local state s, map(A,s,) invocation
e Step #2: A can then send some messages mi map() emits a
to adjacent nodes B, (Bi,m;) tuples

o Step #3: Then each vertex A looks at all the FEdUCE(_A,{mutmz,---,mk})
messages it has received in step #2 nvocation

» Step #4: Finally, each vertex can update its
local state to some other value s,’ if it wants to

This would be a natural fit for many graph algorithms!
25

reduce() emits an
(AISAl)

ok Complex yatems T

e Suppose we want to:
- compute a function for each vertex in a graph...
- ... using data from vertices at most k hops away

e We can do this as follows:

- "Push” information along the edges
e "Think like a vertex”

- Finally, perform the computation at each vertex

e May need more than one MapReduce phase
- Iterative MapReduce: Outputs of stage i — inputs of stage i+1

26

Y,‘
Y‘

e A toolbox of algorithms
- Single-source shortest path (SSSP)
- k-means clustering
- Classification with Naive Bayes

27

e Sometimes our goal is to compute information about
the paths (sets of paths) between nodes
- Edges may be annotated with , , or

e Examples of such problems:

from one node to another

- Minimum spanning tree (minimal-cost tree connecting all
vertices in a graph)

- Steiner tree (minimal-cost tree connecting certain nodes)

- Topological sort (node in a DAG comes before all nodes it
points to)

Lok Complex Systsms Lab,

G=(V, E) e c(e)

Lork Complex Systems Lab

 We can formulate the problem using induction

- The shortest path follows the principle of optimality: the
last step (u,v) makes use of the shortest path to u

 We can express this as follows:

bestDistanceAndPath (v) ({
if (v == source) then {
return <distance 0, path [v]>
} else {

find argmin u (bestDistanceAndPath[u] + dist[u,v])
return <bestDistanceAndPath[u] + dist[u,v], path[u] + v>

}

Traditional approach: Dijkstra’'s algorithm

V: vertices, E: edges, S:
foreach v in V l
dist S to[v] := infinity

predecessor[v] = nil
spSet = {}
Q =V

while (Q not empty) do

u

spSet := spSet + {u}

:= Q.removeNodeClosestTo (S)

start node

Initialize length and
last step of path
to default values

Update length and
path based on edges
radiating from u

foreach v in V where (u,v) in E
if (dist S To[v] > dist S To[u]+cost(u,Vv)) then
dist S To[v] = dist S To[u] + cost(u,v)

predecessor|[v] u

31

Q = {s,a,b,c,d} spSet = {}
dist_S_To: {(a,), (b,%0), (c,0), (d,)}
predecessor: {(a,nil), (b,nil), (c,nil), (d,nil)}

v ;
Lork Complex Systems Lab

10

Lork Complex Systems Lab

14

Lork Complex Systems Lab

13

d
9
a g Y fﬂ
h\ S
ok amplex Systems Lah

7 X 'i
Lok Complex Systems Lab

e Dijkstra traverses the graph along a single route at a
time, prioritizing its traversal to the next step based
on total path length (and avoiding cycles)

e Intuitively, we want something .
that “radiates” from the origin,
one “edge hop distance” at a time

No real parallelism to be had here! Q

Each step outwards can be done in parallel, before another
iteration occurs - or we are done

Recall our earlier discussion: Scalability depends on the
algorithm, not (just) on the problem!

N2
e

§m

nk Complex Systsms Lab

bestDistanceAndPath (v) {
if (v == source) then {
return <distance 0, path [v]>
} else {

find argmin u (bestDistanceAndPath[u] + dist[u,v])
return <bestDistanceAndPath[u] + dist[u,v], path[u] + v>

}
}

e Dijkstra’s algorithm carefully considered each u in a
way that allowed us to prune certain points

e Instead we can look at all potential u’s for each v
- Compute iteratively, by keeping a “frontier set” of u nodes i

edge-hops from the source

] \&
Lork Complex Systems Lab

o The shortest path we have found so far ... this is the next ... and II'.1etr(fe is thg e;%jacency
e 1NIL: from the source to nodelD has length ... NOP on that path... IStior node

—
- For each node, node ID 9% -,*{ucc-node-lD,edge-cost>}>
e map:

- take node ID - <dist, next, {<succ-node-ID,edge-cost>}>

- For each succ-node-ID: This is a new path from

. . h t -node-ID
« emit succ-node ID > {<node ID, distance+edge-coste e et diecovercd

(not necessarily shortest)

e reduce:

- distance := min cost from a predecessor; next := that predec.
- emit node ID - <distance, next, {<succ-node-ID,edge-cost>}>

e Repeat until no changes
e Postprocessing: Remove adjacency lists

ok Complex yatems T

e Adjacency matrix
S a b ¢ d

S

a

b

Cc

d
e Adjacency List
s: (a, 10), (c, 3)
a: (b, 1), (c, 2)
b: (d, 4)
c: (a, 3), (b, 9), (d, 2)
d: (s, 7), (b, 6)

:’ ; i
L’MJWameM

Wave"

(a,<s,10>) (c,<s,5>)

(a,<10, ...>) (c,<5, ...>)

Q| e

7Y .i o
Lork Complex Systems Lab

e Map input: <node ID, <dist, adj list>>
<s, <0, <(a, 10), (c, 5)>>>
<a, <inf, <(b, 1), (c, 2)>>>

<b, <inf, <(d, 4)>>>

<c, <inf, <(a, 3), (b, 9), (d, 2)>>>
<d, <inf, <(s, 7), (b, 6)>>> °
e Map output: <dest node ID, dist>

<a, 10> <c, 5>

<b, inf> <c, inf>
<d, inf> <s, <0, <(q, 10), (¢, 5)>>>
<a, inf> <b, inf> <d, inf> <a, <inf, <(b, 1), (¢, 2)>>>
<s, inf> <b, inf>

<b, <inf, <(d, 4)>>>
<, <inf, <(a, 3), (b, 9), (d, 2)>>>
<d, <inf, <(s, 7), (b, 6)>>>

e Reduce input: <node ID, dist>
<s, <0, <(a, 10), (c, 5)>>>
<s, inf>

<a, <inf, <(b, 1), (¢, 2)>>>
<a, 10> <a, inf>

<b, <inf, <(d, 4)>>>
<b, inf> <b, inf> <b, inf>

<c, <inf, <(a, 3), (b, 9), (d, 2)>>>
<c, 5> <c, inf>

<d, <inf, <(s, 7), (b, 6)>>>
<d, inf> <d, inf>

§§ }é}f'"i,'

Lok Gomplex Systsms Lab

e Reduce input: <node ID, dist>
<s, <0, <(a, 10), (c, 5)>>>
<55

<a, <inf, <(b, 1), (c, 2)>>>
<a, 10> <a;-inH>

<b, <inf, <(d, 4)>>>

<c, <inf, <(a, 3), (b, 9), (d, 2)>>>
<C, 5> <¢inf>

<d, <inf, <(s, 7), (b, 6)>>>
<d—inf>~<d—inf>

(a,<c,8>) (c,<a,12>) (b,<a,11>)
(b,<c,14>) (d,<c,7>)

(a,<8, ...>) (b,<11, ...>) (d,<7, ...>)
"Wave"
0
(e @)

NI

LGonk Complex Systems Lab

e Reduce output: <node ID, <dist, adj list>>
= Map input for next iteration

<s, <0, <(a, 10), (c, 5)>>>

<a, <10, <(b, 1), (c, 2)>>>

<b, <inf, <(d, 4)>>>

<c, <5, <(a, 3), (b, 9), (d, 2)>>> 6
<d, <inf, <(s, 7), (b, 6)>>>

e Map output: <dest node ID, dist>

<a, 10> <c, 5>
<b, 11> <c, 12>

<s, <0, <(q, 10), (¢, 5)>>>

<Q, <10, <(b, 1), (¢, 2)>>>
<d, inf>

<b, <inf, <(d, 4)>>>
<a, 8> <b, 14> <«d, 7>

: : <¢, <5, <(3, 3), (b, 9), (d, 2)>>>
<s, inf> <b, inf>

<d, <inf, <(s, 7), (b, 6)>>>

b% § "_

Lk Complex

e Reduce input: <node ID, dist>
<s, <0, <(a, 10), (c, 5)>>>
<s, inf>

<a, <10, <(b, 1), (c, 2)>>>
<a, 10> <a, 8>

<b, <inf, <(d, 4)>>>
<b, 11> <b, 14> <b, inf>

<c, <5, <(a, 3), (b, 9), (d, 2)>>>
<c, 5> <¢c, 12>

<d, <inf, <(s, 7), (b, 6)>>>
<d, inf> <d, 7>

e Reduce input: <node ID, dist>

<s, <0, <(a, 10), (c, 5)>>>
<$—f=

<a, <19, <(b, 1), (c, 2)>>>
<a—40>-<a, 8>

<b, <inf, <(d, 4)>>>
<b, 11> <b;44><binf>

<c, <5, <(a, 3), (b, 9), (d, 2)>>>
<g;o><c42>

<d, <inf, <(s, 7), (b, 6)>>>
<d—inf>~<d, 7>

(b,<d,13>) (d,<b,15>)

"Wave"

e Reduce output: <node ID, <dist, adj list>>
= Map input for next iteration

<s, <0, <(a, 10), (c, 5)>>>
<a, <8, <(b, 1), (c, 2)>>>
<b, <11, <(d, 4)>>>

<c, <5, <(a, 3), (b, 9), (d, 2)>>>
<d, <7, <(s, 7), (b, 6)>>>

... the rest omitted ...

B

Lok B

No change!
Convergence!

Question: If a vertex's path cost
is the same in two consecutive
rounds, can we be sure that

this vertex has converged?

N

1: class MAPPER

2 method Map(nid n, node N)

3 d — N.DistaANCE

4: EmiT(nid n, N) - Pass along graph structure
5 for all nodeid m € N.ApiaceEncyLisT do

6 Emit(nid m,d + 1) - Emit distances to reachable nodes

1: class REDUCER

2 method REbucE(nid m, [dy, ds, . . .])

3 dmin «— 00

4 M— @

5: for all d € counts [d;.ds,...|] do

6 it IsNoDE(d) then

7 M —d > Recover graph structure
8 else if d < d,,;, then > Look for shorter distance
0 Apin — d

10 M .DISTANCE «— d, iy, - Update shortest distance
11: Emit(nid m,node M)

« How many iterations are needed in parallel BFS (equal
edge weight case)?

e Convince yourself: when a node is first “discovered”,
we’ve found the shortest path

 Now answer the question...
- Six degrees of separation?

e Practicalities of implementation in MapReduce

A |
Lk Complex Systems Lab

e Dijkstra’s algorithm is more efficient

- At any step it only pursues edges from the minimum-cost path
inside the frontier

e MapReduce explores all paths in parallel
- Lots of “waste”
- Useful work is only done at the “frontier”

« Why can’t we do better using MapReduce?

o Path-based algorithms typically involve iterative
map/reduce

e They are typically formulated in a way that
traverses in “waves” or “stages”, like breadth-first
search

- This allows for parallelism
- They need a way to test for convergence

e Example: Single-source shortest path (SSSP)
- Original Dijkstra formulation is hard to parallelize
- But we can make it work with the "wave" approach

Lork Complex Systems Lab

g RN SV 70—
N| Y

