
Graph algorithms in MapReduce 

Basic Algorithms 
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Lecture adapted from:NETS 212: Scalable and Cloud Computing 



What we have seen so far 

• Initial algorithms 

– map/reduce model could be used to filter, collect, and 

aggregate data values 

 

• Useful for data with limited structure 

– We could extract pieces of input data items and collect them 

to run various reduce operations 

– We could “join” two different data sets on a common key 

 

• But that’s not enough… 
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Beyond average/sum/count 

• Much of the world is a network of relationships and 

shared features 

– Members of a social network can be friends, and may have 

shared interests / memberships / etc. 

– Customers might view similar movies, and might even be 

clustered by interest groups 

– The Web consists of documents with links 

– Documents are also related by topics, words, authors, etc. 
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Goal: Develop a toolbox 

• We need a toolbox of algorithms useful for analyzing 

data that has both relationships and properties 

 

• For the next ~2 lectures we’ll start to build this toolbox 

– Compare the “traditional” and MapReduce solution 
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Plan for today 

• Representing data in graphs 

• Graph algorithms in MapReduce 

– Computation model 

– Iterative MapReduce 

• A toolbox of algorithms 

– Single-source shortest path (SSSP) 

– k-means clustering 

– Classification with Naïve Bayes 
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NEXT 



Thinking about related objects 

• We can represent related objects as a labeled, 

directed graph 

• Entities are typically represented as nodes; 

relationships are typically edges 

– Nodes all have IDs, and possibly other properties 

– Edges typically have values, possibly IDs and other 

properties 
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Encoding the data in a graph 

• Recall basic definition of a graph: 

– G = (V, E) where V is vertices, E is edges of the 

form (v1,v2) where v1,v2  V 

• Assume we only care about connected vertices 

– Then we can capture a graph simply as the edges 

– ... or as an adjacency list: vi goes to [vj, vj+1, … ] 
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Graph encodings: Set of edges 

(Alice, Facebook) 

(Alice, Sunita) 

(Jose, Magna Carta) 

(Jose, Sunita) 

(Mikhail, Facebook) 

(Mikhail, Magna Carta) 

(Sunita, Facebook) 

(Sunita, Alice) 

(Sunita, Jose) 
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Graph encodings: Adding edge types 

(Alice, fan-of, Facebook) 

(Alice, friend-of, Sunita) 

(Jose, fan-of, Magna Carta) 

(Jose, friend-of, Sunita) 

(Mikhail, fan-of, Facebook) 

(Mikhail, fan-of, Magna Carta) 

(Sunita, fan-of, Facebook) 

(Sunita, friend-of, Alice) 

(Sunita, friend-of, Jose) 
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Graph encodings: Adding weights 

(Alice, fan-of, 0.5, Facebook) 

(Alice, friend-of, 0.9, Sunita) 

(Jose, fan-of, 0.5, Magna Carta) 

(Jose, friend-of, 0.3, Sunita) 

(Mikhail, fan-of, 0.8, Facebook) 

(Mikhail, fan-of, 0.7, Magna Carta) 

(Sunita, fan-of, 0.7, Facebook) 

(Sunita, friend-of, 0.9, Alice) 

(Sunita, friend-of, 0.3, Jose) 
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Recap: Related objects 

• We can represent the relationships between related 

objects as a directed, labeled graph 

– Vertices represent the objects 

– Edges represent relationships 

 

• We can annotate this graph in various ways 

– Add labels to edges to distinguish different types 

– Add weights to edges 

– ... 

 

• We can encode the graph in various ways 

– Examples: Edge set, adjacency list 
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Plan for today 

• Representing data in graphs 

• Graph algorithms in MapReduce 

– Computation model 

– Iterative MapReduce 

• A toolbox of algorithms 

– Single-source shortest path (SSSP) 

– k-means clustering 

– Classification with Naïve Bayes 
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A computation model for graphs 

• Once the data is encoded in this way, we can 

perform various computations on it 

– Simple example: Which users are their friends' best friend? 

– More complicated examples (later): Page rank, adsorption, 

...  

• This is often done by 

– annotating the vertices with additional information, and  

– propagating the information along the edges 

– "Think like a vertex"! 13 
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A computation model for graphs 

• Example: Am I my friends' best friend? 
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Slightly more technical: 
How many of my friends 

have me as their  
best friend? 



Can we do this in MapReduce? 

• Using adjacency list representation? 
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map(key: node, value: [<otherNode, relType, strength>]) 

{ 

 

 

} 

reduce(key: ________, values: list of _________) 

{ 

 

 

} 



Can we do this in MapReduce? 

• Using single-edge data representation? 
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map(key: node, value: <otherNode, relType, strength>) 

{ 

 

 

} 

reduce(key: ________, values: list of _________) 

{ 

 

 

} 



A computation model for graphs 

• Example: Am I my friends' best friend? 

– Step #1: Discard irrelevant vertices and edges 
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A computation model for graphs 

• Example: Am I my friends' best friend? 

– Step #1: Discard irrelevant vertices and edges 

– Step #2: Annotate each vertex with list of friends 

– Step #3: Push annotations along each edge 
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A computation model for graphs 

• Example: Am I my friends' best friend? 

– Step #1: Discard irrelevant vertices and edges 

– Step #2: Annotate each vertex with list of friends 

– Step #3: Push annotations along each edge 
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A computation model for graphs 

• Example: Am I my friends' best friend? 

– Step #1: Discard irrelevant vertices and edges 

– Step #2: Annotate each vertex with list of friends 

– Step #3: Push annotations along each edge 

– Step #4: Determine result at each vertex 
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A real-world use case 

• A variant that is actually used in social networks today: 

"Who are the friends of multiple of my friends?" 

– Where have you seen this before? 

 

• Friend recommendation! 

– Maybe these people should be my friends too! 
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Generalizing… 

• Now suppose we want to go beyond direct friend 

relationships 

– Example: How many of my friends' friends (distance-2 

neighbors) have me as their best friend's best friend? 

– What do we need to do? 

 

• How about distance k>2? 

 

• To compute the answer, we need to run multiple 

iterations of MapReduce! 
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Iterative MapReduce 

• The basic model: 
 

 

 
 

 

 

 

 

 

• Note that reduce output must be compatible with 

the map input! 
– What can happen if we filter out some information in the mapper or in 

the reducer? 
23 

copy files from input dir  staging dir 1 

(optional: do some preprocessing) 

 

while (!terminating condition) { 

  map from staging dir 1 

  reduce into staging dir 2 

  move files from staging dir 2  staging dir1 

} 

 

(optional: postprocessing) 
move files from staging dir 2  output dir 



Graph algorithms and MapReduce 

• A centralized algorithm typically traverses a tree or 

a graph one item at a time (there’s only one 

“cursor”) 

– You’ve learned breadth-first and depth-first traversals 

 

• Most algorithms that are based on graphs make use 

of multiple map/reduce stages processing one 

“wave” at a time 

– Sometimes iterative MapReduce, other times chains of 

map/reduce 
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"Think like a vertex" 
• Let's think about a different model for a bit: 

– Suppose we had a network that has exactly the same 

topology as the graph, with one node for each vertex 

– Suppose each vertex A has some  

local state sA 

– The computation proceeds in rounds.  

In each round: 

• Step #1: Each vertex A reads its local state sA  

• Step #2: A can then send some messages mi 

to adjacent nodes Bi 

• Step #3: Then each vertex A looks at all the  

messages it has received in step #2 

• Step #4: Finally, each vertex can update its 

local state to some other value sA' if it wants to 

– This would be a natural fit for many graph algorithms! 
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Recap: MapReduce on graphs 

• Suppose we want to: 

– compute a function for each vertex in a graph... 

– ... using data from vertices at most k hops away 

 

• We can do this as follows: 

– "Push" information along the edges 

• "Think like a vertex" 

– Finally, perform the computation at each vertex 

 

• May need more than one MapReduce phase 

– Iterative MapReduce: Outputs of stage i  inputs of stage i+1 
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Plan for today 

• Representing data in graphs 

• Graph algorithms in MapReduce 

– Computation model 

– Iterative MapReduce 

• A toolbox of algorithms 

– Single-source shortest path (SSSP) 

– k-means clustering 

– Classification with Naïve Bayes 
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Path-based algorithms 

• Sometimes our goal is to compute information about 

the paths (sets of paths) between nodes 

– Edges may be annotated with cost, distance, or similarity 

 

• Examples of such problems: 

– Shortest path from one node to another 

– Minimum spanning tree (minimal-cost tree connecting all 

vertices in a graph) 

– Steiner tree (minimal-cost tree connecting certain nodes) 

– Topological sort (node in a DAG comes before all nodes it 

points to) 
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Single-Source Shortest Path (SSSP) 
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Given a directed graph G = (V, E) in which each edge e has a cost c(e): 

 Compute the cost of reaching each node from the source node s in 
the most efficient way (potentially after multiple 'hops') 



SSSP: Intuition 

• We can formulate the problem using induction 

– The shortest path follows the principle of optimality:  the 

last step (u,v) makes use of the shortest path to u 

 

• We can express this as follows: 
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bestDistanceAndPath(v) { 

  if (v == source) then { 

    return <distance 0, path [v]> 

  } else { 

    find argmin_u (bestDistanceAndPath[u] + dist[u,v]) 

    return <bestDistanceAndPath[u] + dist[u,v], path[u] + v> 

  } 

} 



SSSP: traditional solution 

• Traditional approach: Dijkstra's algorithm 
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V: vertices, E: edges, S: start node 

 

foreach v in V 

  dist_S_to[v] := infinity 

  predecessor[v] = nil 

spSet = {} 

Q := V 

while (Q not empty) do 

  u := Q.removeNodeClosestTo(S) 

  spSet := spSet + {u} 

  foreach v in V where (u,v) in E 

    if (dist_S_To[v] > dist_S_To[u]+cost(u,v)) then 

      dist_S_To[v] = dist_S_To[u] + cost(u,v) 

    predecessor[v] = u  

Initialize length and 
last step of path 
to default values 

Update length and 
path based on edges 

radiating from u 



SSSP: Dijkstra in Action  
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SSSP: Dijkstra in Action  
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SSSP: Dijkstra in Action  
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SSSP: Dijkstra in Action  
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SSSP: Dijkstra in Action  
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SSSP: Dijkstra in Action  
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SSSP: How to parallelize? 

• Dijkstra traverses the graph along a single route at a 

time, prioritizing its traversal to the next step based 

on total path length (and avoiding cycles) 

– No real parallelism to be had here! 

 

• Intuitively, we want something  

that “radiates” from the origin,  

one “edge hop distance” at a time 

– Each step outwards can be done in parallel, before another 

iteration occurs - or we are done 

– Recall our earlier discussion: Scalability depends on the 

algorithm, not (just) on the problem! 
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SSSP: Revisiting the inductive definition 

• Dijkstra’s algorithm carefully considered each u in a 

way that allowed us to prune certain points 

• Instead we can look at all potential u’s for each v 

– Compute iteratively, by keeping a “frontier set” of u nodes i 

edge-hops from the source 
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bestDistanceAndPath(v) { 

  if (v == source) then { 

    return <distance 0, path [v]> 

  } else { 

    find argmin_u (bestDistanceAndPath[u] + dist[u,v]) 

    return <bestDistanceAndPath[u] + dist[u,v], path[u] + v> 

  } 

} 



SSSP: MapReduce formulation 

• init: 

– For each node, node ID  <, -, {<succ-node-ID,edge-cost>}> 

• map: 

– take node ID  <dist,  next, {<succ-node-ID,edge-cost>}> 

– For each succ-node-ID: 

• emit succ-node ID  {<node ID, distance+edge-cost>} 

– emit node ID  distance,{<succ-node-ID,edge-cost>} 

• reduce: 

– distance := min cost from a predecessor; next := that predec. 

– emit node ID  <distance, next, {<succ-node-ID,edge-cost>}> 

• Repeat until no changes 

• Postprocessing: Remove adjacency lists 
40 

Why is this necessary? 

The shortest path we have found so far 
from the source to nodeID has length ...  

... and here is the adjacency  
list for nodeID 

This is a new path from  
the source to succ-node-ID 

that we just discovered 
(not necessarily shortest) 

... this is the next 
hop on that path... 



Example: SSSP – Parallel BFS in 
MapReduce 

• Adjacency matrix 

 

 

 

 

 

• Adjacency List 
s: (a, 10), (c, 5) 

a: (b, 1), (c, 2) 

b: (d, 4) 

c: (a, 3), (b, 9), (d, 2) 

d: (s, 7), (b, 6) 
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Iteration 0: Base case 
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mapper:   (a,<s,10>) (c,<s,5>) edges 

  

reducer:  (a,<10, ...>) (c,<5, ...>) 
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Iteration 0– Parallel BFS in MapReduce 

• Map input: <node ID, <dist, adj list>> 

<s, <0, <(a, 10), (c, 5)>>> 

<a, <inf, <(b, 1), (c, 2)>>> 

<b, <inf, <(d, 4)>>> 

<c, <inf, <(a, 3), (b, 9), (d, 2)>>> 

<d, <inf, <(s, 7), (b, 6)>>> 

 

• Map output: <dest node ID, dist> 
<a, 10>  <c, 5> 

<b, inf> <c, inf> 

<d, inf> 

<a, inf> <b, inf> <d, inf> 

<s, inf> <b, inf> 
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<s, <0, <(a, 10), (c, 5)>>> 

<a, <inf, <(b, 1), (c, 2)>>> 

<b, <inf, <(d, 4)>>> 

<c, <inf, <(a, 3), (b, 9), (d, 2)>>> 

<d, <inf, <(s, 7), (b, 6)>>> 



Iteration 0 – Parallel BFS in MapReduce 

• Reduce input: <node ID, dist> 

<s, <0, <(a, 10), (c, 5)>>> 

<s, inf> 

 

<a, <inf, <(b, 1), (c, 2)>>> 

<a, 10> <a, inf> 

 

<b, <inf, <(d, 4)>>> 

<b, inf> <b, inf> <b, inf>  

 

<c, <inf, <(a, 3), (b, 9), (d, 2)>>> 

<c, 5> <c, inf> 

 

<d, <inf, <(s, 7), (b, 6)>>> 

<d, inf> <d, inf> 
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Iteration 0– Parallel BFS in MapReduce 

• Reduce input: <node ID, dist> 
<s, <0, <(a, 10), (c, 5)>>> 

<s, inf> 

 

<a, <inf, <(b, 1), (c, 2)>>> 

<a, 10> <a, inf> 

 

<b, <inf, <(d, 4)>>> 

<b, inf> <b, inf> <b, inf>  

 

<c, <inf, <(a, 3), (b, 9), (d, 2)>>> 

<c, 5> <c, inf> 

 

<d, <inf, <(s, 7), (b, 6)>>> 

<d, inf> <d, inf> 
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Iteration 1 

46 

mapper:   (a,<s,10>) (c,<s,5>) (a,<c,8>) (c,<a,12>) (b,<a,11>)  
 (b,<c,14>) (d,<c,7>) edges 

reducer:  (a,<8, ...>) (c,<5, ...>) (b,<11, ...>) (d,<7, ...>) 
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Iteration 1– Parallel BFS in MapReduce 

• Reduce output: <node ID, <dist, adj list>> 

= Map input for next iteration 

<s, <0, <(a, 10), (c, 5)>>> 

<a, <10, <(b, 1), (c, 2)>>> 

<b, <inf, <(d, 4)>>> 

<c, <5, <(a, 3), (b, 9), (d, 2)>>> 

<d, <inf, <(s, 7), (b, 6)>>> 

• Map output: <dest node ID, dist> 

<a, 10>  <c, 5> 

<b, 11> <c, 12> 

<d, inf> 

<a, 8> <b, 14> <d, 7> 

<s, inf> <b, inf> 
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<s, <0, <(a, 10), (c, 5)>>> 

<a, <10, <(b, 1), (c, 2)>>> 

<b, <inf, <(d, 4)>>> 

<c, <5, <(a, 3), (b, 9), (d, 2)>>> 

<d, <inf, <(s, 7), (b, 6)>>> 



Iteration 1 – Parallel BFS in MapReduce 

• Reduce input: <node ID, dist> 
<s, <0, <(a, 10), (c, 5)>>> 

<s, inf> 

 

<a, <10, <(b, 1), (c, 2)>>> 

<a, 10> <a, 8>  

 

<b, <inf, <(d, 4)>>> 

<b, 11> <b, 14> <b, inf> 

 

<c, <5, <(a, 3), (b, 9), (d, 2)>>> 

<c, 5> <c, 12> 

 

<d, <inf, <(s, 7), (b, 6)>>> 

<d, inf> <d, 7> 
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Iteration 1– Parallel BFS in MapReduce 

• Reduce input: <node ID, dist> 
<s, <0, <(a, 10), (c, 5)>>> 

<s, inf> 

 

<a, <10, <(b, 1), (c, 2)>>> 

<a, 10> <a, 8>  

 

<b, <inf, <(d, 4)>>> 

<b, 11> <b, 14> <b, inf> 

 

<c, <5, <(a, 3), (b, 9), (d, 2)>>> 

<c, 5> <c, 12> 

 

<d, <inf, <(s, 7), (b, 6)>>> 

<d, inf> <d, 7> 
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Iteration 2 
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mapper:   (a,<s,10>) (c,<s,5>) (a,<c,8>) (c,<a,12>) (b,<a,11>) 
 (b,<c,14>) (d,<c,7>) (b,<d,13>) (d,<b,15>) edges 

reducer:  (a,<8>) (c,<5>) (b,<11>) (d,<7>) 
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Iteration 2– Parallel BFS in MapReduce 

• Reduce output: <node ID, <dist, adj list>> 
= Map input for next iteration 

<s, <0, <(a, 10), (c, 5)>>> 

<a, <8, <(b, 1), (c, 2)>>> 

<b, <11, <(d, 4)>>> 

<c, <5, <(a, 3), (b, 9), (d, 2)>>> 

<d, <7, <(s, 7), (b, 6)>>> 

 

 … the rest omitted … 
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Iteration 3 
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mapper:   (a,<s,10>) (c,<s,5>) (a,<c,8>) (c,<a,12>) (b,<a,11>)  
 (b,<c,14>) (d,<c,7>) (b,<d,13>) (d,<b,15>) edges 

reducer:  (a,<8>) (c,<5>) (b,<11>) (d,<7>) 

No change! 
Convergence! 

 

Question: If a vertex's path cost 
is the same in two consecutive 
rounds, can we be sure that 
this vertex has converged? 
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BFS Pseudo-Code 



Stopping Criterion 

• How many iterations are needed in parallel BFS (equal 

edge weight case)? 

• Convince yourself: when a node is first “discovered”, 

we’ve found the shortest path 

• Now answer the question... 

– Six degrees of separation? 

• Practicalities of implementation in MapReduce 

 



Comparison to Dijkstra 

• Dijkstra’s algorithm is more efficient  

– At any step it only pursues edges from the minimum-cost path 

inside the frontier 

• MapReduce explores all paths in parallel 

– Lots of “waste” 

– Useful work is only done at the “frontier” 

• Why can’t we do better using MapReduce? 



Summary: SSSP 

• Path-based algorithms typically involve iterative 

map/reduce 

• They are typically formulated in a way that 

traverses in “waves” or “stages”, like breadth-first 

search 

– This allows for parallelism 

– They need a way to test for convergence 

• Example: Single-source shortest path (SSSP) 

– Original Dijkstra formulation is hard to parallelize 

– But we can make it work with the "wave" approach 
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