CGI - Overview

The Common Gateway Interface (CGI) is a standard for interfacing external applications with information servers, such as HTTP or Web servers.

A plain HTML document that the Web daemon retrieves is static, which means it exists in a constant state: a text file that doesn't change.

 A CGI program, on the other hand, is executed in real-time, so that it can output dynamic information.

For example, let's say that you wanted to "hook up" your Unix database to the World Wide Web, to allow people from all over the world to query it.

Basically, you need to create a CGI program that the Web daemon will execute to transmit information to the database engine, and receive the results back again and display them to the client.

 This is an example of a gateway, and this is where CGI got its origins.

The database example is a simple idea, but most of the time rather difficult to implement. There really is no limit as to what you can hook up to the Web.

 The only thing you need to remember is that whatever your CGI program does, it should not take too long to process. Otherwise, the user will just be staring at their browser waiting for something to happen.

CGI Basics

A CGI gateway program is a program, written in any language that allows it to be executed on the server machine; it receives its input from an information server and sends its output to a client.

Choosing a language

The language used to write gateway programs may be any language that can be run on the host machine and operating system; the language must also be able to read from the standard input stream, output to the standard output stream, and read environment variables.

 Almost all programming and scripting languages provide this minimal functionality.

 The most common languages used for CGI include Perl, C, C++, and various Unix shells.

 Other languages that are also well suited to CGI programming include Basic, Pascal, Fortran, Tcl/Tk, Python, etc.

 Some people have successfully written CGI gateway programs in other languages including Server-Side JavaScript (LiveScript or Livewire), Visual Basic, VBScript, and AppleScript. The list is endless.

The choice of language used to write your CGI programs can be based on a number of factors:

1. Performance: As most experienced developers know, most compiled languages are faster than interpreted script languages.

Part of this has to do with the overhead involved in initiating a copy of the interpreter necessary to execute programs written in scripting languages like Perl.

 If you have a lot of traffic on a site, then continually starting new instances of the script interpreter can take its toll on the server; it’s not an efficient process. Many sites, however, do not have enough traffic for this to be a real concern.

Another part of this reality is the fact that compilers can create optimized native code for the platform on which it is compiling. Most of the time, this difference in performance is not the make-or-break issue for the developer in choosing a language.

2. Security: In general, the bulk of security problems come from programming errors and a lack of understanding of the environment in which a CGI exists and runs.

 Generally it is said that a compiled language is inherently more secure.

 A compiled language program is compiled into a binary file which can be placed in the cgi-bin or other world-readable directory – the source goes into a private directory; with an interpreted language, you run the risk of the source being retrieved since it in fact resides in a world-readable directory.

 A properly configured web server helps with this problem, but the risk will always exist.

 Also, scripting languages require the use of an interpreter program, and this interpreter may actually contain bugs that are security holes.

 Compiled languages can also have built-in security risks, though. One such risk is buffer overflow - a crafty hacker can take advantage of overflows to cause problems on your machine. In C and C++ you must always check to make sure you are not assigning more data to a buffer than it can hold.

 Perl, on the other hand, automatically checks buffer sizes and dynamically allocates more space as needed, thus eliminating this problem.

 Also, Perl contains a feature called taint-checking that catches many potential security problems in a script. If security is an issue (and it should be), you should concentrate more on logical errors in your programming opening security holes than you should about the built-in problems of the language.

3. Reliability: You should use a language that has proven stability on the platform that you are using.

 Perl is in its 5th version and is very stable on Unix platforms. A port has been made to Win32 and is being proven very stable and well-designed, but it still may have some bugs to work out.

The Macintosh port of Perl 5 is, however, a newer product and has incompatibilities with other versions of Perl and does not implement all of the Perl specification.

Thus, a single programming language is shown to have varying degrees of stability on 3 different platforms. The best decision to make in terms of stability is to use a language with which you as a programmer are comfortable and confident. If you have used MacPerl for several projects, tested and used them thoroughly, and never had a problem, then you should feel confident using MacPerl for your CGI programs. However, if you’re writing on UNIX, then AppleScript probably isn’t a good choice for you, even if some obscure port of the AppleScript interpreter exists for UNIX.

4. Maintainability, etc.: This is often the main concern for CGI developers. Many programmers use interpreted languages for CGI gateway programs because they are easier to read, understand, maintain, test, and debug.

However, others like to use compiled languages like C and C++ because they have development tools for them; MSVC++ and Borland C++ are examples of IDE’s that make developing and maintaining programs easy. Choose a language that you believe will be the easiest to work with.

5. Portability: Portable code is a fundamental of good CGI program design.

 The reasons are varied but compelling: you may move your web server to a different platform in the future, you may distribute your program, you may have to port your program to an upgraded version of your OS, etc.

 Interpreted scripting languages are often a very good choice in this respect because the interpreter will probably be ported to several different platforms (i.e. Perl).

CGI programs written in compiled languages will at the very least have to be recompiled every time they are moved to a different platform. If any system-specific functions or libraries are used, the parts of the code utilizing them will have to be redesigned and/or rewritten.

You must choose your language based on the problem at hand. The best advise "in a nutshell" is to just use the language with which you are most familiar and comfortable. Decide what factors are most important to you before you begin development, and choose a language accordingly.

Input

When your CGI gateway program is initiated, it will receive its input in one of two ways, depending on the request method that was used leading to the execution of the CGI program.

For example in a FORM we mention there were two methods

	HTTP Request Methods

HTTP/1.0 allows an open-ended set of methods to be used to indicate the purpose of a request. The three most often used methods are GET, HEAD, and POST.

The GET Method
Information from a form using the GET method is appended onto the end of the action URI being requested. Your CGI program will receive the encoded form input in the environment variable QUERY_STRING.

The GET method is used to ask for a specific document - when you click on a hyperlink, GET is being used. GET should probably be used when a URL access will not change the state of a database (by, for example, adding or deleting information) and POST should be used when an access will cause a change. Many database searches have no visible side-effects and make ideal applications of query forms using GET.

The semantics of the GET method changes to a "conditional GET" if the request message includes an If-Modified-Since header field. A conditional GET method requests that the identified resource be transferred only if it has been modified since the date given by the If-Modified-Since header.

The POST Method
This method transmits all form input information immediately after the requested URI. Your CGI program will receive the encoded form input on stdin.

POST /cgi-bin/post-query HTTP/1.0

Accept: text/html

Accept: video/mpeg

Accept: image/gif

Accept: application/postscript

User-Agent: Lynx/2.2 libwww/2.14

From: Stars@WDVL.com

Content-type: application/x-www-form-urlencoded

Content-length: 150

 * a blank line *

org=CyberWeb%20SoftWare

&users=10000

&browsers=lynx

· This is a "POST" query addressed for the program residing in the file at "/cgi-bin/post-query", that simply echoes the values it receives.

· The client lists the MIME-types it is capable of accepting, and identifies itself and the version of the WWW library it is using.

· Finally, it indicates the MIME-type it has used to encode the data it is sending, the number of characters included, and the list of variables and their values it has collected from the user.

· MIME-type application/x-www-form-urlencoded means that the variable name-value pairs will be encoded the same way a URL is encoded. Any special characters, including puctuation, will be encoded as %nn where nn is the ASCII value for the character in hex.

	

