The Ideal-CSP Correspondence

M.R.C. van Dongen

Compute Science Department UCC
Cork Constraint Computation Centre
Homepage: http://csweb.ucc.ie/~dongen.html
Email: dongen@cs.ucc.ie
July 19, 2002

Outline

- Ideals and Varieties;
- Gröbner Bases;
- Constraint Satisfaction Problems (CSPs);
- CSPs in Solved Form;
- Summary.

Ideals and Varieties

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a set of variables, let k be a field and let $k[X]$ the polynomial ring in the variables X over k.

A set $I \subseteq k[X]$ is called an ideal of $k[X]$ if

- $0 \in \mathrm{I}$;
- $f+g \in I$, for all $f, g \in I$;
- $r \times f \in I$, for all $f \in I$ and $r \in k[X]$.

Let $F=\left\{f_{1}, \ldots, f_{m}\right\} \subset k[X]$ be finite. The ideal $\langle F\rangle$ generated by $F \subseteq k[X]$ is the set

$$
\left\{r_{1} \times f_{1}+\cdots+r_{m} \times f_{m}:\left(r_{1}, \ldots, r_{m}\right) \in k[X]^{m}\right\}
$$

If I is generated by F then F is called a generating set of I .
Thanks to Hilbert we know that if k is a field, then every ideal in $k[X]$ is generated by some finite generating set.

The variety $\mathrm{V}(\mathrm{F}) \subseteq \mathrm{k}^{n}$ of $\mathrm{F} \subseteq k[\mathrm{X}]$ is the set:

$$
V(F)=\left\{\left(v_{1}, \ldots, v_{n}\right) \in k^{n}: F \subseteq\left\langle x_{1}-v_{1}, \ldots, x_{n}-v_{n}\right\rangle\right\} .
$$

The (vanishing) ideal $\mathrm{I}(\mathrm{V}) \subseteq \mathrm{k}[\mathrm{X}]$ of a variety $\mathrm{V} \subseteq \mathrm{k}^{\mathrm{n}}$ is the ideal containing all members of $k[X]$ that vanish at V :
$I(V)=\left\{f \in k[X]:\left(\forall\left(v_{1}, \ldots, v_{n}\right) \in V\right)\left(f \in\left\langle x_{1}-v_{1}, \ldots, x_{n}-v_{n}\right\rangle\right)\right\}$.

Gröbner Bases (Term Orders)

Let \mathbb{T}_{X} denote the set of terms in X. A total order \prec is called a term order on \mathbb{T}_{X} if

- $\left(\forall \mathrm{t} \in \mathbb{T}_{X} \backslash\{1\}\right)(1 \prec \mathrm{t})$; and
- $\left(\forall u, v, t \in \mathbb{T}_{X}\right)(u \prec v \Longrightarrow t \times u \prec t \times v)$.

The leading term in (f) of $f \in k[X] \backslash\{0\}$ w.r.t. term order \prec is the greatest term of f w.r.t. \prec.

There are no sequences of the form

$$
\cdots \prec t_{2} \prec t_{1} .
$$

Gröbner Bases (Definition)

Let $\mathrm{I} \subseteq \mathrm{k}[\mathrm{X}]$ be an ideal and let \preccurlyeq be a term order. A finite set $\mathrm{G} \subseteq \mathrm{k}[\mathrm{X}] \backslash\{0\}$ is called a Gröbner basis of I w.r.t. \prec if it is a generating set of I and

$$
(\forall f \in I \backslash\{0\})(\exists g \in G)\left(\operatorname{in}_{\prec}(g) \mid \operatorname{in}_{\prec}(f)\right)
$$

where $u \mid v$ if u divides v.

Applications of Gröbner Bases

- Decide the ideal membership problem $f \in I$.
- Decide the consistency problem $1 \in \mathrm{I}$.
- Compute elimination ideals;
- Compute intersection of ideals;

Constraints

Let k be a field, let X be a set of variables, let $\emptyset \subset S=\left\{x_{i_{1}}, \ldots, x_{i_{m}}\right\} \subseteq X$ and let $R \subseteq k^{i_{m}}$ be a finite set. Then $\mathcal{C}=(S, R)$ is called a constraint over k.

The simultaneous "assignment" $x_{i_{1}}=v_{i_{1}}, \ldots, x_{i_{m}}=v_{i_{m}}$ is allowed if $t=\left(v_{i_{1}}, \ldots, v_{i_{m}}\right) \in R$. If $t \in R$ it is said to satisfy \mathcal{C}.

In general an assignment to X satisfies a constraint if the projection of the assignment onto the scope of the constraint is in the relation of the constraint.

The Constraint-Ideal Relationship

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and let $S=\left\{x_{i_{1}}, \ldots, x_{i_{m}}\right\} \subseteq X$ be a non-empty sets of variables. Finally, let $\mathcal{R}=k[X]$ and let $\mathcal{C}=(S, R)$ be a constraint over k.

Every point $\left(v_{i_{1}}, \ldots, v_{i_{m}}\right) \in k^{i_{m}}$ is in one-to-one correspondence with the maximal ideal $\mathrm{I}=\left\langle\mathrm{x}_{\mathrm{i}_{1}}-v_{\mathrm{i}_{1}}, \ldots, \mathrm{x}_{\mathrm{i}_{m}}-v_{\mathrm{i}_{m}}\right\rangle_{\mathcal{R}}$.

Note that I corresponds to the variety $\mathrm{V}(\mathrm{I}) \subseteq \mathrm{k}^{n}$.
It is well known that

$$
V \cup W=V(I(V) \cap I(W)) .
$$

Definition 1. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ and let $S=\left\{x_{i_{1}}, \ldots, x_{i_{m}}\right\} \subseteq X$ be a non-empty sets of variables. Finally, let $\mathcal{R}=k[X]$ and let $\mathcal{C}=(S, R)$ be a constraint over k. The ideal, $I(\mathcal{C})$, of \mathcal{C} w.r.t. X is given by:

$$
I(\mathcal{C})=\bigcap_{\left(r_{i_{1}}, \ldots, r_{i_{m}}\right) \in R}\left\langle x_{i_{1}}-r_{i_{1}}, \ldots, x_{i_{m}}-r_{i_{m}}\right\rangle_{\mathcal{R}}
$$

Note that the simultaneous assignment
$\left(x_{i_{1}}, \ldots, x_{i_{m}}\right)=\left(r_{i_{1}}, \ldots, r_{i_{m}}\right)$ satisfies \mathcal{C} if and only if

$$
\left\langle x_{i_{1}}-r_{i_{1}}, \ldots, x_{i_{m}}-r_{i_{m}}\right\rangle_{\mathcal{R}} \subseteq I(\mathcal{C})
$$

Let $X=S_{1} \cup S_{2}$. Furthermore, let $\mathcal{C}_{1}=\left(S_{1}, R_{1}\right)$ and $\mathcal{C}_{2}=\left(S_{2}, R_{2}\right)$ be two constraints over k. Then the simultaneous assignment $\left(x_{1}, \ldots, x_{n}\right)=\left(t_{1}, \ldots, t_{n}\right)$ satisfies both \mathcal{C}_{1} and \mathcal{C}_{2} if and only if

$$
\left\langle x_{1}-t_{1}, \ldots, x_{n}-t_{n}\right\rangle_{\mathcal{R}} \subseteq I\left(\mathcal{C}_{1}\right)+I\left(\mathcal{C}_{2}\right) .
$$

Computing CSPs in Solved Form

Application: Transform CSPs into "nicer" problems.

1. Transform every constraint \mathcal{C} to a generating set $G_{\mathcal{C}}$ of its ideal;
2. Select a (lexicographical) term order order \prec, s.t. $x_{1} \prec \cdots \prec x_{n}$;
3. Compute a Gröbner basis of $\sum_{\mathcal{C} \in \operatorname{CSP}}\left\langle\mathrm{G}_{\mathcal{C}}\right\rangle$ w.r.t. \prec;
4. Transform the Gröbner basis to a CSP.

Four Queens Problem

Position four queens on a four by four chessboard without any queen threatening any other.
variables $X=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$;
unary constraints $\left(\left\{q_{i}\right\},\{1,2,3,4\}\right)$, for $1 \leq i \leq 4$;
binary constraint $\left(\left\{q_{i}, q_{j}\right\}, R_{i j}\right)$, for $1 \leq i<j \leq 4$, where

$$
R_{i j}=\left\{\left(i^{\prime}, j^{\prime}\right) \in\{1,2,3,4\}^{2}: i^{\prime} \neq j^{\prime} \wedge\left|i^{\prime}-j^{\prime}\right| \neq|i-j|\right\} .
$$

Computation of the Generating Bases

Let $\mathcal{C}_{i}=\left(\left\{q_{i}\right\},\{1,2,3,4\}\right)$, let $\mathcal{R}=k\left[q_{1}, q_{2}, q_{3}, q_{4}\right]$, and let $G_{\left\{q_{i}\right\}}$ be a generating set of $I\left(\mathcal{C}_{i}\right)$. Then

$$
G_{\left\{q_{i}\right\}}=\left\{\left(q_{i}-1\right) \times\left(q_{i}-2\right) \times\left(q_{i}-3\right) \times\left(q_{i}-4\right)\right\} .
$$

Using ideal intersection we can compute generating bases for each of the other constraints.

Properties of Solutions Set

If I and J are ideals in $\mathrm{k}[\mathrm{X}]$ then

$$
V(\mathrm{I}) \cap \mathrm{V}(\mathrm{~J})=\mathrm{V}(\mathrm{I}+\mathrm{J}) .
$$

The solutions \mathcal{S} of the problem are given by

$$
\mathcal{S}=\bigcap_{\mathcal{C} \in \mathrm{CSP}} \mathrm{~V}(\mathrm{I}(\mathcal{C})) .
$$

Therefore,

$$
\mathcal{S}=\mathrm{V}\left(\sum_{\mathcal{C} \in \mathrm{CSP}} \mathrm{I}(\mathcal{C})\right) .
$$

Computation of the Gröbner Basis

Let \prec be the lexicographical term order where $\mathrm{q}_{4} \prec \mathrm{q}_{3} \prec \mathrm{q}_{2} \prec \mathrm{q}_{1}$. The following is a Gröbner basis w.r.t. \prec of the solutions to the four-queens problem.

$$
\left\{q_{4}^{2}-5 q_{4}+6, q_{3}+3 q_{4}-10, q_{2}-3 q_{4}+5, q_{1}+q_{4}-5\right\}
$$

Summary

- Constraints are varieties;
- We can translate CSPs to (generating sets of) ideals and back;
- The relationship between CSPs and ideals opens the door for the application of Gröbner basis techniques to CSPs;
- Gröbner bases make explicit the underlying structure of the relationships between the variables that was implicit in the original CSPs.

