The Ideal-CSP Correspondence

M.R.C. van Dongen Compute Science Department UCC Cork Constraint Computation Centre Homepage: http://csweb.ucc.ie/~dongen.html Email: dongen@cs.ucc.ie

July 19, 2002

Outline

- Ideals and Varieties;
- Gröbner Bases;
- Constraint Satisfaction Problems (CSPs);
- CSPs in Solved Form;
- Summary.

Ideals and Varieties

Let $X = \{x_1, ..., x_n\}$ be a set of variables, let k be a field and let k[X] the *polynomial ring* in the variables X over k.

A set $I \subseteq k[X]$ is called an *ideal* of k[X] if

• $0 \in I$;

• $f + g \in I$, for all $f, g \in I$;

• $r \times f \in I$, for all $f \in I$ and $r \in k[X]$.

Let $F=\{f_1,\ldots,f_m\}\subset k[X]$ be finite. The ideal $\langle F\rangle$ generated by $F\subseteq k[X]$ is the set

 $\{r_1 \times f_1 + \cdots + r_m \times f_m : (r_1, \ldots, r_m) \in k[X]^m\},\$

If I is generated by F then F is called a *generating set* of I.

Thanks to Hilbert we know that if k is a field, then every ideal in k[X] is generated by some finite generating set.

The variety $V(F) \subseteq k^n$ of $F \subseteq k[X]$ is the set:

 $V(F) = \{ (v_1, \ldots, v_n) \in k^n : F \subseteq \langle x_1 - v_1, \ldots, x_n - v_n \rangle \}.$

The *(vanishing) ideal* $I(V) \subseteq k[X]$ of a variety $V \subseteq k^n$ is the ideal containing all members of k[X] that vanish at V:

 $I(V) = \{ f \in k[X] : (\forall (v_1, \ldots, v_n) \in V) (f \in \langle x_1 - v_1, \ldots, x_n - v_n \rangle) \}.$

Gröbner Bases (Term Orders)

Let \mathbb{T}_X denote the set of terms in X. A total order \prec is called a *term* order on \mathbb{T}_X if

- $(\forall t \in \mathbb{T}_X \setminus \{1\})(1 \prec t);$ and
- $(\forall u, v, t \in \mathbb{T}_X)(u \prec v \implies t \times u \prec t \times v).$

The *leading term* in (f) of $f \in k[X] \setminus \{0\}$ w.r.t. term order \prec is the greatest term of f w.r.t. \prec .

 $\cdots \prec t_2 \prec t_1.$

There are no sequences of the form

Gröbner Bases (Definition)

Let $I \subseteq k[X]$ be an ideal and let \prec be a term order. A finite set $G \subseteq k[X] \setminus \{0\}$ is called a *Gröbner basis* of I w.r.t. \prec if it is a generating set of I and

$(\forall f \in I \setminus \{0\}) (\exists g \in G)(in_{\prec}(g)|in_{\prec}(f))$

where u v if u divides v.

Applications of Gröbner Bases

- Decide the *ideal membership* problem $f \in I$.
- Decide the *consistency* problem $1 \in I$.
- Compute *elimination ideals*;
- Compute *intersection* of ideals;

Constraints

Let k be a field, let X be a set of variables, let $\emptyset \subset S = \{x_{i_1}, \dots, x_{i_m}\} \subseteq X$ and let $R \subseteq k^{i_m}$ be a finite set. Then $\mathcal{C} = (S, R)$ is called a *constraint* over k.

The simultaneous "assignment" $x_{i_1} = v_{i_1}, \ldots, x_{i_m} = v_{i_m}$ is allowed if $t = (v_{i_1}, \ldots, v_{i_m}) \in R$. If $t \in R$ it is said to satisfy C.

In general an assignment to X satisfies a constraint if the projection of the assignment onto the scope of the constraint is in the relation of the constraint.

The Constraint-Ideal Relationship

Let $X = \{x_1, \ldots, x_n\}$ and let $S = \{x_{i_1}, \ldots, x_{i_m}\} \subseteq X$ be a non-empty sets of variables. Finally, let $\mathcal{R} = k[X]$ and let $\mathcal{C} = (S, R)$ be a constraint over k.

Every point $(v_{i_1}, \ldots, v_{i_m}) \in k^{i_m}$ is in one-to-one correspondence with the maximal ideal $I = \langle x_{i_1} - v_{i_1}, \ldots, x_{i_m} - v_{i_m} \rangle_{\mathcal{R}}$.

Note that I corresponds to the variety $V(I) \subseteq k^n$.

It is well known that

 $V \cup W = V(I(V) \cap I(W)).$

Definition 1. Let $X = \{x_1, ..., x_n\}$ and let $S = \{x_{i_1}, ..., x_{i_m}\} \subseteq X$ be a non-empty sets of variables. Finally, let $\mathcal{R} = k[X]$ and let $\mathcal{C} = (S, R)$ be a constraint over k. The ideal, $I(\mathcal{C})$, of \mathcal{C} w.r.t. X is given by:

$$I(\mathcal{C}) = \bigcap_{\substack{(r_{i_1}, \dots, r_{i_m}) \in \mathbb{R}}} \langle x_{i_1} - r_{i_1}, \dots, x_{i_m} - r_{i_m} \rangle_{\mathcal{R}}.$$

Note that the simultaneous assignment $(x_{i_1}, \ldots, x_{i_m}) = (r_{i_1}, \ldots, r_{i_m})$ satisfies C if and only if

 $\langle x_{i_1} - r_{i_1}, \ldots, x_{i_m} - r_{i_m} \rangle_{\mathcal{R}} \subseteq I(\mathcal{C}).$

Let $X = S_1 \cup S_2$. Furthermore, let $C_1 = (S_1, R_1)$ and $C_2 = (S_2, R_2)$ be two constraints over k. Then the simultaneous assignment $(x_1, \ldots, x_n) = (t_1, \ldots, t_n)$ satisfies both C_1 and C_2 if and only if

 $\langle x_1 - t_1, \ldots, x_n - t_n \rangle_{\mathcal{R}} \subseteq I(\mathcal{C}_1) + I(\mathcal{C}_2).$

Computing CSPs in Solved Form

Application: Transform CSPs into "nicer" problems.

1. Transform every constraint C to a generating set G_C of its ideal;

2. Select a (lexicographical) term order order \prec , s.t. $x_1 \prec \cdots \prec x_n$;

3. Compute a Gröbner basis of $\sum_{C \in CSP} \langle G_C \rangle$ w.r.t. \prec ;

4. Transform the Gröbner basis to a CSP.

Four Queens Problem

Position four queens on a four by four chessboard without any queen threatening any other.

variables $X = \{q_1, q_2, q_3, q_4\};$

unary constraints ({ q_i }, {1,2,3,4 }), for $1 \le i \le 4$;

binary constraint ({ q_i, q_j }, R_{ij}), for $1 \le i < j \le 4$, where

 $R_{ij} = \left\{ (i',j') \in \{1,2,3,4\}^2 : i' \neq j' \land |i'-j'| \neq |i-j| \right\}.$

Computation of the Generating Bases

Let $C_i = (\{q_i\}, \{1, 2, 3, 4\})$, let $\mathcal{R} = k[q_1, q_2, q_3, q_4]$, and let $G_{\{q_i\}}$ be a generating set of $I(C_i)$. Then

 $G_{\{q_i\}} = \{(q_i - 1) \times (q_i - 2) \times (q_i - 3) \times (q_i - 4)\}.$

Using ideal intersection we can compute generating bases for each of the other constraints.

Properties of Solutions Set

If I and J are ideals in k[X] then

 $V(I) \cap V(J) = V(I + J)$

The solutions S of the problem are given by

 $\mathcal{S} = \bigcap_{\mathcal{C} \in \mathsf{CSP}} V(I(\mathcal{C})).$

 $S = V(\sum I(C)).$

 $\mathcal{C} \in \mathsf{CSP}$

Therefore,

Computation of the Gröbner Basis

Let \prec be the lexicographical term order where $q_4 \prec q_3 \prec q_2 \prec q_1$. The following is a Gröbner basis w.r.t. \prec of the solutions to the four-queens problem.

 $\left\{\,q_4^2-5q_4+6,q_3+3q_4-10,q_2-3q_4+5,q_1+q_4-5\,\right\}.$

Summary

- Constraints are varieties;
- We can translate CSPs to (generating sets of) ideals and back;
- The relationship between CSPs and ideals opens the door for the application of Gröbner basis techniques to CSPs;
- Gröbner bases make explicit the underlying structure of the relationships between the variables that was implicit in the original CSPs.

