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Constraint Networks

Let S C T be sets containing finitely many variables. For
all x € T let D(x) denote the domain of «x.

Cs iIs called a constraint on S if Cg C X, csD(x).

If t € X,c1D(x) then t is said to satisfy Cs if the
projection of t onto the variables in S is in Cs.

A tuple (X, C) is called a constraint network if X is a
finite set of variables and C is a set of constraints
between subsets of the variables in X s.t. C contains a
unary constraint on every variable in X.




Arc-Consistency

A binary constraint network (X, C) is called
arc-consistent iff for every « € X it holds that D(«) # ()
and for every value v € D(«) and for every constraint

C{a.p} In the constraint network there is a value w € D()
S.T. w supports v.

Here a w € D() supports v € D(«) iIf « <  and
(vyw) € CiqpyOr p < and (w,v) € Crqpy, Where - < -
Is the “usual” ordering on the variables in X.










Heuristics

Arc-consistency algorithms carry out support-checks to
find out about the properties of CSPs.

They use arc-heuristics to select the constraint that will
be used for the next support-check.

They use domain-heuristics to select the values that will
be used for the next support-check.




Some Existing Arc-Consistency Algorithms

wo well known arc-consistency algorithms are AC-3
with a O(ed’) and AC-7 with a O(ed?) worst-case
time-complexity.

One of the nice properties of AC-7 is that—as opposed
to AC-3—it doesn't repeat support-checks. As a matter
of fact, its worst-case time-complexity is optimal and it
behaves well in practice.

A C-3 on the other hand has nicer space-complexity
characteristics than AC-7 (Of(e +nd) vs. O(edz)).




Algorithm L

Arc-Consistency Algorithms come in many different
flavours.

The current state-of-the-art is called AC-7. It never
repeats support-checks. When it tries to find support for
a € D(«) (b € D(B)) it will never carry out the check
(a,b) € Ciqp) if a (b) is already known to be supported.

AC-7 normally comes equipped with a lexicographical
heuristic. Let £ be that algorithm.
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Support-Checks

A zero-support check is a support-check on two values
whose support-statuses are already known.
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A zero-support check is a support-check on two values
whose support-statuses are already known.

A single-support check is a support-check which can find
support for at most one value.




Support-Checks

A zero-support check is a support-check on two values
whose support-statuses are already known.

A single-support check is a support-check which can find
support for at most one value.

A double-support check is a support-check which seeks
to find support for two values, whose support-statuses
are unknown.




The Marketplace Principle

A successful single-support check resolves one
uncertainty at the price of one consistency-check.

A successful double-support check resolves two
uncertainties at the price of one consistency-check.




The Marketplace Principle

A successful single-support check resolves one
uncertainty at the price of one consistency-check.

A successful double-support check resolves two
uncertainties at the price of one consistency-check.

A single double-support check is twice as efficient on
average than a single single-support check.




Min-Max Principle

To minimise the number of support-checks the number
of successful double-support checks has to be maximised.




Min-Max Principle

To minimise the number of support-checks the number
of successful double-support checks has to be maximised.
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Algorithm D

An algorithm which uses a heuristic to maximise the
number of successful double-support checks.

his heuristic can be incorporated into most
arc-consistency algorithms.
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Case-Study

Definition 1. [Trace] Let A be an arc-consistency
algorithm, M an a by b constraint on « and p and

Miyj Migip, - -0 My,
the sequence of support-checks of A to find the support
of x and 3. The trace of M w.r.t. A is the sequence

(11,731, Migs; ), (12552, Migs, ), - - (it Magg, )




Traces of L for the Two by Two Case
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Properties of Traces

Let A be an arc-consistency algorithm which does not
repeat support-checks, t a trace of a constraint in M®°

w.r.t. A and 1 the length of t.

There are exactly 24! constraints in M%® whose traces
w.r.t. A are equal to t.




The Trace Principle

Let t be a trace of a constraint in M®° w.r.t. some
algorithm A and 1 the length of t.

The average savings of the constraints in M*° whose
trace w.r.t. A equals t are given by (ab — 1)29°71/290 je.

(ab — 1)2_1.




Traces of D for the Two by Two Case
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Comparison for the Two by Two Case

Algorithm Savings Checks
L 3x1x2' =6 58
D Ix1x2'4+1x2%x22=10 54




A Lower Bound for avg,(a,b)

The average time-complexity of L is bounded from below
by

(2—e)a+2b+O(1) + O(a2°) < avgy(a,b),

where




Tight Bounds for avgy(a, b)
avgp(a,b) < upbp(a,b)
— 2max(a,b) +2
—(2max(a,b) + min(a, b))
—(3max(a,b) +2min(a,b))2 max(ab),

)~ min(a,b)




Tight Bounds for avgy(a, b)
avgp(a,b) < upbp(a,b)
— 2max(a,b) +2
—(2max(a,b) 4+ min(a,b))2~ min(a,b)
—(3max(a,b) +2min(a,b))2 max(ab),
Let A be any arc-consistency algorithm. If 14 < a+b
then

avgpla,b) —avg 4(a,b)
< upbp(a,b) —max(a,b)(2 — 21_min(a>b))

— 2 — min(a, b)2~ min(a,b)

_(2min(a,b) + 3max(a, b))2 max(ab),




The First Twenty Cases

Size L D L/D Size L D L/D
1 1.000 1.000 1.000| 11 36.276 23.678 1.532
2 3.625 3375 1.074| 12 40.040 25.688 1.559
3 6934 6.043 1.147 | 13 43.821 27.694 1.582
4 10475 8.623 1.215| 14 47.616 29.697 1.603
5 14.093 11.037 1.277 | 15 51.425 31.699 1.622
6 17.740 13.306 1.333 | 16 55.245 33.699 1.639
7 21408 15472 1384 | 17 59.075 35.700  1.655
8§ 25.095 17.571 1428 | 18 62.915 37.700 1.668
9 28.802 19.628 1467 | 19 66.763 39.700 1.682

10 32529 21.660 1.502| 20 70.619 41.700 1.693
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Discussion

e [hree good reasons have been presented why arc-
consistency algorithms should prefer double-support
checks at domain level.

e An explanation has been provided why D is better than

N
e Evidence has been presented that D outperforms L.

e Evidence has been presented that D is “good.”




Future Work

1. Incorporate the double-support heuristic Into an
algorithm which does not repeat support-checks.

2. Study the average time-complexity of £ and D if there
are more than two variables.
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