
A Theoretical Analysis of the
Average Time-Complexity of

Domain-Heuristics for
Arc-Consistency Algorithms

M.R.C. van Dongen (dongen@cs.ucc.ie)

“homepage:” http://www.cs.ucc.ie/~dongen

April 24, 2001

Outline

• Constraint Networks.

• Arc-Consistency.

• Case Study.

• Average Time-Complexity.

• Discussion and Future Work.

Constraint Networks

Let S ⊆ T be sets containing finitely many variables. For

all x ∈ T let D(x) denote the domain of x.

CS is called a constraint on S if CS ⊆×x∈SD(x).

If t ∈×x∈TD(x) then t is said to satisfy CS if the

projection of t onto the variables in S is in CS.

A tuple (X, C) is called a constraint network if X is a

finite set of variables and C is a set of constraints

between subsets of the variables in X s.t. C contains a

unary constraint on every variable in X.

Arc-Consistency

A binary constraint network (X, C) is called

arc-consistent iff for every α ∈ X it holds that D(α) 6= ∅
and for every value v ∈ D(α) and for every constraint

C{α,β } in the constraint network there is a value w ∈ D(β)

s.t. w supports v.

Here a w ∈ D(β) supports v ∈ D(α) if α ≺ β and

(v, w) ∈ C{α,β } or β ≺ α and (w, v) ∈ C{α,β }, where · ≺ ·
is the “usual” ordering on the variables in X.

β

α

0

0

1

1

2

2

3

3

β

α

0

0

1

1

2

2

3

30

0

1

1

2

2

3

3

Heuristics

Arc-consistency algorithms carry out support-checks to

find out about the properties of CSPs.

They use arc-heuristics to select the constraint that will

be used for the next support-check.

They use domain-heuristics to select the values that will

be used for the next support-check.

Some Existing Arc-Consistency Algorithms

Two well known arc-consistency algorithms are AC-3

with a O(ed3) and AC-7 with a O(ed2) worst-case

time-complexity.

One of the nice properties of AC-7 is that—as opposed

to AC-3—it doesn’t repeat support-checks. As a matter

of fact, its worst-case time-complexity is optimal and it

behaves well in practice.

AC-3 on the other hand has nicer space-complexity

characteristics than AC-7 (O(e + nd) vs. O(ed2)).

Algorithm L

Arc-Consistency Algorithms come in many different

flavours.

The current state-of-the-art is called AC-7. It never

repeats support-checks. When it tries to find support for

a ∈ D(α) (b ∈ D(β)) it will never carry out the check

(a, b) ∈ C{α,β } if a (b) is already known to be supported.

AC-7 normally comes equipped with a lexicographical

heuristic. Let L be that algorithm.

β

α

0

0

1

1

2

2

3

3

L #CC (0)

β

α

0

0

1

1

2

2

3

3

L #CC (1)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

(1)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

(2)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

(3)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

1

1

(3)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

1

1

(4)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

1

1

(5)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

1

1

(6)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

1

1

2

2

(6)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

1

1

2

2

(7)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

1

1

2

2

(8)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

1

1

2

2

(9)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

1

1

2

2

(10)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

1

1

2

2

3

(10)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

1

1

2

2

3

(11)

β

α

0

0

1

1

2

2

3

3

L #CC

0

0

1

1

2

2

30

3

(11)

Support-Checks

A zero-support check is a support-check on two values

whose support-statuses are already known.

Support-Checks

A zero-support check is a support-check on two values

whose support-statuses are already known.

A single-support check is a support-check which can find

support for at most one value.

Support-Checks

A zero-support check is a support-check on two values

whose support-statuses are already known.

A single-support check is a support-check which can find

support for at most one value.

A double-support check is a support-check which seeks

to find support for two values, whose support-statuses

are unknown.

The Marketplace Principle

A successful single-support check resolves one

uncertainty at the price of one consistency-check.

A successful double-support check resolves two

uncertainties at the price of one consistency-check.

The Marketplace Principle

A successful single-support check resolves one

uncertainty at the price of one consistency-check.

A successful double-support check resolves two

uncertainties at the price of one consistency-check.

A single double-support check is twice as efficient on

average than a single single-support check.

Min-Max Principle

To minimise the number of support-checks the number

of successful double-support checks has to be maximised.

Min-Max Principle

To minimise the number of support-checks the number

of successful double-support checks has to be maximised.

. . .

. . .

. . .

. . .

S V

T W

Algorithm D

An algorithm which uses a heuristic to maximise the

number of successful double-support checks.

This heuristic can be incorporated into most

arc-consistency algorithms.

β

α

0

0

1

1

2

2

3

3

D #CC (0)

β

α

0

0

1

1

2

2

3

3

D #CC (1)

β

α

0

0

1

1

2

2

3

3

D #CC

0

0

(1)

β

α

0

0

1

1

2

2

3

3

D #CC

0

0

(2)

β

α

0

0

1

1

2

2

3

3

D #CC

0

0

1

1

(2)

β

α

0

0

1

1

2

2

3

3

D #CC

0

0

1

1

(3)

β

α

0

0

1

1

2

2

3

3

D #CC

0

0

1

1

2

2

(3)

β

α

0

0

1

1

2

2

3

3

D #CC

0

0

1

1

2

2

(4)

β

α

0

0

1

1

2

2

3

3

D #CC

0

0

1

1

2

2

(5)

β

α

0

0

1

1

2

2

3

3

D #CC

0

0

1

1

2

2

(6)

β

α

0

0

1

1

2

2

3

3

D #CC

0

0

1

1

2

2

(7)

β

α

0

0

1

1

2

2

3

3

D #CC

0

0

1

1

2

2

3

(7)

β

α

0

0

1

1

2

2

3

3

D #CC

0

0

1

1

2

2

3

(8)

β

α

0

0

1

1

2

2

3

3

D #CC

0

0

1

1

2

2

30

3

(8)

Case-Study

Definition 1. [Trace] Let A be an arc-consistency

algorithm, M an a by b constraint on α and β and

Mi1j1, Mi2j2, . . . , Miljl

the sequence of support-checks of A to find the support

of α and β. The trace of M w.r.t. A is the sequence

(i1, j1, Mi1j1), (i2, j2, Mi2j2), . . . , (il, jl, Miljl).

Traces of L for the Two by Two Case

1

1

1

1 1

1

1 0

1

1 0

1 1

1 0

1 0

1

0

1

0 1

1

0 0

1 1

0 0

1 0

0 0

0

0 1

0 1

1

0 1

0

0 1

0 1

0 1

0 0

0 0

0 0

1

0 0

1 1

0 0

1 0

0 0

0

0 0

0 1

0 0

0 0

Properties of Traces

Let A be an arc-consistency algorithm which does not

repeat support-checks, t a trace of a constraint in Mab

w.r.t. A and l the length of t.

There are exactly 2ab−l constraints in Mab whose traces

w.r.t. A are equal to t.

The Trace Principle

Let t be a trace of a constraint in Mab w.r.t. some

algorithm A and l the length of t.

The average savings of the constraints in Mab whose

trace w.r.t. A equals t are given by (ab − l)2ab−l/2ab, i.e.

(ab − l)2
−l
.

Traces of D for the Two by Two Case

1

1

1

1

0

1

1 0

1 1

1 0

1 0

1 0

1

0 0

1 1

0 0

1 0

0 0

0

0 1

0 1

1

0 1

0

0 1

0 1

0 1

0 0

0 0

0 0

1

0 0

1 1

0 0

1 0

0 0

0

0 0

0 1

0 0

0 0

1

1

1

1 1

1

1 0

1

1 0

1 1

1 0

1 0

1

0

1

0 1

1

0 0

1 1

0 0

1 0

0 0

0

0 1

0 1

1

0 1

0

0 1

0 1

0 1

0 0

0 0

0 0

1

0 0

1 1

0 0

1 0

0 0

0

0 0

0 1

0 0

0 0

1

1

1

1

0

1

1 0

1 1

1 0

1 0

1 0

1

0 0

1 1

0 0

1 0

0 0

0

0 1

0 1

1

0 1

0

0 1

0 1

0 1

0 0

0 0

0 0

1

0 0

1 1

0 0

1 0

0 0

0

0 0

0 1

0 0

0 0

Comparison for the Two by Two Case

Algorithm Savings Checks

L 3× 1× 21 = 6 58

D 1× 1× 21 + 1× 2× 22 = 10 54

A Lower Bound for avgL(a, b)

The average time-complexity of L is bounded from below

by

(2 − ε)a + 2b + O(1) + O(a2
−b

) ≤ avgL(a, b),

where

ε = 2
−s

+ 2

s∑
k=0

(
s

k

)
(−1)

k
(2
k+1

− 1)
−1
.

Tight Bounds for avgD(a, b)

avgD(a, b) ≤ upbD(a, b)

= 2max(a, b) + 2

−(2max(a, b) + min(a, b))2− min(a,b)

−(3max(a, b) + 2min(a, b))2− max(a,b).

Tight Bounds for avgD(a, b)

avgD(a, b) ≤ upbD(a, b)

= 2max(a, b) + 2

−(2max(a, b) + min(a, b))2− min(a,b)

−(3max(a, b) + 2min(a, b))2− max(a,b).

Let A be any arc-consistency algorithm. If 14 ≤ a + b

then

avgD(a, b) − avgA(a, b)

≤ upbD(a, b) − max(a, b)(2 − 21−min(a,b))

= 2 − min(a, b)2− min(a,b)

−(2min(a, b) + 3max(a, b))2− max(a,b).

The First Twenty Cases

Size L D L/D Size L D L/D
1 1.000 1.000 1.000 11 36.276 23.678 1.532

2 3.625 3.375 1.074 12 40.040 25.688 1.559

3 6.934 6.043 1.147 13 43.821 27.694 1.582

4 10.475 8.623 1.215 14 47.616 29.697 1.603

5 14.093 11.037 1.277 15 51.425 31.699 1.622

6 17.740 13.306 1.333 16 55.245 33.699 1.639

7 21.408 15.472 1.384 17 59.075 35.700 1.655

8 25.095 17.571 1.428 18 62.915 37.700 1.668

9 28.802 19.628 1.467 19 66.763 39.700 1.682

10 32.529 21.660 1.502 20 70.619 41.700 1.693

(solid) avgL
(dashed) avgD

0 5 10 15 20

0

20

40

60

Discussion

• Three good reasons have been presented why arc-

consistency algorithms should prefer double-support

checks at domain level.

• An explanation has been provided why D is better than

L.

• Evidence has been presented that D outperforms L.

• Evidence has been presented that D is “good.”

Future Work

1. Incorporate the double-support heuristic into an

algorithm which does not repeat support-checks.

2. Study the average time-complexity of L and D if there

are more than two variables.

