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Preface

The Second International CSP Solver Competition was organised to improve our under-
standing of the sources of solver efficiency, and the options that should be considered in
crafting solvers. In particular, issues of interdependence and interaction among features
can perhaps only be elucidated by comparing and testing actual implementations. It is
hoped that efforts like this will further our understanding of the important dimensions
of performance, for example robustness or versatility as opposed to problem-specific
efficiency.

These proceedings present short descriptions of some of the solvers. Also they
present the results of the competition and an invited paper of work related to the solver
competition.

For this second edition we considered instances involving constraints defined in
extension and in intension (i.e. by a predicate). Also the global constraint allDifferent
and the Max-CSP Class have been introduced.

January 2008 Marc van Dongen
Christophe Lecoutre

Olivier Roussel

Main Organising Committee
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Results of the Second CSP Solver Competition

M.R.C. van Dongen1, Christophe Lecoutre2, and Olivier Roussel2

1 University College Cork
2 Université d’Artois

Abstract. This paper presents the main results of the Second International CSP
Solver Competition, which was held in conjunction with the Twelfth International
Conference on Principles and Practice on Constraint Programming (CP’2006).

1 Introduction

This paper presents the main results of the Second International CSP Solver Competi-
tion, which was started in 2006 and evaluated in 2007. Due to an initial lack of solvers
it was decided to run the competition in two phases: a first warmup round in 2006, and
a second deciding round in 2007. It was hoped that this should give prospective con-
testants more time to prepare. In the end, this approach proved successful. The number
of solvers doubled from 16, in the first edition of the competition in 2005, to 32 in
the 2006/2007 edition. The results presented in this paper are the results of the second
deciding round.

Changes

Compared to the first edition of the competition there were four changes. The first
change involved the problem specification format. This edition, all problem instances
were represented in XML (Extensible Markup Language), using the format XCSP 2.0.
The second change involved the introduction of a new problem class. Besides the class
Ordinary CSP, which was already considered in the first edition, we also considered
Max-CSP. The third change was the introduction of intensional constraints (this change
proved to be the most challenging as it presented problems related to overflows, di-
visions, etc.). The fourth change involved the introduction of the global constraint
allDifferent .

Teams, Problems, and Categories

Twelve teams, proposing a total of 23 solvers, participated in the class Ordinary CSP.
The solvers were run against a suite of 3425 instances, consisting of binary as well as
non-binary instances. The total time spent by all solvers amounts to 343 CPU days.

In addition 9 solvers, proposed by 5 teams, were run against a suite of 1069 Max-
CSP instances, consisting of binary and non-binary instances. The total time spent by
all Max-CSP solvers amounts to 101 CPU days.

Table 1 lists all CSP and Max-CSP solvers which participated in the competition.
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Solver Version Author(s)

Class: Ordinary CSP
Abscon 109 ESAC Christophe Lecoutre and Sebastien Tabary
Abscon 109 AC Christophe Lecoutre and Sebastien Tabary
BPrologCSPSolver70a 2006-12-13 Neng-Fa Zhou
buggy2−5 2007-01-08 Marc van Dongen
buggys

2−5 2007-01-08 Marc van Dongen
CSP4J-Combo 2006-12-19 Julien Vion
CSP4J-MAC 2006-12-19 Julien Vion
CSP4J-MAC 2007-01-16 Julien Vion
CSPtoSAT+minisat 0.3 Olivier Roussel
Diarmuid-rndi 2006-12-21 Diarmuid Grimes
Diarmuid-rndi 2007-01-22 Diarmuid Grimes
Diarmuid-wtdi 2006-12-21 Diarmuid Grimes
galac 1 Gilles Audemard, Assef Chmeiss, and Lakdhar Saı̈s
galacJ beta 1 Gilles Audemard, Assef Chmeiss, and Lakdhar Saı̈s
Mistral 2006-12-04 Emmanuel Hebrard
rjw-solver 2006-12-09 Richard Wallace
rjw-solver 2007-01-21 Richard Wallace
sat4jCSP 1.7 RC BF3 Daniel Le Berre and Ines Lynce
SAT4JCSP-CACHED 1.7 RC BF3 Daniel Le Berre and Ines Lynce
sugar 0.40 Naoyuki Tamura
Tramontane 2006-12-04 Emmanuel Hebrard
VALCSP 3.0 Vincent Krawczyk, Assef Chmeiss, and Lakhdar Saı̈s
VALCSP 3.1 Vincent Krawczyk, Assef Chmeiss, and Lakhdar Saı̈s

Class: Max-CSP
AbsconMax 109 EPFC Christophe Lecoutre
AbsconMax 109 PFC Christophe Lecoutre
aolibdvo 2007-01-17 Radu Marinescu
aolibpvo 2007-01-17 Radu Marinescu
CSP4J-MaxCSP 2006-12-19 Julien Vion
Toolbar 2007-01-12 Javier Larrosa, Emma Rollon, Federico Heras,

Matthias Zytnicki, Simon de Givry, and Thomas Schiex
ToolbarBTD 2007-01-12 Simon de Givry, Federico Heras, Gerard Verfaillie,

J. Larrosa, M. Zytnicki , Sylvain Bouveret, and Thomas Schiex
ToolbarMaxSat 2007-01-19 Federico Heras, Emma Rollon, Javier Larrosa,

Matthias Zytnicki, Simon de Givry, and Thomas Schiex
Toulbar2 2007-01-12 Marti Sanchez, Javier Larrosa, Matthias Zytnicki,

Simon de Givry, and Thomas Schiex

Table 1. Solvers submitted to the 2006 CSP/Max-CSP solver competition.
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Execution Environment

The competition was run on a cluster consisting of 93 nodes. Each node of the cluster
is equipped with:

– An Intel XEON 3.0 GHz bi-processor running at 3.0 GHz, and having an 800 MHz
FSB and 2 MB cache.

– 2 GB DDR PC2700 ECC Registered RAM.

Each solver was run, using the Linux operating system, under the control of a master
program which enforced some limits on the memory and the total CPU time used by the
solver. The master program also performed some administrative tasks such as recording
the output of the solvers, checking the solutions, and so on. Even if the cluster has 64
bits processors, all solvers were run in 32 bits mode.

Instance Selection

The selection of the problem instances was made by the following three independent
judges:

– Radoslaw Szymanek (EPFL, Lausanne).
– Djamal Habet (LSIS, Marseille).
– Richard Ostrowski (LSIS, Marseille).

One requirement about the selection was to guarantee a certain balance between
binary and non-binary instances, between instances given in extension and in inten-
sion, and between random and structured instances. Problems were selected from the
following categories:

ACAD: instances from academia which do not involve any random generator.
BOOL: instances with only Boolean variables.
PATT: instances with a structure following a regular pattern (with some random gen-

eration).
QRND: random instances containing a small structure.
RAND: “pure” random instances.
REAL: instances originating from real world applications.

Outline

The remainder of this paper presents the results obtained for the two problems (CSP
and Max-CSP) in the different categories of instances. Section 2 presents the results for
Ordinary CSP and Section 3 presents the results for Max-CSP. A short conclusion is
presented in Section 4.
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2 Results for the Ordinary CSP Competition

This section presents the main results for the class Ordinary CSP. Within the class, we
distinguished between binary and non-binary instances and between intensional and
extensional constraints. In addition, we considered the category consisting of problem
instances involving the global constraint allDifferent .

To solve each CSP instance, the maximum allowed time was set to 30 minutes and
the maximum memory limit to 900MB. In each category, results are not presented for
solvers that were found to produce incorrect results. It should be noticed that some
incorrect results were caused by problems which were related to translating from the
competition format to the solvers’ native problem specification format.

2.1 Results for Ordinary Binary CSPs

This section presents the results for the class ordinary binary CSP. Within the class, we
distinguish between problems specified in intension and extension.

Rank Solver Version SAT #Instances Total Time Average Time
1 VALCSP 3.0 − 1093 59496.90 54.43
2 buggys

2−5 2007-01-08 − 1093 59632.56 54.56
3 buggy2−5 2007-01-08 − 1092 58658.14 53.72
4 Abscon 109 AC − 1082 57755.56 53.38
5 Abscon 109 ESAC − 1081 54184.15 50.12
6 Mistral 2006-12-04 − 1060 57473.78 54.22
7 Tramontane 2006-12-04 − 1047 53907.19 51.49
8 CSP4J-MAC 2007-01-16 − 1025 62580.90 61.05
9 galac 1 + 940 84144.15 89.52

10 BPrologCSPSolver70a 2006-12-13 − 938 171619.04 182.96
11 galacJ beta 1 + 928 88183.23 95.03
12 sat4jCSP 1.7 RC BF3 + 917 112685.03 122.88
13 SAT4JCSP-CACHED 1.7 RC BF3 + 915 109227.69 119.37
14 CSPtoSAT+minisat 0.3 + 877 82401.02 93.96
15 sugar 0.40 + 806 54719.92 67.89

Table 2. Results for the Ordinary CSP Category “Binary Constraints in Extension.” Results
for solvers that produced incorrect results are not listed. The Colums “Solver,” “Version,” and
“Rank” list the names of the solvers, version information, and their final ranking. The Column
“SAT” indicates the SAT-based solvers. The Column “Instances” lists the total number of instances
that were solved within the given timeout limit, which was set to 30 minutes. The Columns “Total
Time” and “Average Time” list the total and average solution time for the instances that were
solved within the given timeout limit.

Table 2 presents the results for ordinary, extensional, binary CSPs. As with all rank-
ings, solvers are ordered by decreasing number of problem instances solved, breaking
ties by increasing total solution time. It is interesting to notice that there is only a small
margin separating the top solvers.
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Rank Solver Version SAT #Instances Total Time Average Time
1 buggys

2−5 2007-01-08 − 627 74687.08 119.12
2 buggy2−5 2007-01-08 − 626 34572.13 55.23
3 Abscon 109 ESAC − 575 61532.88 107.01
4 Abscon 109 AC − 561 20169.62 35.95
5 Tramontane 2006-12-04 − 457 23726.50 51.92
6 CSP4J-Combo 2006-12-19 − 438 88510.72 202.08
7 CSP4J-MAC 2006-12-19 − 432 90051.92 208.45
8 Mistral 2006-12-04 − 423 23648.22 55.91
9 CSP4J-MAC 2007-01-16 − 405 48439.42 119.6

10 sugar 0.40 + 276 15977.41 57.89
11 sat4jCSP 1.7 RC BF3 + 258 18300.66 70.93
12 galac 1 + 245 41654.44 170.02
13 BPrologCSPSolver70a 2006-12-13 − 226 64400.80 284.96
14 galacJ beta 1 + 220 16881.98 76.74
15 SAT4JCSP-CACHED 1.7 RC BF3 + 217 8445.94 38.92
16 CSPtoSAT+minisat 0.3 + 55 13612.87 247.51

Table 3. Results for the Ordinary CSP Category “Binary Constraints in Intension.” Results
for solvers that produced incorrect results are not listed. The Colums “Solver,” “Version,” and
“Rank” list the names of the solvers, version information, and their final ranking. The Column
“SAT” indicates the SAT-based solvers. The Column “Instances” lists the total number of instances
that were solved within the given timeout limit, which was set to 30 minutes. The Columns “Total
Time” and “Average Time” list the total and average solution time for the instances that were
solved within the given timeout limit.

Some of the problem instances which were used for the category ordinary, exten-
sional, binary CSP are inherited from the first CSP competition, which only allowed
problems in extension. What is interesting to notice is that some of these instances,
e.g. QCP and QWH, are basically extensional specifications of CSPs having equality
and “generalised SAT” constraints, i.e. constraints that disallow exactly one tuple. Such
constraints are easily expressed intensionally. It should be worth while also considering
these “legacy” instances for the class intensional CSP in future editions of the competi-
tion.

Table 3 presents the results for ordinary, intensional, binary CSPs. This time there
is a clearer difference between the solvers. It is interesting to notice that buggys

2−5

managed to solve one more instance than buggy2−5 at the price of spending about
twice as much average solution time. This difference can be explained by the fact that
buggys

2−5 puts more effort in constraint propagation pre-processing, as opposed to solv-
ing the problem by search. In a similar vein, Abscon ESAC solves 14 more instances
than Abscon AC by enforcing a higher consistency level before search. This time it
comes at the expense of an average solution time exceeding the average solution time
of Abscon AC by more than three times.

Overall, a possible lesson learnt from the binary CSP competition is that enforcing
higher levels of consistency does pay off as far as the number of instances solved (within
the time limit) is concerned. However, the addition time which is required seems to be
a severe penalty.
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2.2 Results for Ordinary N -ary CSPs

This section presents the results for the class ordinary n-ary CSP. Within this class, we
distinguish between problems specified in intension and extension.

Rank Solver Version SAT #Instances Total Time Average Time
1 Abscon 109 AC − 277 24132.71 87.12
2 Abscon 109 ESAC − 276 25923.82 93.93
3 Mistral 2006-12-04 − 269 36625.34 136.15
4 Tramontane 2006-12-04 − 260 41901.79 161.16
5 CSP4J-MAC 2007-01-16 − 239 29234.00 122.32
6 CSP4J-MAC 2006-12-19 − 234 30795.56 131.60
7 CSP4J-Combo 2006-12-19 − 219 33861.56 154.62
8 galac 1 + 191 18017.97 94.33
9 SAT4JCSP-CACHED 1.7 RC BF3 + 187 15004.32 80.24

10 sat4jCSP 1.7 RC BF3 + 187 15174.91 81.15
11 CSPtoSAT+minisat 0.3 + 176 5208.18 29.59
12 galacJ beta 1 + 175 8659.69 49.48
13 sugar 0.40 + 161 627.05 3.89
14 BPrologCSPSolver70a 2006-12-13 − 150 22206.17 148.04

Table 4. Results for the Ordinary CSP Category “N -ary Constraints in Extension.” The
Colums “Solver,” “Version,” and “Rank” list the names of the solvers, version information, and
their final ranking. The Column “SAT” indicates the SAT-based solvers. The Column “Instances”
lists the total number of instances that were solved within the given timeout limit, which was set
to 30 minutes. The Columns “Total Time” and “Average Time” list the total and average solution
time for the instances that were solved within the given timeout limit.

Table 4 presents the results for ordinary, n-ary, extensional CSPs. From the top to
the bottom of the table there is a smooth transition in the number of instances which are
solved. With the exception of the average solution time of sugar, which seems very
low, the solution times are all of the same order.

The order in which the solver Abscon AC and Abscon ESAC are ranked is the
opposite of their ranking for binary CSPs. The difference is negligible since Abscon
AC only solves one instance more. The average solution time of the two solvers is also
comparable.

Table 5 presents the results for ordinary, n-ary, intensional CSPs. It is clear from
the results that BPrologCSPSolver3 is a clear winner. However, it requires much
more average solution time than the Abscon solvers. It is interesting to notice that the

3 After the initial online publication of the rankings for ordinary n-ary intensional CSPS, which
was before the publication of the proceedings, it was discovered by Naoyuki Tamura that
some of the Fisher instances were incorrectly classified by BPrologCSPSolver70a as
unsatisfiable. The reason why this had gone unnoticed before is that the Fisher instances
had not been classified before and the certificate unsatisfiable cannot always be verified. A
comment about incorrect answers for some of the Fisher instances has been added to the
position paper about BPrologCSPSolver70a.
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Rank Solver Version SAT #Instances Total Time Average Time
1 BPrologCSPSolver70a 2006-12-13 − 579 185136.57 319.75
2 Abscon 109 ESAC − 509 43430.74 85.33
3 Abscon 109 AC − 490 42068.73 85.85
4 sugar 0.40 + 431 14414.00 33.44
5 CSPtoSAT+minisat 0.3 + 395 39764.89 100.67
6 CSP4J-MAC 2006-12-19 − 370 49866.12 134.77
7 CSP4J-Combo 2006-12-19 − 364 64358.81 176.81
8 galac 1 + 352 37116.12 105.44
9 galacJ beta 1 + 331 38483.58 116.26

10 Tramontane 2006-12-04 − 313 29473.79 94.17
11 Mistral 2006-12-04 − 304 34541.39 113.62
12 sat4jCSP 1.7 RC BF3 + 228 15734.88 69.01

Table 5. Results for the Ordinary CSP Category “N -ary Constraints in Intension.” Results for
solvers that produced incorrect results are not listed. The Colums “Solver,” “Version,” and “Rank”
list the names of the solvers, version information, and their final ranking. The Column “SAT”
indicates the SAT-based solvers. The Column “Instances” lists the total number of instances that
were solved within the given timeout limit, which was set to 30 minutes. The Columns “Total
Time” and “Average Time” list the total and average solution time for the instances that were
solved within the given timeout limit.

ranking of BPrologSolver for n-ary intensional CSP is the complete opposite from
its ranking for n-ary extensional CSP, where it was ranked last. Clearly there is room
for improvement.

2.3 Results for Global Constraints

Table 6 presents the results for ordinary CSPs with global constraints. It is recalled that
this was the first time such constraints were introduced. The only constraint which was
allowed was allDifferent . Overall, the difference in the number of instances solved and
the average solution time are small. It is clear that the benchmarks for ordinary CPSs
with allDifferent was not discriminative enough.

3 Max-CSP Competition

This section presents the main results for the class Max-CSP. Within the class, we dis-
tinguished between binary and non-binary instances and between intensional and ex-
tensional constraints.

Recall that there were 9 solvers participating in the Max-CSP competition. This is
quite good since this was the first time we considered Max-CSP. Unfortunately, most
solvers were incapable of dealing with constraints in intension.

To solve each Max-CSP instance, the maximum allowed time was set to 40 minutes
and the maximum memory limit to 900MB.
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Rank Solver Version SAT #Instances Total Time Average Time
1 BPrologCSPSolver70a 2006-12-13 − 127 39.90 0.31
2 Abscon 109 AC − 127 784.80 6.18
3 Abscon 109 ESAC − 126 145.99 1.16
4 CSP4J-MAC 2006-12-19 − 126 692.14 5.49
5 CSP4J-Combo 2006-12-19 − 126 1041.41 8.27
6 Mistral 2006-12-04 − 125 33.38 0.27
7 Tramontane 2006-12-04 − 125 45.71 0.37
8 CSP4J-MAC 2007-01-16 − 125 412.16 3.30
9 sugar 0.40 + 118 884.51 7.50

10 sat4jCSP 1.7 RC BF3 + 115 2346.01 20.40
11 CSPtoSAT+minisat 0.3 + 114 645.37 5.66
12 SAT4JCSP-CACHED 1.7 RC BF3 + 114 1198.54 10.51
13 galac 1 + 110 492.21 4.47

Table 6. Results for the Ordinary CSP Category “Global Constraints.” Results for solvers that
produced incorrect results are not listed. The Colums “Solver,” “Version,” and “Rank” list the
names of the solvers, version information, and their final ranking. The Column “SAT” indicates
the SAT-based solvers. The Column “Instances” lists the total number of instances that were
solved within the given timeout limit, which was set to 30 minutes. The Columns “Total Time”
and “Average Time” list the total and average solution time for the instances that were solved
within the given timeout limit.

3.1 Results for Binary Max-CSP

This section presents the results for the class binary Max-CSP. Within the class, we
distinguish between problems specified in intension and extension.

Table 7 presents the results for binary, extensional Max-CSP. As with all rankings,
solvers are ordered by decreasing number of problem instances solved, breaking ties by
increasing total solution time. Two versions of Toolbar are clearly the winners of this
category. Table 8 presents the results for binary, intensional Max-CSP. Unfortunately,
only three solvers participated to this category, which makes it difficult to say much
about the final result.

3.2 Results for N -ary Max-CSP

This section presents the results for the class n-ary Max-CSP. Within the class, we
distinguish between problems specified in intension and extension.

Table 9 presents the results for n-ary extensional Max-CSP. The top three solvers
clearly outperform the other ones. Interestingly, the next four solvers are quite close
although they correspond to significantly different solving approaches. Finally, Table 10
presents the results for n-ary intensional Max-CSP.
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Rank Solver Version SAT #Instances Total Time Average Time
1 ToolbarBTD 2007-01-12 − 589 81834.27 138.94
2 toolbar 2007-01-12 − 588 93217.84 158.53
3 Toulbar2 2007-01-12 − 537 123966.36 230.85
4 aolibdvo 2007-01-17 − 466 119217.59 255.83
5 aolibpvo 2007-01-17 − 452 119213.19 263.75
6 AbsconMax 109 PFC − 437 190992.91 437.05
7 AbsconMax 109 EPFC − 418 195840.09 468.52
8 CSP4J-MaxCSP 2006-12-19 − 24 13.22 0.55

Table 7. Results for the Max-CSP Category “Binary Constraints in Extension.” Results for
solvers that produced incorrect results are not listed. The Colums “Solver,” “Version,” and “Rank”
list the names of the solvers, version information, and their final ranking. The Column “SAT”
indicates the SAT-based solvers. The Column “Instances” lists the total number of instances that
were solved within the given timeout limit, which was set to 40 minutes. The Columns “Total
Time” and “Average Time” list the total and average solution time for the instances that were
solved within the given timeout limit.

Rank Solver Version SAT #Instances Total Time Average Time
1 AbsconMax 109 EPFC − 18 5989.58 332.75
2 AbsconMax 109 PFC − 17 9429.61 554.68
3 CSP4J-MaxCSP 2006-12-19 − 0 — —

Table 8. Results for the Max-CSP Category “Binary Constraints in Intension.” The Colums
“Solver,” “Version,” and “Rank” list the names of the solvers, version information, and their
final ranking. The Column “SAT” indicates the SAT-based solvers. The Column “Instances” lists
the total number of instances that were solved within the given timeout limit, which was set to
40 minutes. The Columns “Total Time” and “Average Time” list the total and average solution
time for the instances that were solved within the given timeout limit.

Rank Solver Version SAT #Instances Total Time Average Time
1 ToolbarBTD 2007-01-12 − 83 11205.62 135.01
2 Toulbar2 2007-01-12 − 82 37763.06 460.53
3 toolbar 2007-01-12 − 79 10413.75 131.82
4 AbsconMax 109 PFC − 58 28178.94 485.84
5 ToolbarMaxSat 2007-01-19 + 56 8899.46 158.92
6 aolibdvo 2007-01-17 − 54 31157.39 576.99
7 AbsconMax 109 EPFC − 54 32815.47 607.69
8 CSP4J-MaxCSP 2006-12-19 − 4 1.73 0.43

Table 9. Results for the Max-CSP Category “N -ary Constraints in Extension.” Results for
solvers that produced incorrect results are not listed. The Colums “Solver,” “Version,” and “Rank”
list the names of the solvers, version information, and their final ranking. The Column “SAT”
indicates the SAT-based solvers. The Column “Instances” lists the total number of instances that
were solved within the given timeout limit, which was set to 40 minutes. The Columns “Total
Time” and “Average Time” list the total and average solution time for the instances that were
solved within the given timeout limit.
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Rank Solver Version SAT #Instances Total Time Average Time
1 AbsconMax 109 EPFC − 15 5315.92 354.39
2 AbsconMax 109 PFC − 14 4411.38 315.10
3 CSP4J-MaxCSP 2006-12-19 − 0 — —

Table 10. Results for the Max-CSP Category “N -ary Constraints in Intension.” Results for
solvers that produced incorrect results are not listed. The Colums “Solver,” “Version,” and “Rank”
list the names of the solvers, version information, and their final ranking. The Column “SAT”
indicates the SAT-based solvers. The Column “Instances” lists the total number of instances that
were solved within the given timeout limit, which was set to 40 minutes. The Columns “Total
Time” and “Average Time” list the total and average solution time for the instances that were
solved within the given timeout limit.

4 Conclusion

This paper presents the main results of the second international CSP solver competition.
A paper like this is too small to present all relevant information about an event such as
this. The interested reader is invited to visit http://www.cril.univ-artois.
fr/CPAI06/ for more detailed information. XML specifications of all problem in-
stances which were used for this competition may be found at http://www.cril.
univ-artois.fr/∼lecoutre/research/benchmarks.

The third CSP solver competition is planned for 2008. The authors should like to
invite anybody to enter the competition. They also wish to invite anybody to submit
new problem instances. They are convinced it will be at least as successful an event as
the second instance.
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Abstract. In a recent paper [5], we presented an algorithm that con-
structs a schedule for interleaving the execution of two or more solvers,
with the goal of obtaining improved average-case running time relative
to the fastest individual solver. In this paper, we evaluate this algorithm
experimentally using data from the CPAI’06 constraint solver competi-
tion.

1 Introduction

Many computational problems that arise in practice are NP-hard and thus are
unlikely to admit algorithms with provably good worst-case performance. These
problems must nevertheless be solved, and in many problem domains heuristics
have been developed that perform much better in practice than a worst-case
analysis would guarantee. Unfortunately, the behavior of a heuristic on a pre-
viously unseen problem instance can be difficult to predict in advance, and the
running times of two different heuristics on the same instance can easily differ
by orders of magnitude. For this reason, if a heuristic has been running unsuc-
cessfully for some time it may be worthwhile to suspend the execution of that
heuristic and start running a different heuristic instead.

Table 1. Behavior of two solvers on three instances from the CPAI’06 competition.

Instance BPrologCSPSolver70a Abscon 109 ESAC

CPU (s) CPU (s)

allIntervalSeries/series-10 0.021 0.72
fisher/FISCHER1-1-fair 0.046 ≥ 1800
pseudoSeries/aim/aim-100-1-6-1 ≥ 1800 1.089

The potential reduction in average-case running time that can be achieved by
interleaving the execution of multiple heuristics is illustrated in Table 1. Here,
although both solvers take > 600 seconds on average, a schedule that simply ran
the two solvers in parallel would take less than one second on average.
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In this paper, we seek to improve the average-case performance of con-
straint solvers by interleaving the execution of multiple (currently available)
constraint solvers according to a task-switching schedule. We construct task-
switching schedules using a recently-developed algorithm [5] and evaluate their
performance using data from the CPAI’06 competition.

1.1 Task-switching schedules

Let H = {h1, h2, . . . , hk} be a set of deterministic heuristics, and let X =
{x1, x2, . . . , xn} be a set of instances of some decision problem. Heuristic hj ,
when run on instance xi, runs for τi,j time units before returning a (provably
correct) “yes” or “no” answer. A task-switching schedule S : Z+ → H specifies,
for each integer t ≥ 0, the heuristic S(t) to run from time t to time t + 1. For
example, to execute the task-switching schedule depicted in Figure 1 we would
run h1 for two time units; then run h2 for two time units, then run h1 for four
additional time units, and so on.

h1

h2

time

6 8420

. . .

multi-run single-run

Fig. 1. A task-switching schedule.

A task-switching schedule may either be executed in single-run mode or in
multi-run mode. The two modes differ in what happens to the heuristic (call it
h) that is currently running when the task-switching schedule starts running a
new heuristic h′: in single-run mode, the current run of h is discarded, while in
multi-run mode the execution state of h is saved and will be restored if h is run
again. For any schedule S, let cs

i (S) denote the time S takes to solve xi when
S is executed in single-run mode and let cm

i (S) denote the time it takes when
executed in multi-run mode.3 For example, if heuristics h1 and h2 both require 3
time units to solve instance xi (i.e., τi,1 = τi,2 = 3), the task-switching schedule
S depicted in Figure 1 will require 5 time units to solve x if it is executed in
multi-run mode but will require 7 time units if it is executed in single-run mode
(i.e., cm

i (S) = 5 and cs
i (S) = 7).

We now consider the problem of computing a good task-switching schedule.
That is, given as input the matrix τ , we would like to compute a schedule
3 Formally, cm

i (S) is the smallest integer t such that for some heuristic hj ,
|{t′ < t : S(t′) = hj}| = τi,j . Similarly, cs

i (S) is the smallest integer t such that, for
some heuristic hj , S(t− τi,j) = S(t− τi,j +1) = S(t− τi,j +2) = . . . = S(t−1) = hj .
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that minimizes
∑n

i=1 cs
i (S) (or

∑n
i=1 cm

i (S)). Of course, we would not use the
resulting task-switching schedule to solve instances in X (which we must already
have solved in order to fill in the table τ). Rather, we would hope that a task-
switching schedule that performs well on the instances in X would also perform
well on similar problem instances, which we would be able to solve more quickly
via the task-switching schedule.

Unfortunately, it is NP-hard to compute even an approximately optimal task-
switching schedule. This follows from the fact that the problem of computing
an optimal task-switching schedule generalizes min-sum set cover. Feige et al.
[1] showed that it is NP-hard to approximate min-sum set cover within a factor
of α for any α < 4, and gave a greedy algorithm that achieves the optimal ap-
proximation ratio of 4. In [5], we showed how to generalize this greedy algorithm
to obtain a 4-approximation to the optimal task-switching schedule. Our results
are summarized in the following theorem.

Theorem 1. Let C∗ = minS

∑n
i=1 cm

i (S). There exists a poly-time greedy ap-
proximation algorithm that returns a schedule Sm such that

∑n
i=1 cm

i (Sm) ≤
4C∗. A different greedy approximation algorithm returns a schedule Ss such that∑n

i=1 cs
i (S

s) ≤ 4C∗.

In [5] we also derived bounds on the number of training instances required in
order to PAC-learn an optimal (or approximately optimal) schedule for instances
drawn independently from a probability distribution. We also developed an on-
line algorithm that receives a sequence 〈x1, x2, . . . , xn〉 of problem instances one
at a time, and solves each instance (via a task-switching schedule) before moving
on to the next.

1.2 Related work

Our work is closely related to previous work on algorithm portfolios [2, 3]. An
algorithm portfolio consists of a set of heuristics that are run in parallel (or in-
terleaved on a single processor) according to some schedule. The schedules con-
sidered in previous work simply run each heuristic in parallel at equal strength
and assign each heuristic a fixed restart threshold. The term “algorithm port-
folio” has also been used to describe algorithms such as SATzilla [6], which use
machine learning to attempt predict which heuristic will solve a given instance
the fastest and then run that heuristic exclusively.

Task-switching schedules were introduced in a recent paper by Sayag et al. [4],
who gave an exact algorithm for computing an optimal task-switching schedule
(as already mentioned, doing so is NP-hard, and the running time of their algo-
rithm is exponential in the number of heuristics). For a more detailed discussion
of related work, see [5].

2 Results

In this section, we use the greedy algorithms alluded to in Theorem 1 to construct
task-switching schedules for interleaving solvers from the CPAI’06 competition.
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To do so, we used the data available on the competition web site4 to determine
the running time of each constraint solver on each benchmark instance. If a
solver did not return a solution within the half hour time limit, we artificially
set its running time equal to half an hour. We used this data as input to our
greedy approximation algorithms. Note that in performing these experiments,
we did not actually run any of the constraint solvers.

One might worry that task-switching schedules computed in this way are
highly tuned to the specific benchmark instances that were used in the compe-
tition. To address this concern, we evaluate our task-switching schedules using
leave-one-out cross-validation.

The instances in the CPAI’06 competition were divided into five categories:
2-ARY-EXT, 2-ARY-INT, GLOBAL, N-ARY-EXT, and N-ARY-INT. We per-
formed separate experiments on the instances in each category. We present the
results for the category N-ARY-INT in detail, then summarize the results for
the other four categories.

2.1 Results for category N-ARY-INT

The CPAI’06 competition included 925 instances in the N-ARY-INT category. Of
the 14 solvers that were run on these instances, two produced incorrect answers
for one or more instances and were excluded from the competition. 726 of the
925 instances were solved by at least one of the 12 remaining solvers within the
half hour time limit. We use these 726 instances and these 12 solvers in our
experiments.

Table 2 displays the number of instances solved within the half hour time
limit as well as the average CPU time for each of the 12 solvers as well as
four schedules: Greedym, Greedys, Parallelm, and Parallels. Greedym is the
schedule Sm from Theorem 1 executed in multi-run mode, and similarly Greedys

is the schedule Ss from Theorem 1 executed in single-run mode. Parallelm is a
schedule that runs all 12 heuristics in parallel, each at equal strength. Parallels

is a single-run version of Parallelm which first runs each heuristic for 1 second,
then runs each heuristic for 2 seconds, then runs each heuristic for 4 seconds,
and so on.

As shown in Table 2, the two greedy schedules outperform each of the 12
original solvers as well as the two parallel schedules, both in terms of average
CPU time and in terms of the number of instances solved within the half hour
time limit. Note that the results listed for the schedules executed in multi-run
mode are optimistic in that they assume there is no overhead associated with
keeping multiple runs in memory; however there is no such issue with the
schedules executed in single-run mode. Also note that because we artifi-
cially set a solver’s CPU time equal to the half hour time limit for instances
it did not solve, the values for the average CPU time of the 12 heuristics are
actually lower bounds, and using the (unknown) actual values could significantly
improve our results. Figure 2 illustrates the task-switching schedule Greedys.

4 http://www.cril.univ-artois.fr/CPAI06/
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Table 2. Results for category N-ARY-INT (cross-validation results are parenthesized).

Solver Num. solved Avg. CPU (s)

Greedym 706 (701) 338 (407)
Greedys 631 (625) 395 (498)
Parallelm 630 2460
Parallels 614 4896
BPrologCSPSolver70a 579 636
Abscon 109 ESAC 509 614
Abscon 109 AC 490 659
sugar 431 766
CSPtoSAT+minisat 395 888
CSP4J - MAC 370 963
CSP4J - Combo 364 998
galac 352 990
galacJ 331 1043
Tramontane 313 1075
Mistral 304 1103
sat4jCSP 228 1264

time (s)

1 10 100 10000.01 0.1

BPrologCSPSolver70a

CSPtoSAT+minisat

sugar

Abscon 109 ESAC

CSP4J - MAC

Abscon 109 AC

galac

Fig. 2. The task-switching schedule Greedys.

To address the possibility of overfitting, we evaluated the task-switching
schedules returned by the greedy algorithm using leave-one-out cross-validation.5

The cross-validation results appear in parentheses in Table 2. The number of in-
stances solved by Greedys decreased by about 1% under cross-validation, while
the average CPU time increased by about 26%. The results for Greedym were
similar.

5 Leave-one-out cross-validation is performed as follows: for each instance, we remove
that instance from the matrix τ and run the greedy algorithm on the remaining data
to obtain a schedule to use in solving that instance.
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2.2 Summary of results for all categories

We performed similar experiments on the instances in the four remaining cate-
gories: 2-ARY-EXT, 2-ARY-INT, GLOBAL, and N-ARY-EXT. In each exper-
iment, we removed solvers that produced an incorrect answer on one or more
instances, and we removed instances that none of the solvers could solve within
the half hour time limit.

The results for all five instance categories are summarized in Table 3. In
four out of five categories, the two greedy schedules outperform the correspond-
ing parallel schedules and the best individual solver in terms of the number
of instances solved within the time limit. The one exception to this trend is
the GLOBAL category, which contained a small number of relatively easy in-
stances. In this category, both the greedy schedules and the parallel schedules
solve exactly the same number of instances as the best individual solver. In
terms of average CPU time, the greedy schedules consistently outperform the
corresponding parallel schedules, and usually (but not always) outperform the
best individual solver.

Table 3. Summary of results (cross-validation results are parenthesized).

Category Solver Num. solved Avg. CPU (s)

2-ARY-EXT Greedym 1120 (1110) 107 (148)
Greedys 1114 (1104) 150 (237)
VALCSP 1093 126
Parallelm 1068 588
Parallels 1042 1413

2-ARY-INT Greedym 682 (674) 127 (167)
Greedys 675 (667) 187 (262)
Parallelm 649 781
Parallels 619 1894
buggy 2 5 s 627 290

GLOBAL Greedym 127 (127) 0.13 (1.14)
Greedys 127 (127) 0.13 (2.78)
BPrologCSPSolver70a 127 0.31
Parallelm 127 1.48
Parallels 127 3.61

N-ARY-EXT Greedym 298 (296) 298 (425)
Greedys 292 (289) 352 (572)
Abscon 109 AC 277 279
Parallelm 266 1522
Parallels 252 3708

N-ARY-INT Greedym 706 (701) 338 (407)
Greedys 631 (625) 395 (498)
Parallelm 632 2109
Parallels 614 4896
BPrologCSPSolver70a 579 636
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3 Discussion

In this paper we have investigated the potential for exploiting the complemen-
tary strengths of multiple constraint solvers through the use of task-switching
schedules. As indicated in Table 3, our results include task-switching schedules
that, if entered in the competition, would have run faster on average than any of
the individual solvers and would have solved more instances within the half hour
time limit. We hope that these results will encourage hybridization of existing
constraint solvers.

A natural way to improve on the results presented here would be to use
machine learning to take advantage of instance-specific features, as is done in
SATzilla [6]. We plan to pursue this approach as future work.
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Abstract. This document gives a brief description of the key techniques
used in four different versions of toolbar/toulbar2 solvers submitted to
the Max-CSP competition 2006.

All the solvers exploit an initial upper bound found by a local search solver :
maxwalksat [13] (with 5 tries) for toolbar/MaxSAT and INCOP4 [11] for the other
solvers. The solvers are implemented in C code, except for toulbar2 in C++5.

toolbar

The search procedure is MEDAC* [3], a branch and bound algorithm which
maintains the state-of-the-art soft local consistency property EDAC* during
the search. The local consistency enforcement procedure is à la AC-2001 as
described in [9] and it uses specific data structures for efficient binary constraint
updating as introduced in [1]. The usual min domain / max degree dynamic
variable ordering heuristic is employed during the search. Domain values are
dynamically ordered by increasing associated unary costs for value enumeration
at each node of the search tree.

No particular options are used, except in a preprocessing step where con-
straints of arity smaller than 10 are projected on binary constraints. Notice that
non-binary constraints are delayed from propagation during the search until they
become binary.

toolbar/BTD

The search procedure is EDAC-BTD+ [2], a branch and bound algorithm which
exploits the problem structure given by a tree decomposition. EDAC-BTD+
extends BTD [5] by exploiting local initial upper bounds inside the clusters

4 The command line parameters are narycsp result problem.wcsp 0 1 5 idwa

100000 cv v 0 200 1 0 0.
5 The solvers are available at the AlgorithmS section of
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP
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and maintaining EDAC* during the search instead of partial forward checking
(EDAC* is restricted to the current cluster subtree in order to guarantee time
complexity proportional to the tree width).

The min-degree heuristic is used to compute a tree decomposition. The root
of the tree decomposition is the cluster that minimizes the tree height. Ties
are broken by selecting the cluster whose product of domain sizes is maximal.
Cluster separators larger than 5 are removed, by merging clusters. The same
preprocessing as in toolbar for non-binary constraints is performed. The vari-
able ordering heuristic is dynamic (min domain / max degree) inside the clusters
and follows a compatible order with respect to the cluster tree decomposition.
All the variables of a cluster are assigned before its children are examined (in
lexicographic order). A hash-table with initial size of 220 is used to memorize
cluster lower bounds for pruning and partial solutions for recovering an optimal
solution. The value ordering heuristic chooses the last value in the best solution
found so far before sorting values by increasing unary costs.

toolbar/MaxSAT

The search procedure is Max-DPLL [7], a branch and bound algorithm dedicated
to Weighted Max-SAT. Max-DPLL is enhanced by several inference rules : neigh-
borhood resolution (equivalent to soft AC* in Weighted CSPs), chain resolution
restricted to binary clauses (equivalent to soft DAC* in Weighted CSPs but with
a dynamic DAC ordering), and cycle resolution with cycles of triplets of vari-
ables, initially proposed in [6]. Two-sided Jeroslow dynamic variable ordering
heuristic is used during the search.

The usual direct encoding (one Boolean variable per value for non-Boolean
variables) is used to convert Weighted CSP instances into Weighted Max-SAT.

toulbar2

The search procedure extends the one in toolbar, i.e. MEDAC*, in several ways:

– EDAC* also propagates soft ternary constraints as defined in [12].
– The variable ordering heuristic combines a basic form of conflict back-jumping

[10] with the usual min domain / max degree.
– A limited form of variable elimination (for variables with a degree less than

or equal to 2) is applied during the search as proposed in [8].
– The search procedure exploits a binary branching scheme instead of value

enumeration. Two different kinds of branching schema are used depending on
the domain size of the current chosen variable. If the domain size is greater
than 10, then the domain is split into two equal-size parts, creating two new
search nodes. Otherwise, the chosen variable is assigned to its fully supported
value (maintained by EDAC*) or this value is removed from its domain.

– A Limited Discrepancy Search [4] scheme is performed by iteratively running
MEDAC* with a power-of-two increasing limit in the number of discrepan-
cies to the value ordering heuristic until optimality proof has been obtained
(when no limit occurred).
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The first extension yields better lower bounds, especially on the pedigree
benchmark. The second and third extensions exploit the problem structure bet-
ter. The forth extension improves propagation and heuristics, especially on prob-
lems with large domains as in the celar benchmark. The last extension allows
to find better upper bounds more rapidly. However, this last option may be
counter-productive when a good initial upper bound has been already found by
local search as it slows down the time to prove optimality (mainly by a factor of
two approximatively).
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Abstract. The usual way for solving constraint satisfaction problems is
to use a backtracking algorithm. One of the key factors in its efficiency is
the rule it will use to decide on which variable to branch next (namely, the
variable ordering heuristics). In this paper, we propose a solver for binary
CSPs: VALCSP. It uses and combines two powerful and complementary
heuristics. The first one [BCS01] is a look-ahead based heuristic called
multi-level variable ordering heuristic, a variable is selected according to
a measure that takes into account the properties of the neighborhood
of the given variable. The second one [BHLS04] is based on constraint
weighting (Wdeg). More precisely, a higher weight is given to constraints
violated at some previous steps of the search process. Such weighted
constraints are used to guide the dynamic variable ordering heuristics of
a backtrack search-like algorithms. Our solver is based on the well known
MAC algorithm. Arc-consistency is maintained using the AC8 algorithm.
In this paper, we give a description of our solver presented to the second
International CSP Solver Competition.

1 Introduction

Constraint satisfaction problems (CSPs) are widely used to solve combinatorial
problems appearing in a variety of application domains.

The usual technique to solve CSPs is the systematic backtracking. It repeat-
edly chooses a variable, attempts to assign it one of its values, and then goes to
the next variable, or backtracks in case of failure. This technique is at the basis
of almost all the CSP solving engines. But if we want to tackle highly combi-
natorial problems, we need to enhance this basic search procedure with clever
improvements.

A crucial improvement to be added is look-ahead value filtering, which con-
sists in removing from future domains values that cannot belong to a solution
extending the current partial instantiation. Many works have studied the differ-
ent levels of filtering that can be applied at each node of the search tree. Two
famous algorithms maintaining different levels of consistency at each node are
forward checking (FC), and maintaining arc consistency (MAC). Several papers
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have discussed their performances [SF94,BR96,GS96]. Our solvers use MAC as
a search algorithm with the AC8 [CJ98] arc consistency algorithm.

A second kind of improvement that can be added to a backtrack search pro-
cedure is to use the knowledge obtained from deadends to avoid future failures
coming from the same reason. Backjumping based algorithms [Pro93] are the
most famous of these “look back” techniques. In [BHLS04], a simple and efficient
criterion is used to direct the search on the most hard and probably inconsistent
subpart of the CSP is proposed. It selects the next variable to assign according
to its occurrence in the most violated constraint during search. This heuristic is
originally proposed in [BGS99] for solving the satisfiability problem.

Another improvement that has been shown to be of major importance is the
ordering of the variables (VO), namely, the criterion under which we decide which
variable will be the next to be instantiated. Many variable ordering heuristics for
solving CSPs have been proposed over the years. However, the criteria used in
those heuristics to order the variables are often quite simple, and concentrated
on the characteristics inherent to the variable to be ordered, and not too much
on the influence its neighborhood could have. Those that used more complex
criteria, essentially based on the constrainedness or the solution density of the
remaining subproblem, need to evaluate the tightness of the constraints, and so,
need to perform many constraint checks.

Our VALCSP solver aims to use the influence of the neighborhood in the
criterion of choice of a variable [BCS01], while remaining free of any constraint
check. It, also, combines this heuristic with constraint weight.

2 Definitions and notations

A constraint network is defined by a set of variables X , each taking values in its
finite domain Di ∈ D, and a set of constraints C restricting the possible combi-
nations of values between variables. The set of variables implied in a constraint
c will be denoted by Vars(c).

Any constraint network can be associated with a constraint graph in which
the nodes are the variables of the network, and an edge links nodes if and only
if there is a constraint on the corresponding variables.

Γinit(xi) denotes the set of nodes sharing an edge with the node xi (its initial
neighbors). We define the set Γ (xi) as the current neighborhood of xi, namely,
the neighbors remaining uninstantiated once a backtracking search procedure has
instantiated the set Y = {Xi1 , . . . , Xik

} of variables, i.e., Γ (xi) = Γinit(xi)− Y .
The size of Γ (xi) (resp. Γinit(xi)) is called the degree (resp. initial degree) of xi.

3 Search heuristic

In the VALCSP solver, we combine the Multi-Level ordering heuristic and the
Wdeg heuristic. This solver is based on the MAC algorithm which uses the
following skills:
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– the AC8 [CJ98] arc consistency algorithm is used to maintain arc consistency
during search.

– The multi-level variable ordering [BCS01] is the basic heuristic used to choose
the next variable to assign (defined in 3.1)

– The solver uses the lexicographic heuristic to choose the next value in the
domain of the current variable.

– The branching scheme is d-way branching for domains of size d.

Let us recall the notion of Multi-Level ordering heuristic proposed in [BCS01]
and the Wdeg heuristic proposed in [BHLS04].

3.1 Multi-Level variable ordering heuristics

Let us first define W (Cij) as the weight of the constraint Cij and,

(1) W (xi) =
P

xj∈Γ (xi)
W (Cij)

|Γ (xi)|
as the mean weight of the constraints involving xi. In order to maximize the
number of constraint involving a given variable and to minimize the mean weight
of such constraints, the next variable to branch on should be chosen according
to the minimum value of
(2) H(xi) = W (xi)

|Γ (xi)|
over all uninstantiated variables.

For complexity reasons, the weight we will associate to a constraint must be
something cheap to compute (e.g., free of constraint checks). it can be defined
by W (Cij) = α(xi) } α(xj), where α(xi) is instantiated to a simple syntactical
property of the variable such as |Di| or |Di|

|Γ (xi)| , and } ∈ {+,×}.
We obtain the new formulation of (2):

(3) H}
α (xi) =

P
xj∈Γ (xi)

α(xi) } α(xj)

|Γ (xi)|2

Multi-level generalization In the formulation of the dynamic variable order-
ings (DVOs) presented above, the evaluation function H(xi) considers only the
variables at distance one from xi (first level or neighborhood). however, when
arc consistency is maintained (MAC), the instantiation of a value to a given
variable xi could have an immediate effect not only on the variables of the first
level, but also on those at distance greater than one.

To maximize the effect of such a propagation process on the CSP, and conse-
quently to reduce the difficulty of the subproblems, we propose a generalization
of the DVO H}

α such that variables at distance k from xi are taken into account.
This gives what we call a ”multi-level DVO”, H}

(k,α). To obtain this multi-level
DVO, we simply replace α(xj) in formula (3) by a recursive call to H}

(k−1,α). The
recursion terminates with H}

(0,α), equal to α. This is formally stated as follows:
(4) H}

(0,α)(xi) = α(xi)

(5) H}
(k,α)(xi) =

P
xj∈Γ (xi

α(xi))}H}
(k−1,α)(xi)

|Γ (xi)|2
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3.2 Wdeg heuristic

The main goal behind the Wdeg heuristic is to exploit informations about pre-
vious step of the search and to direct the search to the most constrained sub-
problem. More precisely, a counter, called W (Cij), with any constraint Cij of
the problem. These counters will be updated during search whenever a dead-
end (domain wipeout) occurs. As systematic solvers such as FC or MAC involve
successive revisions of variables in order to remove values that are no more con-
sistent with the current state, it suffices to introduce a test at the end of each
revision. If the constraint under test is violated, its counter is increased by one.

Using these counters, it is possible to define a new variable ordering heuristic,
denoted Wdeg, that gives an evaluation Hwdeg(xi), called weighted degree, of any
variable xi as follows:

Hwdeg(xi) =
∑

xj∈Γ (xi)
W (Cij)

3.3 VALCSP solver : combining multi-level DVO with Constraint
weighting

Our VALCSP solver combines both Multi-Level and Constraint weighting heuris-
tics. It defined as following:

Hlw(xi) =
|Di|+

P
xj∈Γ (xi)

|Dj |
W (Cij)

.

To compute Hlw(xi), we consider for each constraint Cij , the ratio between
the sum of the domains size of all xj (and xi) and the weight W (Cij). A sum is
calculated on all the constraints involving a given variable xi.

4 Filtering algorithm

A preprocessing step achieves arc consistency on the CSP. We also maintain arc
consistency during search with the MAC algorithm.

The main arc consistency algorithm used in our solvers is AC8. It’s proposed
by Chmeiss and Jegou in [CJ98].
AC8 is based on supports but without recording them. When a value a ∈ Di is
removed from its domain, AC8 records the reference of the variable xi, that is
the number i, in the queue of propagation denoted Queue-AC. Propagations will
be realized with respect to variables in this queue. Suppose that a variable xi

is removed from the queue. Then, all neighbooring variables will be considered,
i.e. for all xj ∈ X such that Cji ∈ C, and for each value b ∈ Dj , AC8 will ensure
that there is a value a ∈ Di such that (a, b) ∈ Rij holds. Unlike AC6, AC8 has
to start again the search from the first value of the domains. If no support a of b
is found in Di, then b must be deleted, and the number of the variable, namely
j must be inserted in Queue-AC. To ensure that j is not duplicated in Queue-
AC, we must maintain an array of booleans (a bit vector), denoted Status-AC,
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recording the status of variables. So, the data structures used to AC8 are the
Queue-AC containing variables which have lost some values in their domain
and not propagated yet, and the boolean table Status-AC that always verifies
{i ∈ Queue-AC <=> Status-AC[i]}.

5 Summary: submitted solver

In this paper, we have given a description of our solver for binary CSP which
we submit to the second International CSP Solver Competition. It’s a dedicate
solver to binary CSPs. This solver uses the AC8 algorithm to maintain arc-
consistency during search. VALCSP solver combines Multi-Level and constraint
weighting heuristics (see sections 4.2 and 4.3). The constraints in intention are
changed into equivalent constraints in extension.

Finally, we mention that this solver is implemented using the C ANSI pro-
gramming language.
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Abstract. This paper outlines the major features of three solvers entered in this
years CPAI solver competition. The solvers shared the same underlying archi-
tecture which is described in detail in the following paper, the base solver is
rjw (submitted by Richard Wallace) which Diarmuid-rndi and Diarmuid-wtdi
(both submitted by Diarmuid Grimes) are built on. Furthermore the solvers all
used constraint weighting as a means for identifying sources of contention in the
problem. However two of the solvers (Diarmuid-rndi and Diarmuid-wtdi) used
restarting to approximate sources of global difficulty, while rjw learnt local infor-
mation.

1 Introduction

The solver rjw is an implementation of the classical treesearch algorithm for solving
CSPs, consisting of backtracking plus lookahead (using MAC-3 for consistency main-
tenance). In other words, it is a complete algorithm that uses depth-first backtracking
with d-way branching, interleaved with propagation. Currently it is restricted to prob-
lems involving only extensional binary constraints.

This solver is designed for experimentation so the features that have received the
most attention are related to this aim. Naturally efficiency is always an issue as the ef-
ficiency impacts the experiments that can be performed. The present version represents
fairly mature code which has not been changed in any fundamental way over the past
few years. We firstly describe rjw, then the solvers Diarmuid-rndi and Diarmuid-wtdi
which build on rjw by combining learning with restarts in quite different ways [GW07].

2 Basic Features of rjw

The solvers are implemented in Common Lisp and are designed to run on a Unix ma-
chine. Since many lisp compilers only compile into a kind of intermediate code, the
program cannot run with the speed of a C or a C++ program.

The present version of rjw has a ‘backbone’ that is a recursive procedure (which
naturally limits the size of the problems that can be handled). The basic structure is
shown in Algorithm 1; as indicated, it uses recursion to run through a list of variables
and a list of values in the domain of the current variable.

In the actual code, this structure is elaborated to:

• heuristically choose the next variable (in clause 3).
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Algorithm 1: Basic recursive structure underlying tree search in the present
solver.

Search(variables, domain, solution)
if variables = nil then /* clause 1 */

save-solution
return t

else if domain = nil then /* clause 2 */
reset data structures
return nil /* backtrack */

else if
arc-consistency(next-variable, next-domain-value, remaining-variables)
AND
Search(remaining-variables, new-domain, solution+next-assignment) then
/* clause 3 */

return t
else return Search(remaining-variables, remaining-domain, solution)

• set up data structures for handling arc consistency (in clause 3). (These are reset in
clause 2, as indicated.)

• handle all-solutions as well as one-solution search.

In addition, the MAC solver tests for singleton domains and only does arc consistency
when the current domain has more than one value. Incidentally, during search consis-
tency maintenance is only carried out following each new instantiation (i.e. not after a
value has been discarded). As per usual only arcs between a variable whose domain has
changed and its unassigned neighbors are added to the queue (so the initial queue com-
prises solely of arcs between the variable just assigned and its unassigned neighbors).
A full arc consistency is, of course, carried out prior to search.

3 Data Structures

Domain values are kept in simple lisp lists, accessed via an array. A list of variables
is also used, as indicated in Algorithm 1. The current (partial) assignment is stored as
an array, with nil values for currently unassigned variables. This array is accessed by
variable-numbers, so it accommodates dynamic variable ordering. (Hence, the resetting
in clause 2 in Algorithm 1 includes setting the value for the current variable to nil.)

In the present implementation, constraint relations are represented as arrays of bi-
nary values; the size is set by the size of the largest domain. The arrays themselves are
accessed via a hash table, where the hash key is based on the two variable-numbers. Two
arrays are stored for each relation, so the program does not have to put the variables in
any particular order when computing the hash key.

The constraint representation is a global data structure that can be accessed by any
function in connection with search or heuristic selection. This is also true for the current
assignment. Global structures are also used to maintain a list of the original variables
and the original domains.
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Another important global data structure is the set of adjacency lists, which are lists
of variables adjacent to a given variable in the constraint graph. Again, these are kept
in an array so they can be accessed by variable-numbers. There are also data structures
for certain parametric features like the degree of each variable, and the current domain
sizes, and the original tightness of each constraint, which are used by certain heuristics.

A critical data structure used in connection with propagation stores current domains
during search. The basic strategy is to maintain lists of lists within an array. Each list of
lists is handled as a stack, with the current domain at the top. Using an array allows the
program to access the current domain via the variable-number.

In order to use this structure during recursive search, the setup function (in clause
3 in Algorithm 1) adds a duplicate of the current domain to the top of each stack. (For
forward checking this need only be the domains of variables adjacent to the current
variable.) As successive assignments are made at a given level of search, the arc consis-
tency functions take the domain just below the top of the stack before support testing
and replace the top-most list with the adjusted domain afterwards.

This means that no special (setting-up) code is required for this purpose when re-
assigning a variable. If the program backtracks from a given level of search (clause 2 in
Algorithm 1), the stacks are cut back so the domains are as they were when this level
was entered.

4 Heuristics

One of the major uses to which this solver has been put in the last few years has been
the experimental study of variable ordering heuristics. So there are a large number of
heuristics - and anti-heuristics coded. These are organized in an elaborate but tedious
manner for selecting a particular heuristic during a given run of the program.

For the competition, rjw used the domain over weighted-degree heuristic (dom/wdeg)
of Boussemart et al. [BHLS04], in this case, the heuristic code is in the same file as the
search code and the heuristic is called directly. For all solvers, values were chosen lex-
ically (as were arcs during consistency maintenance).

For the implementation of the weighted-degree heuristic all constraints have a weight,
initially set to 1, associated with them. The weights are stored in a hash-table with
a hash key based on the variable-numbers of the variables in the constraint. When-
ever a constraint causes a domain wipeout during consistency maintenance the weight
gets incremented by 1. The weighted-degree of a variable is the sum of the weights
on constraints between the variable and its uninstantiated neighbors. The heuristic then
chooses the variable with minimum ratio of domain to weighted-degree.

5 Environment and I/O

The solvers normally run either interactively or in batch mode, where they take the
same instructions from a command file. There is an i/o module that currently accepts
two kinds of problem formats, both involving extensional constraints. The top-level of
the program (not used in the competition) is a menu-driven system.
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Different top-level commands either read in the next problem (and set up most of
the global data structures), or generate the next problem, or call for a solver of some
generic type (e.g. backtrack, hybrid tree search, local search). During this interactive
process, after an algorithm is selected, further menu options allow the heuristic to be
selected for the run.

6 Restarting Strategies

Both restarting strategies follow the logic of Refalo [Ref04] who emphasises the im-
portance of making good choices at the top of search. Refalo suggests that, in general,
to achieve this one must perform some preprocessing on a problem. By collating in-
formation regarding contentious variables through their constraint weights, and then
restarting one moves these contentious variables to the top of the search tree.

The solver Diarmuid-wtdi works as follows: there is an initial failure cutoff C0

where search runs until C0 failures have occurred. It then restarts with a new cutoff
which is the previous cutoff multiplied by a constant factor z. Thus the failure cutoff
CR for the Rth restarted search is: C ∗ (zR−1).

The only difference between this solver and the solver rjw is the restart procedure, so
MAC-3 is the consistency algorithm and dom/wdeg is the variable ordering heuristic.
The solver stops as soon as it finds a solution or proves the problem insoluble. It is
complete since the cutoff is increased with every restart.

Since weights are consistently being updated, the variable ordering is always chang-
ing, thus search is unlikely to revisit an identical part of the search space upon restarting.
This allows the solver to visit different parts of the search space while still maintain-
ing a large degree of confidence in the variables selected. In fact, since at each restart
it has more information available for dom/wdeg to make its early decisions, it should
improve its ordering with each restart. However this is contingent on the information
learnt being of uniform quality which is not necessarily the case.

The solver Diarmuid-rndi is an automated learning approach [Gri07] to problem
solving that aims to boost the power of the dom/wdeg heuristic by randomly probing the
search space for information prior to a complete search using dom/wdeg. A pseudocode
description is given in Algorithm 2.

The solver works as follows: similarly to Diarmuid-wtdi there is an initial failure
cutoff C. However this cutoff is never incremented. Search runs identically to rjw with
the one exception that variables are chosen randomly at each selection point (line 5).
Constraint weights are updated throughout but are never used to guide search. If the
problem is solved (line 9) or the problem proven insoluble (line 7) during these “random
probes” then the solver stops (although insolubility is unlikely to be proven since the
failure cutoff is normally quite low, for the competition the cutoff was 100 failures per
probe).

After every R restarts (where R modulo 10 = 0 and R > 10) the stability of the
variables weights is checked (line 12) between the Rth restart and the (R−10)th restart
until either the stability criteria has been satisfied or the number of restarts is equal to
a predefined maximum number of restarts (line 4). Thus there is a minimum number of
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Algorithm 2: Automated Probing Algorithm
input : A constraint satisfaction problem P, cutoff C, maximum number of restarts R
output: Solution or insoluble

RestartedSearch(P, C, R)1
restarts = 02
stabilised = false3
while ((restarts < R) ∧ (¬ stabilised)) do4

Solution = Solve(P, SelectRandomVariable, Value Heuristic, C)5
if Solution 6= Cutoff then6

if Solution = false then7
return insoluble8

else9
return Solution10

else if (restarts > 10) ∧ (restarts mod 10 = 0) then11
stabilised = CheckStability12
restarts ++13

else14
restarts ++15

Solution = Solve(P, SelectDomWdegVariable, Value-Heuristic, ∞)16
if Solution = false then17

return insoluble18

else return Solution19
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random probes per problem, equal to 20. The maximum number of probes per problem
used in the competition was 100.

When either the stability criteria has been satisfied or the maximum number of
restarts has been reached, search restarts for the final time (line 16). The cutoff is re-
moved (i.e. search runs to completion), and dom/wdeg is used for variable selection
with the weights learnt during preprocessing being interleaved with weights learnt dur-
ing this final search.

7 Results Discussion

There are some points of interest regarding the results of the solvers submitted. Firstly,
and somewhat surprisingly, Diarmuid-wtdi solved fewest problems. Although Diarmuid-
rndi solved a few more problems than rjw, it was not a significantly greater number.

As expected rjw was much quicker for easier problems where the cost of prepro-
cessing was an unnecessary hindrance to Diarmuid-rndi. For the harder problem sets
(e.g. problem sets ”random” and ”tightness”) the random probing approach solved more
and was quicker than rjw. However the magnitude of improvement was not as large as
initially expected.

This is partially because the automated probing approach was still in its infancy
when the solver was submitted. As mentioned the cutoff for the probes was 100 failures
which, in retrospect, was somewhat excessive and led to the preprocessing being quite
costly to perform. We have found that using a smaller cutoff of 30 failures for this
strategy does not result in degradation of information learnt and results in improved
overall performance [Gri07].
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Abstract. Mistral is a constraint library written in C++, and initially
evolved from EFC [9]. It is an open source light weight and relatively
efficient toolkit providing many of the functionalities offered by most
well known solvers such as Ilog Solver, Gecode, Choco, etc. For instance,
several efficient algorithms for filtering global constraints (Alldifferent
[11], Global Cardinality [12], NValue [2] or the Edge Finder algorithm
for scheduling [5]) are implemented in Mistral.

1 Introduction

Mistral is a constraint library written in C++. It was created as an evolution,
or rather a simplification of EFC [9], adapted to find super solutions [8]. EFC
(for Extended Forward Checking) was originally written by Fahiem Bacchus
and later developed by George Katsirelos. The current version of Mistral was
entirely rewritten, and thus it now shares very little with EFC. The initial idea
was to write a light weight constraint solver, implementing MAC (Maintain
Arc Consistency) as well as the usual techniques that made the success of con-
straint programming (variable and value ordering heuristics, global constraints,
etc). Over time, some additional features, such as restarts and branch & bound
search were added. Besides a few global constraints, there is no major novelty
implemented in Mistral.

2 Implementation

2.1 Problem Modelling

Mistral is a constraint library and not a language, hence if offers very limited
modelling shortcut or syntactic sugar. Figure 1 illustrates a typical implementa-
tion of the Nqueens problem. The types IntVar and SVar correspond respec-
tively to a general integer variable, and to a specific implementation. A model
usually involves three steps. First, the CSP and the variables are declared (lines
4 to 9). Next the constraints are posted (lines 11 to 18). Finally a solver is de-
clared and the method solve() is called (lines 20 to 22), effectively solving the
model.

2.2 Data Structures

Four different types of variables are implemented in Mistral, all subclasses of
IntVar, in other words all are finite domain integer variables.
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Integer Variables as bit-vectors (SVar) In this implementation, domain D(x) is
represented as vector of bits. All set operations, such as union, intersection or
difference can be performed in O(n/32) where n = max(D(x))−min(D(x)). Of
course membership, insertion and deletion can be performed in constant time.

For each variable, an array of size min(maxlevel, |D(x)|) of such domains
is created (memory is statically allocated befor search begins). Whenever the
domain change for the first time for a given level in the search tree, it is first
copied in the next available index of this array. The space complexity for each
variable implemented in this way is therefore:

min(maxlevel, |D(x)|).max(D(x))−min(D(x))
32

1 int main(int argc, char *argv[]) {

2 int N = ( argc > 1 ? atoi(argv[1]) : 50 );

3
4 // model and variables

5 CSP model;

6 IntVar* queens[N];

7 for( int i = 0; i < N; ++i )

8 queens[i] = new SVar(N);

9 model.add(queens, N);

10
11 // constraints

12 model.post( new AllDiffConstraint(queens, N) );

13 for(int i=0; i<N-1; ++i)

14 for(int j=i+1; j<N; ++j) {

15 IntVar *scope[2] = {queens[i], queens[j]};

16 model.post( new DiagonalConstraint(scope,

17 queens[i]->id-queens[j]->id) );

18 }

19
20 // solver

21 MACSolver s(&model, "dom/deg");

22 s.solve();

23 }

Fig. 1. A model for the NQueens problem in Mistral.

Integer Variables as lists (LVar) In this implementation, a domain D(x) is rep-
resented both as vector of bits mainly for checking membership, and as a doubly
linked list for faster iteration. Notice that the order of the values in the list is not
guaranteed to be lexicographical. This is because when backtracking, the list of
deleted values is appended at the head of the domain list. Deletion of multiple
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values at once (such as setting the maximum or the minimum) will tend to be
more expensive in this representation, however, iterating through the values of
a domain is linear in the number of values.

For each variable, an array of size min(maxlevel, |D(x)|) of int is created.
Whenever the domain change at a given level, the value is removed form the
domain list, appended to the head of delta list which is pointed by next available
index in this array. When backtracking to this level, the delta list appended to
the head of the domain list. The space complexity for each variable implemented
in this way is therefore:

min(maxlevel, |D(x)|) + (max(D(x))−min(D(x)))

Boolean Variables (BVar) Boolean variables have their own specific implemen-
tation for optimisation purpose. For instance, the variable does not store any
data for backtracking.

Their space complexity is therefore constant (in O(1)).

Interval Variables (RVar) In this implementation, only a lower bound and an
upper bound are stored in order to represent large intervals.

However, two array of integers (one for the lower bound and one for the
upper bound) of size maxlevel are allocated. The space complexity of an interval
variable is therefore O(maxlevel).

2.3 Algorithms

Binary Backtrack Search A standard two-ways branching algorithm is imple-
mented. It is given in integrality in Figure 2. First, the termination conditions
are checked. If either the cutoff is reached (lines 2,3) or a solution is found (lines
4,5) then the status is changed accordingly and the search ends. In lines 6 to
8, the variable and value ordering heuristic is called and the next decision is
selected. This decision (that is, a left branch) is explored in lines 10 to 18. When
this branch is explored exhaustively, the complementary right branch is explored
in line 20 to 28. Notice that when the left branch was unsuccessful because the
cutoff was reached, the right branch is not explored (condition in line 22). When
both branches were unsuccessful, a backtrack occurs (lines 30 to 32).

Generic Arc Consistency Algorithm The arc consistency algorithm used for ex-
tensionally defined constraints is a slightly modified version of the simple AC3
algorithm. This modification is sometime called residual AC3 [10]. Whenever a
support is found for a given pair 〈 variable, value 〉, it is stored. Then the next
time a support need to be found for this pair, the stored support is checked for va-
lidity (i.e., whether the values involved in this support are still in their respective
domains). If not, the regular AC3 algorithms proceeds as normal. Since nothing
needs to be done when backtracking (as opposed to AC2001 for instance), the
overhead in time complexity is marginal, whilst the gain is in practice noticeable.
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1 // // End of search?

2 if( limitsExpired() )

3 return (status = LIMITOUT);

4 if( allAssigned() )

5 return solutionFound();

6
7 // // Select a variable and a value

8 int idx, value = Variable::NOVAL;

9 Variable *curvar = future[(idx = heuristic->select(value))];

10
11 // // Left branch

12 curvar->makeDecision(value);

13 if( curvar->assigned )

14 bound(idx);

15 if( filtering() ) {

16 ++level;

17 if( genericBacktrack() == SAT ) return SAT;

18 --level;

19 }

20
21 // // Right branch

22 restoreTo(level-1);

23 if( status != LIMITOUT ) {

24 if( curvar->makeComplementary(value) && filtering() ) {

25 ++level;

26 if( genericBacktrack() == SAT) return SAT;

27 } else ++level;

28 // // Backtrack

29 restore();

30 ++BACKTRACKS;

31 } else ++level;

32
33 return status;

Fig. 2. Mistral ’s backtracking procedure.
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3 Solver Competition

3.1 Representations of Variables

The different implementations of variables were used according to heuristic rules.
The simplest one being that Boolean Variables were always represented using
BVar. The range variables (RVar) were only used when extra variables with very
large domains (larger than “maxlevel”) were required. This is explained in more
detail in Section 3.2. Finally the choice between SVar and LVar was down to the
size and the density of the domain. The list implementation LVar is intuitively
better when the ratio D(x)

max(D(x))−min(D(x)) is low, since being able to iterate in
linear time through a sparse domain is valuable. Moreover, when the size of the
domain increase, the space used for the list is outbalanced by the conciseness of
the backtracking structure (a single integer as opposed to a domain for SVar).
Therefore LVar was used for large and/or sparse domains, whilst SVar was used
in all other cases.

3.2 Representations of Constraints

Relations: Relations are represented as an n dimensional matrix flattened into
a vector of bits. The worst case space complexity is not very good, since sparse
or dense matrix have the same size. Moreover, in order to keep the membership
operation in constant time, the size of a binary relation between x and y is
stored using (max(D(x))−min(D(x))).(max(D(y))−min(D(y))) bits, instead
of |D(x)|.|D(y)|. However this was never a problem during the first round of the
competition.

Predicates: Two different representations of predicates were used, both of them
pretty standard. During the first round of the competition only the first version
was implemented, and comported several bugs. Given a tree of binary and unary
predicates, a set of as many respectively ternary and binary reified constraints
and extra variables are created. For instance for the predicate:

eq(add(mul(X0, X1), X2), X3)

the following constraints will be posted:

mul(X0, X1, Y0)
add(Y0, X2, Y1)

eq(Y1, X3)

where Y0 and Y1 are extra variables; mul(X0, X1, Y0) constrains the product of
X0 and X1 to be equal to Y0; add(Y0, X2, Y1) constrains the sum of Y0 and X2 to
be equal to Y1; and eq(Y1, X3) will substitute X3 to Y1 in all other constraints.
Notice that the latter substitution is only possible because the constraint eq is
at the root of the predicate tree, otherwise a ternary constraint eq(Y1, X3, Y2)
would be posted, constraining Y2 to be the truth value of the relation Y1 = X3.
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The second representation is used for low arity constraints encoded as a
predicates tree. In this case instead of extra variables and constraints, a unique
constraint is posted. This constraint is propagated using the generic arc consis-
tency algorithm, that is, the algorithm used for extensional constraints. However,
instead of implementing constraint checks using a Boolean matrix, the predicate
tree is stored and queried at each constraint check. This is essentially equivalent
to transforming the predicate into a table constraint, albeit with slightly worse
time complexity and better space complexity.

Predefined Constraints: Most of the usual arithmetic and logic predicates (+,−,≤
, 6=,&,↔) are predefined. For instance, we illustrate in Figure 3 the propagation
algorithm for the 6= predicate.

1 bool NotEqualConstraint::propagate(IntVar *v, const int event)

2 {

3 return scope[(scope[0] == v)]->remove(v->value());

4 }

Fig. 3. Mistral ’s Not-Equal propagator.

Notice that this propagator is called only on assignment of the variable v (the
second parameter “event” is used to describe the type of event, when needed).

3.3 Search Strategy

No specific value heuristic was used in the competition, the values are therefore
visited in lexicographical order for SVar, RVar and BVar and in an undefined
order for LVar. The variable ordering heuristic is a slightly modified version of
domain over weighted degree [4]. As in the regular framework, each constraint
C(V ) over a set of variable V is associated with a weight w(C) and the variable
with minimum ratio domain size over sum of neighbouring constraints weights
is chosen:

choose x such that
|D(x)|∑

x∈V w(C(V ))
is minimum

However, on failure during the GAC closure procedure, the constraint responsible
for the failure gets its weight incremented by maxlevel− level instead of 1. The
intuition behind this choice is that a failure early in the search is more meaningful
than a failure later, since less decisions have been taken.

Two versions of Mistral were submitted in the competition, one of them
implementing a geometric restart policy. The initial cutoff was set to 2

3 .maxlevel,
and then multiplied by 1 + 1

3 upon every restart. It is worth noticing that a
very limited form of nogood learning naturally happens when restarting the
basic backtracking procedure illustrated in Figure 2. Indeed, the procedure is
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called with the level set to 1. When a left branch, for instance the decision
X = v, is unsuccessful on level 1, then the complementary decision x 6= 1
is explored. However, this decision is globally consistent and therefore never
withdrawn, therefore x 6= 1 is a unary nogood, reused upon subsequent restarts.
Moreover, observe that arbitrarily many left branches and many variables may be
chosen at level 1. Therefore, several unary nogood, involving different variables
may be “learnt”.

4 Features

Some novel global constraint propagation algorithm have been implemented in
Mistral in order to perform empirical evaluation. The NValue constraint, for
example, as described in [2] is implemented in Mistral.

The NValue constraint counts the number of distinct values used by a vector
of variables. It is a generalisation of the widely used AllDifferent constraint
[6, 13]. It was introduced in [7] to model a musical play-list configuration problem
so that play-lists were either homogeneous (used few values) or diverse (used
many). There are many other situations where the number of values used are
limited. For example, if values represent resources, we may have a limit on the
number of values used at the same time. A NValue constraint can thus aid
both modelling and solving many real world problems.

Definition 1. NValue(N, [X1, . . . , Xm]) holds iff N = |{Xi| 1 ≤ i ≤ m}|

Enforcing generalised arc consistency (GAC) on the NValue constraint is
NP-hard [3]. One way to deal with this intractability is to decompose the con-
straint or to approximate the pruning. The NValue constraint can be decom-
posed into two other global constraints: the AtMostNValue and the Atleast-
NValue constraints. Unfortunately, while enforcing GAC on the AtLeast-
NValue constraint is polynomial, enforcing GAC on the AtMostNValue
constraint is also NP-hard. We will therefore focus on various approximation
methods for propagating the AtMostNValue constraint.

Mistral features three new approximations. Two are based on graph theory
while the third exploits a linear relaxation encoding. These algorithms compare
favourably to a previous approximation method due to Beldiceanu based on
intervals that runs in O(n log(n)) [1]. The two new algorithms based on graph
theory are incomparable with Beldiceanu’s, though one is strictly tighter than
the other. Both algorithms, however, have an O(n2) time complexity. However,
the linear relaxation method dominates all other approaches in terms of the
filtering, but with a higher computational cost.
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13. J.C. Régin. A Filtering Algorithm for Constraints of Difference in CSPs. In
Barbara Hayes-Roth and Richard E. Korf, editors, Proceedings of the 12th National
Conference on Artificial Intelligence (AAAI-94), pages 362–367, Seattle, WA, USA,
1994. AAAI Press.



CSP2SAT4J: A Simple CSP to SAT translator

Daniel Le Berre1 and Inês Lynce2

1 CRIL-CNRS FRE 2499
Rue Jean Souvraz SP 18

62307 Lens Cedex FRANCE?

2 IST/INESC-ID,
Technical University of Lisbon, Portugal

Abstract. SAT solvers can now handle very large SAT instances. As a
consequence, many translations into SAT have been shown successful in
recent years: Planning and Bounded Model Checking are two examples of
applications in which SAT engines are reported to be as good as or even
better than dedicated software. During the first CSP competition, SAT-
based approaches were demonstrated competitive with the other CSP
solvers on binary constraints. Constraints being provided in extension,
it was a big advantage for techniques based on grounding predicates
since only benchmarks that could be grounded in a reasonable space
were available. As such, the comparison between SAT-based solvers (that
need to ground predicates) and the approaches developed by the CSP
community (that usually handle directly the constraints as expressed)
was not fair. For the second edition of the competition, the constraints
can now be given in intension, and global constraints such as allDifferent
are available. The idea behind the submission of CSP2SAT4J is to show
when SAT-based CSP solvers can still compete in some cases against
”traditional” CSP solvers under those new conditions.

1 Introduction

The idea behind the submission of CSP2SAT4J is to show when SAT-based CSP
solvers can still compete against ”traditional” CSP solvers under those new con-
ditions: on non-randomly generated binary constraints benchmarks, when the
domain of the variables is not too big (a few hundred variables max) to allow
grounding the predicates in reasonable time. The translation from CSP to SAT
has been improved since last year submission: the solver can outperform another
CSP solver (namely Abscon) on last year competition’s benchmarks. The under-
lying SAT solver can handle cardinality constraints, which minimizes the number
of constraints used in the translation. The evaluation of the constraints given
in intention is done using a JavaScript to Java bytecode compiler, in order to
keep the “Keep It Simple Stupid” approach of last year submission. The exper-
imental results on the new benchmarks available in July 2006 do show the limit
? The first author has been supported in part by the IUT de Lens, the CNRS and the
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of the approach when the size of the domains increases: for some categories of
benchmarks in which the solver performed well last year (Queens and Knight for
instance), the solver is unable to ground the bigger instances available in inten-
tion this year. Since the participation to the competition also implies submitting
benchmarks, we included in the last section the description of our encoding of
the Social Golfer Problem.

2 On the power of SAT solvers

Very recently, the translation from pseudo boolean into SAT was shown compet-
itive and sometimes better than dedicated solvers during the PB05 evaluation
[20]. Indeed, the MiniSAT+ solver shown surprising good performances on most
of the benchmarks, and it can be considered as the “winner” of the evaluation.
The MiniSAT solver, together with the SatELite preprocessor were the winners
of the SAT competitions in the industrial and crafted categories. The solver Min-
iSAT+ has shown that using SAT engines as efficient generic problem-solving
engines was a reality. For that reason, we decided to submit a SAT-based CSP
solver to the first (and second) CSP competition.

The SATisfiability problem (SAT) gained interest from the industry a few
years ago when SAT solvers where used to solve Bounded Model Checking prob-
lems [6] instead of BDDs. That interest pushed people to design solvers for those
particular types of problems. One of the particularities of those benchmarks is
their size: they are“huge” compared to the classical pathological pigeon hole or
random k-SAT problems. As a consequence, the complexity of the algorithms
and data structures becomes even more important. That observation was the
origin of the design of the head-tail lazy data structure in SATO[26, 27], the
Watched Literals and cheap VSIDS heuristic in Chaff [17, 28]. Grounding CSP
problems into SAT does generate huge CNF, so it makes sense to use ”industrial”
SAT solvers for solving those formulas.

Another particularity of SAT instances coming from BMC, or more gener-
ally practical problems translated into SAT compared to the seminal 3-CNF
instances, is the lack of real characterization of those SAT instances: while the
theory around 3-CNF allows to build powerful heuristics-based SAT solvers for
3-SAT (TABLEAU, CSAT, POSIT, SATZ, CNFS, etc), non-chronological back-
tracking and learning looks like the best approach to tackle SAT-encoded prob-
lems (SATO,RELSAT,GRASP,CHAFF). Note that usually non-chronological
backtracking and learning is useless if the heuristic is good enough, which ex-
plains why solvers using those techniques are outperformed on random 3-SAT
instances by heuristics based solvers. Furthermore, it seems that the lack of
“structure” in the problem makes the VSIDS heuristic ineffective. On the other
hand, non-chronological backtracking can repair mistakes made by the heuristics
by analyzing conflicts.

One of the consequence of using an “industrial” SAT solver to power a SAT-
based CSP solver in the CSP competition is to have poor performances on ran-
domly generated CSP benchmarks. While a randomly generated CSP benchmark
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encoded into a SAT benchmark cannot be considered as a randomly generated
SAT benchmark, we conjecture that the bad behavior of our approach on ran-
domly generated CSP benchmarks is due to the lack of “structure” needed by
conflict driven clause learning SAT solvers.

All the parts of a SAT solver received a huge interest from both an algorith-
mic and an implementation point of view so current SAT solvers are now heavily
tuned and they should not be considered as prototype software but rather as pro-
duction software. We use the SAT4J library3, an open-source library of conflict
driven clause learning (aka “industrial”) SAT solvers in Java. The library is ma-
ture and competitive with state-of-the-art SAT solvers: it participated to the
2004 and 2005 SAT competitions in which it went in the second stage in the
industrial category, and passed the qualification step of the SAT Race 2006, a
competition of SAT solvers especially dedicated to industrial SAT benchmarks.

In the rest of the paper, we first describe how our SAT library follows the
current trend to generalize SAT solvers to handle constraints more general than
clauses. Then we explain the CSP to SAT encodings used in our solver and
provide some experimental results.

3 From clauses to pseudo boolean constraints

Researchers are pushing the limit beyond SAT: Quantified Boolean Formulas
(QBF) and Stochastic SATisfiability (SSAT) for instance are two extensions of
SAT being studied recently. Another extension of SAT received some attention
a decade ago: using pseudo boolean constraints (linear constraints with boolean
variables) instead of plain clauses [3, 4]. Most of the solvers for those extensions
to SAT are developed using techniques that were demonstrated powerful for
SAT. Those solvers in the early 90s were based on DPLL[9, 8] while the solvers
developed today are often related to Chaff-like solvers.

This is especially true for pseudo boolean solvers: Barth first developed a
DPLL version of a pseudo boolean solver [4]. Walser [24] and later Prestwich
[18, 19] developed local search or hybrid pseudo boolean solvers. Aloul et al
[22] developed a version of Chaff handling pseudo boolean constraints instead
of clauses as input, plus symmetry breaking predicates, with clause learning
(same thing for the recent MiniSAT [13]). Dixon and Ginsberg[10] developed
a pseudo boolean version of Relsat (PRS), which was the first pseudo boolean
solver including true pseudo boolean learning. They developed a pseudo boolean
version of Chaff (PBChaff[11]) in the same spirit while Chai and Kuehlmann
[7] did extended all Chaff techniques (learning scheme and data structures) in
the pseudo boolean solver Galena. Recent work from Dixon et al [12] describes
a generic conflict driven constraint learning solver based on group theory while
Thiffault et al [23] describe a conflict driven clause learning solver working with
arbitrary boolean gates.

SAT4J uses some principles taken from both Chai and Kuehlmann and Dixon
to allow some of its solvers to use cutting planes instead of resolution when using
3 http://www.sat4j.org/
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linear pseudo boolean constraints. As a result, those solvers can solve in a linear
number of conflicts the pigeon hole problem when it is expressed by linear pseudo
boolean constraints, which is not possible with a solver based only on resolution.
But that power comes with a high price to pay in practice: on benchmarks with
few pseudo boolean constraints, such approach is not as efficient as a solver
applying resolution on pseudo boolean constraints.

As a consequence, many SAT solvers are currently using general constraints
to express the problem in a more compact way than with pure clauses (e.g. for
cardinality constraints), without using the full power of those constraints, but
without additional running time either. This is how we setup our own SAT solver
for the CSP competition.

4 From CSP to SAT

Our CSP to SAT translator uses two different encodings: direct encodings [25]
and support encoding for binary clauses [14]. Note that we use a single cardinality
constraint instead of using binary (so-called “at most”) clauses to express that
no more than one value can be chosen in a domain.

The encoding used depends on the way the constraints are expressed:

extension (conflict) In that case, it is straightforward to use a direct encoding
since each tuple is translated into a clause.

extension (support) If the constraint is binary, then we use the binary sup-
port encoding, else the direct encoding, by generating all conflicting tuples.

intension The constraint is grounded by generating all the possible input values
and checking if it satisfies or not the constraint. If the constraint is binary,
then the binary support encoding is used, else the direct encoding is used. A
better option might be to approximate the number of allowed or forbidden
tuples and to select the encoding accordingly. A more sophisticated and
efficient way to generate the tuples to be considered is also a possible way
of improvement.

The main drawback of our method is the way we handle n-ary constraints: for
a constraint of arity 8 with domains of size 10, 108 tuples need to be generated.
It is currently impossible to simply enumerate all those tuples in a reasonable
time.

We also implemented the generalized support encoding [5] for n-ary con-
straints. However, the cost for generating that encoding is much higher than the
direct encoding. We are aware of another CSP to SAT encoding that we have
not experimented because it relies on a very specific way to describe the problem
in terms of disjunction of forbidden values [19].

4.1 Common encoding

The translator takes the new XML representation (XML CSP 2.0 format) of the
problem as input and outputs a set of constraints (mixing clauses and cardinality
constraints) to feed our extended SAT solver.
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Variables For each variable vi ∈ V , and each domain value dj ∈ Domain(vi),
a propositional variable pi,j is created.

Domains For each variable vi ∈ V , a cardinality constraint denotes that only
one value from the domain can be chosen:

∑
x pi,x = 1. In practice, that con-

straint is expressed in the solver using the clause ∨xpi,x and the cardinality
constraint

∑
x pi,x ≤ 1

4.2 Direct encoding [25]

Forbidden tuples (nogoods) Each tuple representing a forbidden combina-
tion of values is represented by a propositional clause composed by the nega-
tion of the propositional variables representing those values. So the length
of the generated clause is the arity of the constraint. Note that in case of
binary constraints, binary clauses will be generated.

Allowed tuples (supports) When a relation is represented by allowed tuples,
we deduce all the forbidden tuples and translate them into clauses as de-
scribed above.

The main drawback of that translation is the translation of the allowed tuples. It
can take a lot of time to generate them when the arity of the constraint increases.

4.3 Support encoding for binary constraints [14]

Forbidden tuples (nogoods) Each tuple representing a forbidden combina-
tion of values is represented by a propositional clause composed by the nega-
tion of the propositional variables representing those values.

Allowed tuples (supports) For binary constraints, we create a clause ¬a ∨
b1∨ . . .∨bk for each variable a that appears in tuples (a, b1), (a, b2), . . . (a, bk)

4.4 From intension to extension

Our solver grounds predicates in intension into tuples, in order to apply the
above translation. Compared to the first competition, the cost of grounding the
predicate is added to the CSP solver, and it might not be possible to ground
some of the problems in reasonable time or space. The biggest issue for dealing
with constraints in intention in our SAT-based approach is to evaluate the ex-
pressions. Since our aim is simply to evaluate them for a complete assignment
of the variables, and since we want to keep as low as possible the portion of
our code dedicated to CSP solving, we decided to have both a pragmatic and
extensible approach to do it. Indeed, it can be expected that the next versions
of the input format will see more and more built-in functions. Furthermore,
the new version of the Java virtual machine will ship with a Java Script inter-
preter called Rhino4. So we decided to interpret the predicates defined in the
input file as a javascript expression. This can be easily achieved by defining in
4 http://www.mozilla.org/rhino/
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JavaScript the built-in functions and load them before evaluating the expres-
sion. That framework also has the good property to allow to compile directly
the JavaScript expression into Java bytecode, so the cost of evaluating the ex-
pression is reduced. The main drawback of that approach in our opinion is that
the Rhino framework is 700Kb big while the SAT4J library is only 400Kb big.
Adding a dependency to such a package makes our CSP solver temporarily more
than 1MB big on current JVM).

4.5 The allDifferent global constraint

One of the new features of the second version of the CSP input format is the
ability to express global constraints. For the second competition, only the allD-
ifferent constraint is available. That constraint has some nice properties and
is very useful to eliminate values in domains. A translation into SAT of the
allDifferent constraint preserving some of those properties was proposed in [16].
However, we decided to use a simpler approach: for each allDifferent constraint
we simply add the binary clauses ensuring that no couple of variables share
a common value: it is a sort of local direct encoding of the constraint, since
the forbidden tuples of the global constraint can be easily expressed by binary
constraints (allDiff(x1, x2, . . . , xn) ≡ ∧i<jxi 6= xj). In some sense, we are not
taking advantage that way of the constraint being global.

Note that a specific data structure proposed by Lawrence Ryan [21] is used
in our SAT solver to handle binary clauses because the implementation of the
allDifferent constraint is likely to produce many of them.

5 A few experimental results

We present here some experimental results comparing our SAT-based CSP solver
against Abscon, one of the strongest CSP solvers that participated in the first
CSP competition. Note that Abscon and our own solver are to the best of our
knowledge the only CSP solvers freely available for research purpose that are
compatible with the first and second CSP competition input format. Note also
that the two solvers are written in Java.

All the results were obtained on a cluster of Bi-Xeon 2.6 GHz with 2GB
of memory (1GB per processor) running Linux, using Java 1.5.0 06 for 32 bits
architecture. The timeout was 20 mn per benchmark.

5.1 First CSP competition benchmarks (extension)

These results were obtained on January 2006 on the set of benchmarks used
for the first CSP competition, plus some additional random benchmarks. The
version of SAT4J used was 1.5 01. We used a developer version of Abscon. The
benchmarks were given in extension. The first part of the table (All column) sum-
marizes the results of the two solvers on all the benchmark (number of problems
solved) classified into binary and n-ary ones. Abscon is far better than SAT4J
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overall, and especially on n-ary satisfiable benchmarks. The second column re-
stricts the results to the benchmarks that were not randomly generated. In that
case, SAT4J is slightly better than Abscon on binary benchmarks.

All Non-random

SAT4J Abscon SAT4J Abscon

non binary constraints

(186 benchmarks) (150 benchmarks)

UNSAT 27 28 27 28
SAT 61 125 48 108

binary constraints

(2031 benchmarks) (1041 benchmarks)

UNSAT 842 995 400 396
SAT 760 827 560 536

These results simply show that provided that grounding the problem is pos-
sible, a SAT-based approach is competitive with Abscon for binary benchmarks
non-randomly generated.

5.2 Benchmarks in XML 2.0 format

These results were obtained in July 2006. The version of SAT4J used was a
CVS snapshot tagged OBJECTWEB 1.0.90 (the one submitted to the CSP
competition) and the version of Abscon was 105.

SAT4J Abscon

non binary constraints (978 benchmarks)

UNSAT 69 78
SAT 273 453

binary constraints (2673 benchmarks)

UNSAT 613 1053
SAT 861 1285

Unfortunately, we do not have the details of random/non-random bench-
marks. However, a few remarks can help reading these results:

Queens/Knights During the first CSP competition, the direct encoding gave
poor results on those benchmarks (none of them solved). Using the support
encoding allowed SAT4J to solve all them quickly (in less than 2 minutes
overall). The benchmarks proposed this year are much bigger: queensKnights-
50 has for instance a domain size of 2500. As a consequence, enumerating
25002 tuples just makes the SAT-based approach hopeless on those bigger
benchmarks.
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Fapp There are 40 series of 11 benchmarks for the FAPP benchmarks (binary
benchmarks). For the first CSP competition, only the first two series (the
smaller ones) were submitted because the other ones were too big to be
expressed in extension. Our approach is only able to solve the benchmarks
of the first series and a few from the second series, and runs out of memory on
the other ones. On the other hand, Abscon is able to solve almost all of them.
Those particular series of benchmarks represents 1/6 of the total number of
benchmarks, while there are more than 25 different sets of benchmarks: the
difference in number of problems solved in the table should be considered at
the light of that fact. We expect to have closer results between SAT4J and
Abscon during the second CSP competition because the number of problems
will be close for each kind of benchmarks.

Out of Memory happened in 633 cases on binary benchmarks, and 204 cases
on n-ary benchmarks, i.e. respectively in 24% and 21% of the total number
of benchmarks! It happened starting at domino-2000, fapp-02, knights-50,
queens-knights-50 and js-taillard-15 for binary benchmarks. For n-ary bench-
marks, it happened mostly on pseudo boolean benchmarks translated into
CSP and on traveling salesman problems, golomb ruler, all interval series
and mknap. It happened even on some problems given in extension in n-ary
benchmarks, because we need to generate forbidden tuples when supports
tuples are given.

6 The social golfer problem

The social golfer problem is derived from a question posted to sci.op-research
in May 1998:

The coordinator of a local golf club has come to you with the following prob-
lem. In her club, there are 32 social golfers, each of whom play golf once a week,
and always in groups of 4. She would like you to come up with a schedule of play
for these golfers, to last as many weeks as possible, such that no golfer plays in
the same group as any other golfer on more than one occasion.

In other words, this problem can be described more explicitly by enumerating
four constraints which must be satisfied:

– The golf club has 32 members.
– Each member plays golf once a week.
– Golfers always play in groups of 4.
– No golfer plays in the same group as any other golfer twice.

Since 1998, this problem has become a famous combinatorial problem. It is
problem number 10 in CSPLib (http://www.csplib.org/). A solution is said to
be optimal when maximum socialisation is achieved, i.e. when one golfer plays
with as many other golfers as possible. Clearly, since a golfer plays with three
new golfers each week, the schedule cannot exceed 10 weeks. This follows from
the fact that each golfer plays with three other golfers each week. Since there
is a total of 31 other golfers, this means that a golfer runs out of opponents
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after 31/3 weeks. For some years, it was not known if a 10 week (and therefore
optimal) solution for 32 golfers exists. In 2004, Aguado found a solution using
design-theoretic techniques [1].

Even though the social golfer problem was described for 32 golfers playing
in groups of 4, it can be easily generalized. An instance to the problem is char-
acterized by a triple w-p-g, where w is the number of weeks, p is the number of
players per group and g is the number of groups. The original question therefore
is to find a solution to the w-4-8 problem, with w being the maximum, i.e. to
find a solution to 10-4-8 (or prove that none exists).

The social golfer problem is related with other well-known combinatorial
problems. Indeed, this problem is a generalisation of the problem of constructing
a round-robin tournament schedule, the main difference being that in the social
golfer problem the number of players in a group may be greater than two. Also,
the social golfer problem of finding a 7 week schedule for 5 groups of 3 players
(7-3-5) is the same as Kirkman’s Schoolgirl Problem, where the main goal is to
arrange fifteen schoolgirls in rows of three so that each schoolgirl walks in the
same row with every other schoolgirl exactly once a week.

The encoding used is the one proposed by Walser available on CSPLIB that
can be summarized as follows:

– 0-1 variables Golferi,j,k = 1 indicate that golfer i plays in group j in week
k.

– 0-1 variables Meeti,j,k = 1 indicate that golfers i and j meet in week k (thus
are in the same group).

– constraints relating the above variables: Golferi,k,l+Golferj,k,l−Meeti,j,l ≤
1.

– golfers play in exactly one group per week:
∑

j Golferi,j,k = 1.
– each pair of golfer plays only once:

∑
k Meeti,j,k = 1.

– each group has exactly p golfers:
∑

i Golferi,j,k = p.

Note that while the domain of the variables is small (boolean), some con-
straints have a big arity (the number of golfers p∗g) which makes the SAT-based
approach inefficient (enumerating 232 tuples for a 8-4-8 problem for instance is
out of reach for our solver).

The problems 8-4-8, 9-4-8 and 10-4-8 that we have submitted are quite chal-
lenging. It would be a good news if some competitors were able to solve them.
Some recent work on a SAT encoding with symmetry breaking predicates can
be found in [15]. [2] has proposed to dynamically break symmetries in the social
golfers problem. This new approach is often able to outperform the traditional
approaches, although at the cost of eliminating some solutions. Hence, the pro-
posed method is incomplete.

7 Conclusion

We presented our new SAT-based CSP solver as submitted to the second CSP
competition. We presented some experimental results showing that a SAT-based
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approach for CSP is quite competitive provided that the problems are not ran-
domly generated and contain binary constraints with “reasonable size” domain
to make the grounding of the predicates possible. We also presented our en-
coding of the Social Golfer Problem for which we provided a generator and 10
samples benchmarks for the competition. We believe that one solution to cope
with the predicates given in intension that cannot be grounded in reasonable
time or space is to manage them as a new kind of constraint in the SAT solver.
Two manipulations are needed in the case of a conflict driven constraint learning
solver:

value propagation the constraint should be able to cope with partial assign-
ment (of boolean variables provided by the SAT solver) and to detect which
values in the domains need to be assigned/forbiden as a result of a domain
assignment (thus leading to unit propagation in the SAT solver).

reason computation Conflict analysis is an important part of the SAT solver.
It relies on computing for each propagated assignment a reason for that
assignment in the form of a set of literals (the set of falsified literals in a
clause). The biggest issue in our opinion will be to make sure that such a
reason can be computed in a predicate given in intention and to see how a
possible solution relates with CSP backjumping and nogood learning.

We hope to be able to compare our solver against numerous other CSP solvers in
the future: it would be nice if the solvers that participate in the CSP competition
could be freely available for research purpose after the competition.
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Abstract. This paper describes the algorithms, heuristics and general
strategies used by the two solvers which have been elaborated from the
Abscon platform and submitted to the second CSP solver competition.
Both solvers maintain generalized arc consistency during search, explore
the search space using a conflict-directed variable ordering heuristic, in-
tegrate nogood recording from restarts and exploit a transposition table
approach to prune the search space. At preprocessing, the first solver
enforces generalized arc consistency whereas the second one enforces ex-
istential SGAC, a partial form of singleton generalized arc consistency.

1 Introduction

A constraint network (CN) is composed of a set of variables (each of them with
an associated domain corresponding to a set of values) and a set of constraints
(defining the tuples of values allowed for variables of each constraint). Finding a
solution to a constraint network involves assigning a value to each variable such
that all constraints are satisfied. The Constraint Satisfaction Problem (CSP) is
the task to determine whether or not a given constraint network, also called CSP
instance, is satisfiable (i.e. admits a solution).

A CSP solver is a program which deals with satisfiability of CSP instances.
It is said complete when it can prove that an instance is either satisfiable or
unsatisfiable. Most of the CSP solvers are composed of two main components:
Inference and Search. Inference is used to transform an instance into an equiva-
lent form which is simpler than the original one, while search is used to traverse
the search space of the instance in order to find a solution. For (most of the)
complete CSP solvers, it respectively corresponds to constraint propagation and
depth-first search with backtracking guided by some heuristics.

In this document, we quickly introduce the inference strategy (Section 2) and
the search strategy (Section 3) used by the two solvers that we have presented
at the second CSP solver competition.

2 Inference Strategy

Many works in the area of Constraint Programming have focused on inference,
and more precisely, on filtering methods based on properties of constraint net-



56 Christophe Lecoutre and Sebastien Tabary

works. The idea is to exploit such properties in order to identify some nogoods
where a nogood corresponds to a partial assignment (i.e. a set of variable as-
signments) that can not lead to any solution. Properties that allow identifying
nogoods of size 1 are called domain filtering consistencies [7]. The interest of
exploiting domain filtering consistencies is that it is quite easy to deal with no-
goods of size 1. Indeed, as such nogoods correspond to inconsistent values, it
suffices to remove them from domains of variables.

Generalized Arc consistency (GAC) is a domain filtering consistency which
guarantees that each value admits at least a support in each constraint. GAC
remains a fundamental property of constraint networks. It is called AC (Arc
Consistency) when constraints are binary (i.e. only involve 2 variables). M(G)AC
is the algorithm that maintains the (G)AC property at each node of a search
tree.

2.1 AC3bit+rm and GAC3rm

In a (coarse-grained) Arc Consistency (AC) algorithm, revise is the procedure
which determines if a value is supported by a constraint. A residual support,
or residue, is a support that has been found and stored during a previous ex-
ecution of the procedure revise. The point is that a residue is not guaranteed
to represent a lower bound of the smallest current support of a value. In [15],
a study about the theoretical impact of exploiting residues with respect to the
basic algorithm AC3 is given. First, it is proved that AC3rm (AC3 with multi-
directional residues) is optimal for low and high constraint tightness. Second,
it has been shown that during a backtracking search, MAC2001 presents, with
respect to MAC3rm, an overhead in O(µed) per branch of the binary tree built
by MAC, where µ denotes the number of refutations of the branch, e the num-
ber of constraints and d the greatest domain size of the constraint network. One
consequence is that MAC3rm admits a better worst-case time complexity than
MAC2001 for a branch involving µ refutations when either µ > d2 or µ > d in
the case of constraints with low or high tightness.

In [21], we have proposed to exploit bitwise operations to speed up some im-
portant computations such as looking for a support of a value in a constraint, or
determining if a value is substitutable by another one. Considering a computer
equipped with a x-bit CPU, one can then expect an increase of the performance
by a coefficient up to x (which may be important, since x is equal to 32 or 64
in many current processors). To show the interest of enforcing arc consistency
using bitwise operations, we have introduced a new variant of AC3, denoted by
AC3bit, which can be used when constraints are (or can be) represented in exten-
sion. Importantly, we have also shown how to combine bitwise operations with
residues, which happens to be quite useful when domains become large (approx-
imately more than 300 values). The new algorithm, denoted by AC3bit+rm, is
quite robust. We do believe that, for solving binary instances, when constraints
are given in extension or can be efficiently converted into extension, the generic
algorithm MAC, embedding AC3bit+rm is the most efficient approach. One rea-



Abscon 109 57

son is that, like MAC3rm, no maintenance of data structures is required upon
backtracking by MAC3bit+rm,

For the competition, MAC3bit+rm is the algorithm used by the solver Abscon
109. More precisely, it was used for binary instances involving constraints in
extension and constraints in intention that can be converted efficiently into
extension. For non binary constraints, the algorithm that we have adopted is
MGAC3rm (but, for positive table constraints, we have used the algorithm de-
scribed in the next section). Remark that the propagation scheme we used is
variable-oriented with dom as a revision ordering heuristic [5]. We have also
used the variant R1 [6] which allows avoiding useless revisions.

2.2 GAC for positive table constraints

In [20], we have introduced a new algorithm to establish GAC on positive ta-
ble constraints. A table constraint is a constraint which is defined in extension
by a set of tuples - when tuples are allowed (resp. disallowed) for the variables
involved in the constraint, the table constraint is said positive (resp. negative).
Table constraints are commonly used in configuration applications or applica-
tions related to databases.

The approach that we propose is a refinement of two approaches called GAC-
valid and GAC-allowed. In order to find supports, GAC-valid iterates over valid
tuples (i.e. tuples that can be built from the current domains of constraint
variables) whereas GAC-allowed iterates over allowed tuples (i.e. combinations
of values which are allowed by a constraint). Recall that a tuple is called a
support if and only if it is valid and allowed. Roughly speaking, GAC-valid
and GAC-allowed respectively correspond to GAC-schema-predicate and GAC-
schema-allowed presented in [3].

The principle of the algorithm proposed in [20] is to avoid considering irrel-
evant tuples (when a support is looked for) by jumping over sequences of valid
tuples containing no allowed tuple and over sequences of allowed tuples contain-
ing no valid tuple. It has been shown that the new schema (GAC-valid+allowed)
admits on some instances a behaviour quadratic in the arity of the constraints
whereas classical schemas (GAC-valid and GAC-allowed) admit an exponential
behaviour.

On the practical side, the results that we have obtained demonstrate the
robustness of GAC-valid+allowed. In fact, they are comparable to the ones ob-
tained with a GAC-allowed+valid scheme [22] which allows to skip irrelevant
allowed tuples from a reasoning about lower bounds on valid tuples. On the
one hand, we believe that our model is simpler, and, importantly, can be easily
grafted to any generic GAC algorithm. On the other hand, as the two approaches
are different, it should be worthwhile combining them.

For the competition, GAC3rm-valid+allowed is the algorithm used by the
solver Abscon 109 for positive table constraints.
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2.3 Existential SAC

It is natural to conceive algorithms to enforce partial forms of singleton arc
consistency such as First-SAC, Last-SAC and Bound-SAC [16]. Indeed, it suf-
fices to remove all values detected as arc inconsistent and bound values (only the
minimal ones for First-SAC and the maximal ones for Last-SAC) detected as sin-
gleton arc inconsistent. When enforcing a constraint network P to be First-SAC,
Last-SAC or Bound-SAC, one then obtains the greatest sub-network of P which
is First-SAC, Last-SAC or Bound-SAC. However, enforcing Existential-SAC on
a constraint network is meaningless. Either the network is (already) Existential-
SAC, or the network is singleton arc inconsistent. It is then better to talk about
checking Existential-SAC. An algorithm to check Existential-SAC will have to
find a singleton arc consistent value in each domain. As a side-effect, if singleton
arc inconsistent values are encountered, they will be, of course, removed. How-
ever, we have absolutely no guarantee about the network obtained after checking
Existential-SAC due to the non-deterministic nature of this consistency.

In [14], an original approach to establish SAC has been proposed. The prin-
ciple is to perform several runs of a greedy search, where at each step arc-
consistency is maintained. As a result, the incrementality of arc-consistency al-
gorithms is exploited but in a different manner that the one proposed in [1].
Unfortunately, a bound-SAC version of this approach does not seem to be feasi-
ble. Indeed, the main goal is to build branches (corresponding to greedy runs) as
long as possible in order to benefit from incrementality, and potentially to find
solutions during inference. When we are exclusively maintaining Bound-SAC via
this approach the resultant propagation branches tend to be short, and there-
fore uneconomical. However, using a greedy approach to check Existential-SAC
seems to be quite appropriate. In particular, it is straight forward to adapt the
algorithm SAC3 [14] to guarantee ∃-SAC. This is what is done in [16].

For the competition, we have used ∃-SAC3 [16] at preprocessing for Abscon
109 ESAC.

3 Search Strategy

3.1 Search heuristics

The order in which variables are assigned by a backtracking search algorithm
such as MAC has been recognized as a key issue for a long time. Using different
variable ordering heuristics to solve a CSP can lead to drastically different results
in terms of efficiency. Traditional dynamic variable ordering heuristics benefit
from information about the current state of the search such as current domain
sizes and current variable degrees. For instance, dom/ddeg [2] involves selecting
first the variable with the smallest ratio current domain size to current dynamic
degree. One limitation of this approach is that no information about previous
states of the search is exploited.

In [4], inspired from [25–27], it is proposed to record such information by
associating a counter with any constraint of the problem. These counters are used
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as constraint weighting. Whenever a constraint is shown to be unsatisfied (during
the constraint propagation process), its weight is incremented by 1. Using these
counters, it is possible to define a new variable ordering heuristic, denoted wdeg,
that gives an evaluation called weighted degree of any variable. The weighted
degree of a variable V corresponds to the sum of the weights of the constraints
involving V and at least another uninstantiated variable. In order to benefit, at
the beginning of the search, from relevant information about current variable
degrees, all counters are initially set to 1. Finally, combining weighted degrees
and domain sizes yields dom/wdeg, an heuristic that selects first the variable
with the smallest ratio current domain size to current weighted degree. The
experimental results of [4, 13] show that MAC-wdeg and MAC-dom/wdeg, i.e.,
MAC combined with wdeg or dom/wdeg (called conflict-directed heuristics), is a
generic backtracking approach which is quite robust to solve constraint networks.

Value-ordering heuristics have received less attention than variable ordering
heuristics. Apart from lexico, mc [8] (see also [24, 9]) is certainly the most em-
ployed heuristic. It involves selecting the value which has the highest number of
compatible values in the domains of other variables.

For the competition, we have used the variable ordering heuristic dom/wdeg
and a static version [23] of the value ordering heuristic mc. Note that our solvers
use a binary branching scheme. At each node of the search tree, two alternatives
are successively tried: the first one corresponds to an assignment while the second
one corresponds to the refutation of the assignment. A mechanism of restarts
has been used (see below). Whatever the instance, the cutoff value is initially
set to 10 backtracks and is increased at each new run by 50%. From one run to
the next one, weighted degrees are not reinitialized.

3.2 Nogood Recording from Restarts

In [10], Gomez et al. have shown that runtime distributions of backtrack search
algorithms exhibit on some instances a large variability in performance and are
characterized by long tails with some infinite moments, called heavy-tailed phe-
nomena. They also show that it is possible to boost search by introducing ran-
domization and restarts. The principle is that if the search algorithm does not
terminate within some number of allowed backtracks (or any other related cri-
terion), referred as the cutoff value, the current run is stopped and a new run is
started. Introducing randomization allows that runs behave differently. It can be
used when breaking ties of variables to be selected, for example, and initialized
with a random seed associated with each run. It is important to note that the
cutoff value can be updated from one run to the next one. In particular, when it
is systematically increased, the completeness of the backtrack search algorithm
is preserved.

Using weighted degrees of variables is an alternative to randomization. In-
deed, it suffices to keep the weighted degrees from one run to the next one. When
restarting, one can expect to solve the instance with more facility when the hard
part of the instance, i.e. the back-door, do correspond to variables with highest
weighted degrees.
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In [18], nogood recording is investigated for CSP within the randomization
and restart framework. The goal is to avoid the same situations to occur (that is
to say to explore several times the same part of the search space) from one run
to the next ones. Nogoods are recorded when the current cutoff value is reached,
i.e. before restarting the search algorithm. Such a set of nogoods is extracted
from the last branch of the current search tree and exploited using the lazy
data-structure of watched literals originally proposed for SAT. We prove that
the worst-case time complexity of extracting such nogoods at the end of each run
is only O(n2d) where n is the number of variables of the constraint network and
d the size of the greatest domain, whereas for any node of the search tree, the
worst-case time complexity of exploiting these nogoods to enforce Generalized
Arc Consistency (GAC) is O(n|B|) where |B| denotes the number of recorded
nogoods. As the number of nogoods recorded before each new run is bounded
by the length of the last branch, the total number of recorded nogoods is poly-
nomial in the number of restarts. Interestingly, the minimization of the nogoods
is envisioned with respect to an inference operator φ, and it is possible to di-
rectly identify some nogoods that cannot be minimized. For φ = AC (i.e. for
MAC), the worst-case time complexity of extracting minimal nogoods is slightly
increased to O(en2d3) where e is the number of constraints of the network. Ex-
perimentations over a wide range of CSP instances demonstrate the effectiveness
of this approach. Recording nogoods (and in particular, minimal nogoods) from
restarts significantly improves the robustness of the solver.

For the competition, we have used nogood recording from restarts.

3.3 Transposition Tables

In [19], we provided the proof of concept of the exploitation, for constraint satis-
faction, of a well-known technique widely used in search: pruning from transpo-
sitions. This has not been addressed so far since, in CSP, contrary to search, two
branches of a search tree cannot lead to the same state (that is to say the same
domains for each variable of a given constraint network). This led us to define
some reduction operators that keep partial information from each node of the
search tree, sufficient to detect some nodes that do not need to be explored. We
actually addressed the theoretical and practical aspects of how to exploit these
operators in terms of equivalence between nodes.

Note that one can associate a constraint network with each node of a search
tree. The reduction operator we used for the competition (called ρred), extracts a
constraint sub-network from each node proved to be the root of an unsatisfiable
sub-tree. Theses sub-networks are recorded in a so-called transposition table.
The reduction operator removes some selected variables with either a singleton
domain involved in constraints binding at most one non-singleton domain vari-
able or with a domain that remains unchanged (after taking a set of decisions
and applying an inference operator). Interestingly enough, when a constraint
network P ′′ is extracted with the ρred operator from a binary CN P ′, variables
of P ′′ satisfy the following property : 1 < |domP ′

(X)| < |domP (X)| where P is
the initial constraint network.
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The transposition table is implemented as a hash table, and before expanding
a new node we just check if the current constraint network (associated with the
current node) is equivalent (or not) to another one previously recorded in the
transposition table. The hash-key is the concatenation of pairs (id,dom) where
id is a unique integer associated with each variable and dom the domain of the
variable itself represented as a bit vector. This approach allows us to dynam-
ically break some kinds of symmetries (e.g. neighborhood interchangeability)
and prune similar states of the search space. On some series, when no inference
is performed using this approach, the extraction procedure is stopped and the
memory (allocated to the transposition table) is released.

For the competition, we have used transposition tables for constraint satis-
faction.

4 What about Max-CSP?

In order to participate to the part of the competition dedicated to Max-CSP, we
have implemented in Abscon a variant of the PFC-MRDAC algorithm [12]. This
variant lies between PFC-MRDAC and PFC-MPRDAC [11].

For preprocessing, we have used a tabu search algorithm in order to obtain
an initial lower bound of good quality. For (complete) search, we have used
our PFC-MRDAC variant and exploited nogood recording from restarts. The
variable ordering heuristic was dom/wdeg while the value ordering heuristic
selects the value with the smallest number of inconsistencies computed during
filtering (as in [12, 11]).

Unlike AbsconMax 109 PFC, AbsconMax 109 EPFC integrates a mecha-
nism similar to existential SAC and adapted to PFC. Also, last-conflict based
reasoning [17] has been used.

5 Conclusion

In this paper, we have presented the strategies of the two solvers that we have
submitted to the second CSP solver competition. They are derived from Abscon,
a generic constraint programming platform which has been developed in Java
(J2SE 5.0). You will find:

– the executable at:
http://www.cril.univ-artois.fr/∼lecoutre/research/tools/abscon.html

– the results obtained at the 2006 competition at:
http://www.cril.univ-artois.fr/CPAI06
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Sugar: A CSP to SAT Translator Based on
Order Encoding
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Abstract. This paper gives some details on the implementation of sugar
constraint solver submitted to the Second International CSP Solver Com-
petition. The sugar solver solves a finite linear CSP by translating it into
a SAT problem using the order encoding method and then solving the
translated SAT problem with the MiniSat solver. In the order encoding
method, a comparison x ≤ a is encoded by a different Boolean variable
for each integer variable x and integer value a.

1 Introduction

This paper gives some details on the implementation of sugar constraint solver
submitted to the Second International CSP Solver Competition.

The sugar solver solves a finite linear CSP by translating it into a SAT
problem by using order encoding method [1] and then solving the translated
SAT problem by the MiniSat solver [2].

The method of the order encoding is basically the same with the one used
for Job-Shop Scheduling Problems by Crawford and Baker in [3] and studied
by Soh, Inoue, and Nabeshima in [4–6]. It encodes a comparison x ≤ a by a
different Boolean variable for each integer variable x and integer value a.

The benefit of this encoding is the natural representation of the order relation
on integers. Axiom clauses with two literals, such as {¬(x ≤ a), x ≤ a + 1} for
each integer a, represent the order relation of an integer variable x. Clauses,
for example {x ≤ a,¬(y ≤ a)} for each integer a, can be used to represent the
constraint among integer variables, i.e. x ≤ y.

2 Order encoding

The order encoding uses Boolean variables pxi meaning x ≤ i for each CSP
variable x and each integer constant i (`(x)−1 ≤ i ≤ u(x)) where `(x) and u(x)
are the lower and upper bounds of x respectively1.

1 px`(x)−1 and pxu(x) are redundant because they are always false and true respectively.
However, we use them for simplicity of the discussion.
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Fig. 1. Encoding x + y ≤ 7

Consider an example of encoding x + y ≤ 7 when x, y ∈ {2, 3, 4, 5, 6}. The
following 12 Boolean variables are used to encode the example.

px1 px2 px3 px4 px5 px6

py1 py2 py3 py4 py5 py6

The following clauses are used as axioms representing the bounds and the
order relation for each CSP variable x.

¬px `(x)−1

pxu(x)

¬px i−1 ∨ pxi (`(x) ≤ i ≤ u(x))

Therefore, the following 14 clauses are required for the example.

¬px1 px6

¬px1 ∨ px2 ¬px2 ∨ px3 ¬px3 ∨ px4 ¬px4 ∨ px5 ¬px5 ∨ px6

(similar clauses for y)

Constraints are encoded into clauses representing conflict regions instead of
conflict points. When all points (x1, . . . , xn) in the region i1 < x1 ≤ j1, . . . ,
in < xn ≤ jn violate the constraint, the following clause is added.

px1i1 ∨ ¬px1j1 ∨ · · · ∨ pxnin ∨ ¬pxnjn

Therefore, the following 5 clauses are used to encode x + y ≤ 7 (Fig.1).

px1 ∨ py5 px2 ∨ py4 px3 ∨ py3 px4 ∨ py2 px5 ∨ py1

When ai’s are non-zero integer constants, c is an integer constant, and xi’s are
mutually distinct integer variables, any finite linear comparison

∑n
i=1 ai xi ≤ c
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can be encoded into the following CNF formula [1].∧∑n

i=1
bi=c−n+1

∨
i

(ai xi ≤ bi)#

Parameters bi’s range over integers satisfying
∑n

i=1 bi = c−n+1 and `(aixi)−1 ≤
bi ≤ u(aixi) for all i where functions ` and u give the lower and upper bounds
of the given expression respectively. The translation ()# is defined as follows.

(a x ≤ b)# ≡


x ≤

⌊
b

a

⌋
(a > 0)

¬
(

x ≤
⌈

b

a

⌉
− 1

)
(a < 0)

3 System Description of Sugar

Sugar is a CSP to SAT solver based on the order encoding. It consists of the
front-end Perl program and the encoder program written in Java2. The MiniSat
1.4 [2] is used as the backend SAT solver in the submitted version.

CSP instances are encoded into SAT instances in the following ways.

Encoding m-ary linear comparisons: As described in the previous section,
comparisons of the form

∑m
i=1 aixi ≤ b can be encoded into O(dm−1) clauses in

general where d is the domain size.
However, it is possible to reduce the number of integer variables in each

comparison to at most three, by introducing new integer variables. Therefore,
each comparison

∑m
i=1 ai xi ≤ b can be encoded by at most O(m d2) clauses even

when m ≥ 4.

Encoding other expressions: Expressions other than
∑

aixi ≤ b are encoded
to SAT formulas by using the conversion described in the Fig.2 where E div c
and E mod c are integer quotient and remainder of E divided by an integer
constant c.

Note that non-linear expressions such as x × y can not be handled by the
sugar program submitted to the competition.

Keeping clausal form: When encoding a clause of CSP to SAT, the encoded
formula is no more a clausal form in general. As it is well known, introduction
of new Boolean variables is useful to solve this problem.

Consider an example of encoding a clause {x− y ≤ −1,−x + y ≤ −1} when
x, y ∈ {0, 1, 2}. Comparisons x − y ≤ −1 and −x + y ≤ −1 are converted into
S1 = (x ≤ −1 ∨ ¬(y ≤ 0)) ∧ (x ≤ 0 ∨ ¬(y ≤ 1)) ∧ (x ≤ 1 ∨ ¬(y ≤ 2)) and

2 The package is available at http://bach.istc.kobe-u.ac.jp/sugar/
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Expression Replacement Extra condition

E < F E + 1 ≤ F
E = F (E ≤ F ) ∧ (E ≥ F )
E 6= F (E < F ) ∨ (E > F )

max(E, F ) x (x ≥ E) ∧ (x ≥ F ) ∧ ((x ≤ E) ∨ (x ≤ F ))
min(E, F ) x (x ≤ E) ∧ (x ≤ F ) ∧ ((x ≥ E) ∨ (x ≥ F ))

abs(E) max(E,−E)
E div c q (E = c q + r) ∧ (0 ≤ r) ∧ (r < c)
E mod c r (E = c q + r) ∧ (0 ≤ r) ∧ (r < c)

Fig. 2. Encoding expressions other than
∑

aixi ≤ b

S2 = (¬(x ≤ 2)∨ y ≤ 1)∧ (¬(x ≤ 1)∨ y ≤ 0)∧ (¬(x ≤ 0)∨ y ≤ −1) respectively.
Expanding S1 ∨ S2 generates 9 clauses. However, by introducing new Boolean
variables p and q, we obtain the following seven clauses.

{p, q}
{¬p, x ≤ −1,¬(y ≤ 0)} {¬p, x ≤ 0,¬(y ≤ 1)} {¬p, x ≤ 1,¬(y ≤ 2)}
{¬q,¬(x ≤ 2), y ≤ 1} {¬q,¬(x ≤ 1), y ≤ 0} {¬q,¬(x ≤ 0), y ≤ −1}

Encoding extensional constraints: Extensional constraints with conflict tu-
ples and support tuples are encoded by a simple way in the submitted version
of sugar.

Conflict tuples {(a1, b1), . . . , (an, bn)} for variables (x, y) can be expressed
by the following formula.

¬(x = a1 ∧ y = b1) ∧ · · · ∧ ¬(x = an ∧ y = bn)

This formula is encoded into the following n clauses.

{x ≤ a1 − 1, ¬(x ≤ a1), y ≤ b1 − 1, ¬(y ≤ b1)}
· · ·

{x ≤ an − 1, ¬(x ≤ an), y ≤ bn − 1, ¬(y ≤ bn)}

Support tuples {(a1, b1), . . . , (an, bn)} for variables (x, y) can be expressed
by the following formula.

(x = a1 ∧ y = b1) ∨ · · · ∨ (x = an ∧ y = bn)

This formula is encoded into the following 4n + 1 clauses by introducing n new
Boolean vairables si.

{s1, s2, . . . , sn}
{¬s1, x ≤ a1} {¬s1,¬(x ≤ a1 − 1)} {¬s1, x ≤ b1} {¬s1,¬(x ≤ b1 − 1)}

· · ·
{¬sn, x ≤ an} {¬sn,¬(x ≤ an − 1)} {¬sn, x ≤ bn} {¬sn,¬(x ≤ bn − 1)}
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4 Conclusion

In this paper, we have described some details on the implementation of sugar
constraint solver submitted to the Second International CSP Solver Competition.
The sugar solver solves a finite linear CSP by translating it into a SAT problem
by using order encoding method and then solving the translated SAT problem
by the MiniSat solver. Although the system is still under development, we hope
it gives some research directions for CSP to SAT encoding systems.

Acknowledgments

We would like to give thanks to the competition organizers for their efforts and
Katsumi Inoue, Hidetomo Nabeshima, Takehide Soh, and Shuji Ohnishi for their
helpful suggestions.

References

1. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP
into SAT. In: Proceedings of the 12th International Conference on Principles and
Practice of Constraint Programming (CP 2006). (2006) 590–603
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Abstract. This paper presents a brief introduction to two solvers, buggy2−5

and buggys
2−5, which were submitted to the binary extensional and bi-

nary intensional categories of the Second International CSP Solver Com-
petition. Both solvers are a combination of preprocessing followed by
mac search. The preprocessing consists of domain squashing and enforc-
ing weak k-singleton arc consistency.

1 Main Description

This position paper briefly describes the two solvers, buggy2−5 and buggys
2−5,

which were submitted to the Second International csp Solver Competition for
the binary extensional and binary intensional categories.

The paper is deliberately kept to a minimum. The main reason is that there
is not much that can be said about the solvers. Another reason, which is related
to the first, is that the basic solver and its data types are currently undergoing a
major re-implementation. As a result, the basic solver, which underlies buggy2−5

and buggys
2−5, is only half finished. What is worse, it is not clear if buggy2−5 and

buggys
2−5 are bug-free.

The solvers are best described as follows. Both do some preprocessing, en-
force consistency and, if needed, they start a mac search [Sabin and Freuder,
1994]. The only difference between the solvers is the level of preprocessing. The
remainder of this paper describes the local consistency which is enforced by the
solvers, the preprocessing,1 and the solution strategy.

2 Consistency

This section briefly describes the local consistency which is enforced by the
solvers.

Enforcing local consistency means enforcing weak k-singleton arc consistency
(weak k-sac) [van Dongen, 2006] for increasing levels of k, 2 ≤ k ≤ 5 using greedy
search. Weak k-sac is equivalent to sac [Debruyne and Bessière, 1997; 2001,
Bessière and Debruyne, 2005, Lecoutre and Cardon, 2005, Prosser et al., 2000] if
k = 1 but stronger if k > 1. They start by enforcing arc consistency, followed by
1 Here preprocessing should not be confused with converting the competition’s XML

format to the solvers’ native format. this conversion was carried out at solution-
time.
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weak 2-sac, weak 3-sac, weak 4-sac and weak 5-sac. The difference between
the solvers is that buggys

2−5 may enforce higher levels of consistency. Both solvers
terminate in case of an inconsistency. In the process of establishing weak k-sac
it is possible that a solution is found, in which case the algorithms terminate.
The algorithms for enforcing weak k-sac [van Dongen, 2006] are closely related
to Lecoutre and Cardon’s algorithms for establishing sac [Lecoutre and Cardon,
2005].

3 Preprocessing

The preprocessing which is done by the solvers involves domain squashing [Gault
and Jeavons, 2004]. Here it is assumed, without loss of generality, that the
domains have unique values, allowing us to squash more values [Bulatov and
Jeavons, 2003]. This preprocessing more or less amounts to eliminating some
substitutable values. The domain squashing is performed after enforcing arc
consistency. Since the domains squashing may be quite a large overhead if the
domains are large, buggy2−5 only smashes the extremal values, that is to say the
smallest and largest values in the domains. The following paragraph spends a
few more words on extremal value squashing. The same strategy is adopted by
buggys

2−5, which then attempts to also smash the remaining values. It is allowed
a fantastic magic number of 490 seconds maximum domain squashing time. For
many instances much more is needed to ensure that no more squashing is possi-
ble. It turned out that its extra squashing enabled buggys

2−5 to solve two more
instances than buggy2−5 but at the price of much more solution time.

Squashing the extremal values is very effective, especially for the jobshop and
openshop instances, since many (almost) extremal values, v, satisfy the property
that if v is part of any solution then so is v + 1 or v − 1, in which case we can
eliminate v. For some of the instances, including modified Radio Link Frequency
Assignment Problem instances, squashing made the difference between solving
the problem or not.

4 Solution Strategy

This section briefly describes the solution strategy of the solvers, each of which
have a different objective. The main goal of buggy2−5 is to find a solution. For
buggys

2−5 this is different. Its main objective is to make the problem inverse
consistent [Freuder and Elfe, 1996], i.e. remove the values which do not partic-
ipate in any solution. In the process of making the problem inverse consistent,
buggys

2−5 outputs the first solution if there is one.
Both solvers terminate as soon as they decide the problem is unsatiafiable.

They enforce arc consistency using ac-3 with residues [Lecoutre and Hemery,
2007]. The following two sections describe how the solvers work for satisfiable
problem instances.
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4.1 buggy2−5

In the case of buggy2−5 the algorithm starts by enforcing arc consistency. Next
it starts by enforcing weak 2-sac, weak 3-sac, weak 4-sac, and weak 5-sac,
stopping if it finds a solution or finds the problem unsatisfiable and starting a
mac search otherwise. During mac search variables are ordered using a combina-
tion of variable ordering heuristics. The main component of the variable ordering
is used which minimises the ratio of domain to weighted-degree[Boussemart et
al., 2004]. The branching scheme which is used is k-way branching [Mitchell,
2003].

4.2 buggys
2−5

The strategy of buggys
2−5 is different. It enforces arc consistency followed by

weak 2-sac, weak 3-sac, and so on. In the process of doing this, it marks all
values which participate to a solution and terminates if there are no more values
left which do not participate to a solution.

5 Future Work

The solver’s data types are still in a development state. They still are not ideal,
let alone optimal. It is expected that much can be improved. As soon as the
implementation is finalised, it is the author’s intention to write a paper describing
the data types and how they affect the implementation of the algorithms which
are built on top of them. Work related to the domain squashing is underway.

Acknowledgment

Bessière et al. also define the notion of k-singleton arc consistency and the equiv-
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by weighting constraints. In Ramon López de Mántaras and Lorenza Saitta,
editors, Proceedings of the Sixteenth Eureopean Conference on Artificial Intel-
ligence, pages 146–150, 2004.

A. Bulatov and P.G. Jeavons. An algebraic approach to multi-sorted constraints.
In F. Rossi, editor, Proceedings of the Ninth International Conference on
Principles and Practice of Constraint Programming, CP’2003, pages 183–198,
2003.

R. Debruyne and C. Bessière. Some practicable filtering techniques for the
constraint satisfaction problem. In M.E. Pollack, editor, Proccedings of the
Fifteenth International Joint Conference on Artificial Intelligence, pages 412–
417, 1997.

R. Debruyne and C. Bessière. Domain filtering consistencies. Journal of Artificial
Intelligence Research, 14:205–230, 2001.

E.C. Freuder and C.D. Elfe. Neighborhood inverse consistency preprocessing.
In W.J. Clancey and D. Weld, editors, Proceedings of the Thirteenth National
Conference on Artificial Intelligence (AAAI-96), pages 202–208, 1996.

R. Gault and P.G. Jeavons. Implementing a test for tractability. Journal of
Constraints, 9:139–160, 2004.

C. Lecoutre and S. Cardon. A greedy approach to establish singleton arc con-
sistency. In Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence, 2005.

C. Lecoutre and F. Hemery. A study of residual supports in arc consistency.
In Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence, pages 125–130, 2007.

David G. Mitchell. Resolution and constraint satisfaction. In Proceedings of
the Ninth International Conference on Principles and Practice of Constraint
Programming, CP’2003, pages 555–569, 2003.

P. Prosser, K. Stergiou, and T. Walsh. Singleton consistencies. In R. Dechter,
editor, Proceedings of the Sixth International Conference on Principles and
Practice of Constraint Programming, CP’2000, pages 353–368, 2000.

D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint
satisfaction. In A.G. Cohn, editor, Proceedings of the Eleventh European Con-
ference on Artificial Intelligence, pages 125–129. John Wiley and Sons, 1994.

M.R.C. van Dongen. Beyond singleton arc consistency. In Proceedings of the
Seventeenth European Conference on Artificial Intelligence, 2006.



CSP4J: a Black-box CSP Solving API for Java
http://cspfj.sourceforge.net/

Julien Vion

CRIL-CNRS FRE 2499,
Université d’Artois

Lens, France
vion@cril.univ-artois.fr

Abstract. We propose an API, namely CSP4J for Constraint Satisfaction Prob-
lem for Java, that aims to solve a CSP problem part of any Java application.
CSP4J is distributed online using the LGPL license [16]. We intend our API to
be a “black box”, i.e. to be able to solve any problem without tuning parame-
ters or programming complex constraints. We intend CSP4J to move towards the
Graal of AI: the ability to solve any problem in a reasonable time with a minimal
expertise from the user.

1 Introduction

Many problems arising in the computing industry involve constraint satisfaction as an
essential component. Such problems occur in numerous domains such as scheduling,
planning, molecular biology and circuit design. Problems involving constraints are usu-
ally NP-Complete and need, if able, powerful Artificial Intelligence techniques to be
solved in reasonable time. Problems involving constraints are usually represented by
so-called constraint networks. A constraint network is simply composed of a set of
variables and of a set of constraints. Finding a solution to a constraint network involves
assigning a value to each variable such that all constraints are satisfied. The Constraint
Satisfaction Problem (CSP) is the task to determine whether or not a given constraint
network, also called CSP instance, is satisfiable. The Maximal Constraint Satisfaction
Problem (Max-CSP) is the task to find a solution that satisfies as much constraints as
possible, and eventually proving that a given solution is optimal, i.e. no other solution
exists that can satisfy more constraints than the given one.

CSP4J has been in development since 2005 and is quickly acquiring maturity. We
intend our API to be a “black box” solving CSP and Max-CSP. Given this assumption,
CSP4J does not focus on problem-specific global constraints, although the Object de-
sign of CSP4J permits to develop such constraints. For example, CSP4J is shipped with
the well known “all-different” global constraint including a simple specific propagator.

CSP4J proposes powerful engines based on the latest refinements of current re-
search in AI.

– MGAC, a complete solver based on the well known MGAC-dom/wdeg algorithm
[13]. It can solve any CSP in a complete way: if given enough time, a feasible
solution, if it exists, will be found. If no solution exists, this engine is able to prove
it.
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– MCRW, an incomplete local search solver based on the Min-Conflicts Hill-Climbing
with Random Walks algorithm [11]. This engine can be used to solve optimization
problems that can be formalized as a Max-CSP problem in an “anytime” way: the
algorithm can be stopped after a given amount of time, and the best solution found
so far will be given.

– Tabu, an incomplete local search solver performing a Tabu search [3]. Tabu have
similar characteristics as MCRW.

– WMC, an incomplete local search solver based on the Breakout Method [12], that
show similar characteristics as MCRW and Tabu, although not really suited for
Max-CSP problems.

– Combo, a complete solver based on the hybridization of MGAC-dom/wdeg with
WMC [21].

In order to prove the interest of our library, we developed a few test applications, all
distributed online using the GPL license [15]. One of these test applications is dedicated
to participate to the International CSP Solver Competitions, and tries to solve problems
delivered under the XCSP 2.0 format [18]. This solver participated to the two first In-
ternational CSP Solver Competitions. This “competitor” version of CSP4J is shipped
with a particular constraint called “Predicate Constraint”, that compiles intentional con-
straints as defined by the XCSP 2.0 format.

Other example applications include :

– a random problem generator and solver, which is very useful to benchmark algo-
rithms and computers,

– a Minimal Unsatisfiable Core (MUC) extractor, able to extract a minimally unsat-
isfiable set of variable and constraints from a larger incoherent CSP,

– an Open-Shop solver, able to find feasible and optimal solutions to Open-Shop
problems

– last but not least, a Sudoku solver

2 Solving a CSP in a black-box

In order to be able to solve any kind of problem, CSP4J focuses on two main topics:
genericity and flexibility. Flexibility was obtained by the choice of an object-oriented
language for its development: Java 5. The object-oriented conception of CSP4J permits
to model problems using a fully object-oriented scheme.

A few classes and interfaces are in the heart of CSP4J, as described by the UML
diagram on Figure 1: The Problem, V ariable and Constraint classes define a CSP
instance. The Solver interface is implemented by all engines provided with CSP4J.

The V ariable class: It can be used directly through its constructor. domain simply
contains the domain of the variable (i.e. the set of value the variable can take its value
in) under the form of an array of integers.
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«interface»ProblemGenerator+generate()+getVariables()+getConstraints()Problem+load(generator:ProblemGenerator):Problem

Variable+Variable(domain:int[],name:String)+getName():String Constraint+Constraint(scope:Variable[])+check():bool#getValue(variablePosition:int):int+revise(variablePosition:int,level:int)

«interface»Solver+runSolver():bool+getSolution()AbstractSolver+AbstractSolver(problem:Problem)

1..n
1..n1..n

Fig. 1. UML sketch of CSP4J

p u b l i c f i n a l c l a s s DTPCons t r a in t ex tends C o n s t r a i n t {

f i n a l p r i v a t e i n t d u r a t i o n 0 ;
f i n a l p r i v a t e i n t d u r a t i o n 1 ;

p u b l i c DTPCons t r a in t ( f i n a l V a r i a b l e [ ] scope ,
f i n a l i n t d u r a t i o n 0 , f i n a l i n t d u r a t i o n 1 ) {

super ( s cope ) ;
t h i s . d u r a t i o n 0 = d u r a t i o n 0 ;
t h i s . d u r a t i o n 1 = d u r a t i o n 1 ;

}

@Override
p u b l i c boolean check ( ) {

f i n a l i n t v a l u e 0 = g e t V a l u e ( 0 ) ;
f i n a l i n t v a l u e 1 = g e t V a l u e ( 1 ) ;

re turn ( v a l u e 0 + d u r a t i o n 0 < v a l u e 1
| | v a l u e 1 + d u r a t i o n 1 < v a l u e 0 ) ;

}

}
Listing 1.1. The Disjunctive Temporal Constraint
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f i n a l P r e d i c a t e p r e d i c a t e = new P r e d i c a t e ( ) ;
p r e d i c a t e . s e t E x p r e s s i o n ( ” ( X0 + X1 < X2 ) | | ( X2 + X3 < X0 ) ” ) ;
p r e d i c a t e . s e t P a r a m e t e r s ( ” i n t X0 i n t X1 i n t X2 i n t X3” ) ;

f i n a l P r e d i c a t e C o n s t r a i n t d t p C o n s t r a i n t =
new P r e d i c a t e C o n s t r a i n t ( scope , p r e d i c a t e ) ;

d t p C o n s t r a i n t . s e t P a r a m e t e r s ( scope [ 0 ] . getName ( ) + ” ” + d u r a t i o n 0
+ ” ” + scope [ 1 ] . getName ( ) + ” ” + d u r a t i o n 1 ) ;

t r y {
d t p C o n s t r a i n t . c o m p i l e P a r a m e t e r s ( ) ;

} catch ( F a i l e d G e n e r a t i o n E x c e p t i o n e ) {
System . e r r . p r i n t l n ( ” F a i l e d t o compi l e c o n s t r a i n t ” ) ;
System . e x i t ( 1 ) ;

}
Listing 1.2. Defining a DT Constraint with predicates

The Constraint class . It consists of an abstract class that must be extended to define
the constraints that define the problem. In particular, the abstract method check() must
be overridden. check() must return whether the current tuple is allowed by the con-
straint. The current tuple is accessible through the getV alue(int variablePosition)
method, variablePosition corresponding to the position of the variable in the con-
straint, as defined by the scope in the constructor. Listing 1.1 gives an example on how
to easily define a constraint. Alternatively, one could use the PredicateConstraint to
define such a constraint as shown on Listing 1.2. Notice, however, that source code from
PredicateConstraint is released amongst the Competitor test application for CSP4J
under the GPL, and not directly with the CSP4J API.

If desired, one may also override the revise(int variablePosition, int level) me-
thod in order to develop constraint-specific propagators. If not, a revision using the
AC3rm algorithm (see section 3.1) is done.

The Problem class: It defines a CSP. The ProblemGenerator interface permits to
define classes that will be intended to generate problems to solve. To define a problem
to be solved with CSP4J, one has to implement the ProblemGenerator interface. An in-
stance of the problem is then loaded by calling the static method
Problem.load(ProblemGenerator). The ProblemGenerator interface only defines
three methods.

– generate(): this method is called upon loading of the Problem, it can be used to
create constraints and variables

– Collection 〈V ariable〉 getV ariables(): this method must return the set of vari-
ables that defines the problem

– Collection 〈Constraint〉 getConstraints(): this method must return the set of
constraints that defines the problem

The Solver interface and the AbstractSolver helper class: These permit to define
additional engines for CSP4J. The MGAC and MCRW engines that come with CSP4J
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Algorithm 1: revise-rm(X: Variable): Boolean
domainSize← |dom(X)|1
foreach C | X ∈ vars(C) do2

foreach v ∈ dom(X) do3
if supp[C, X, v] is valid then continue4
tuple← seekSupport(C, Xv)5
if tuple = > then remove v from dom(X)6
else7

foreach Y ∈ vars(C) do8
supp[C, Y, tuple[Y ]]← tuple9

/* for wdeg: */
if dom(X) = ∅ then wght[C]++10

return domainSize 6= |dom(X)|11

Algorithm 2: GAC3rm (P = (X ,C ): CN)
Q← X1
while Q 6= ∅ do2

pick X from Q3
foreach Y ∈ X | ∃C ∈ C |X ∈ C ∧ Y ∈ C ∧X 6= Y do4

if revise-rm(Y ) then5
if dom(Y ) = ∅ then return false6
Q← Q ∪ Y7

are classes that extends AbstractSolver. The runSolver() method launches the res-
olution and returns true if the problem is satisfiable and false if it is not. The method
getSolution() returns the last found solution (the best solution found so far for Max-
CSP). To use CSP4J as an incomplete Max-CSP solver, one has to launch runSolver()
from a thread to control its execution.

To illustrate how CSP4J can be used in a Java application, Listing 1.3 defines the
well-known Pigeons problem, using a clique of different constraints defined as pred-
icates. Once the problem has been defined and loaded, the solving process can be
launched in a few lines of code, as shown on Listing 1.4.

3 Under the hood

3.1 The MGAC engine

Generalized Arc Consistency guarantees the existence of a support of each value in each
constraint. Establishing Generalized Arc Consistency on a given network P involves
removing all generalized arc inconsistent values.

Many algorithms establishing Arc Consistency have been proposed in the literature.
We believe that GAC3rm [8] is a very efficient and robust one. GAC3rm is a refinement



80 Julien Vion

p u b l i c c l a s s P i g e o n s implements P r o b l e m G e n e r a t o r {
f i n a l p r i v a t e i n t s i z e ;
f i n a l p r i v a t e L i s t <V a r i a b l e > v a r i a b l e s ;
f i n a l p r i v a t e C o l l e c t i o n <C o n s t r a i n t > c o n s t r a i n t s ;
f i n a l p r i v a t e P r e d i c a t e p r e d i c a t e ;

p u b l i c P i g e o n s ( i n t s i z e ) {
t h i s . s i z e = s i z e ;
v a r i a b l e s = new A r r a y L i s t <V a r i a b l e >( s i z e ) ;
c o n s t r a i n t s = new A r r a y L i s t <C o n s t r a i n t > ( ) ;
p r e d i c a t e = new P r e d i c a t e ( ) ;
p r e d i c a t e . s e t E x p r e s s i o n ( ”X0 != X1” ) ;
p r e d i c a t e . s e t P a r a m e t e r s ( ” i n t X0 i n t X1” ) ;

}

p u b l i c vo id g e n e r a t e ( ) throws F a i l e d G e n e r a t i o n E x c e p t i o n {
f i n a l i n t [ ] domain = new i n t [ s i z e − 1 ] ;
f o r ( i n t i = s i z e − 1 ; −−i >= 0 ; ) { domain [ i ] = i ; }
f o r ( i n t i = s i z e ; −−i >= 0 ; ) {

v a r i a b l e s . add ( new V a r i a b l e ( domain , ”V” + i ) ) ;
}
f o r ( i n t i = s i z e ; −−i >= 0 ; ) {

f o r ( i n t j = s i z e ; −−j >= i + 1 ; ) {
c o n s t r a i n t s . add ( d i f f ( v a r i a b l e s . g e t ( i ) , v a r i a b l e s

. g e t ( j ) ) ) ;
}

}
}

p r i v a t e C o n s t r a i n t d i f f ( f i n a l V a r i a b l e var1 ,
f i n a l V a r i a b l e va r2 ) throws F a i l e d G e n e r a t i o n E x c e p t i o n {
P r e d i c a t e C o n s t r a i n t c o n s t r a i n t = new P r e d i c a t e C o n s t r a i n t (

new V a r i a b l e [ ] { var1 , va r2 } , p r e d i c a t e ) ;
c o n s t r a i n t . s e t P a r a m e t e r s ( va r1 . getName ( ) + ” ”

+ va r2 . getName ( ) ) ;
c o n s t r a i n t . c o m p i l e P a r a m e t e r s ( ) ;
re turn c o n s t r a i n t ;

}

p u b l i c C o l l e c t i o n <V a r i a b l e > g e t V a r i a b l e s ( ) {
re turn v a r i a b l e s ;

}

p u b l i c C o l l e c t i o n <C o n s t r a i n t > g e t C o n s t r a i n t s ( ) {
re turn c o n s t r a i n t s ;

}
}

Listing 1.3. The Pigeons problem
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p u b l i c s t a t i c vo id main ( ) throws
F a i l e d G e n e r a t i o n E x c e p t i o n , IOExcep t i on {
f i n a l Problem problem = Problem . l o a d ( 1 0 ) ;
f i n a l S o l v e r s o l v e r = new MGAC( problem ) ;
f i n a l boolean r e s u l t = s o l v e r . r u n S o l v e r ( ) ;
System . o u t . p r i n t l n ( r e s u l t ) ;
i f ( r e s u l t ) {

System . o u t . p r i n t l n ( s o l v e r . g e t S o l u t i o n ( ) ) ;
}

}
Listing 1.4. Solving the Pigeons-10 problem

Algorithm 3: MGAC(P = (X ,C ) : CN, maxBT : Integer): Boolean
if maxBT < 0 then throw Expiration1
if X = ∅ then return true2
select (X, v) |X ∈ X ∧ a ∈ dom(X)3
P ′ ← GACrm(P |X=a)4
if P ′ 6= ⊥ ∧MGAC(P ′\X, maxBT ) then return true5
P ′ ← GACrm(P |X 6=a)6
return P ′ 6= ⊥ ∧MGAC(P ′, maxBT − 1)7

of GAC3 [9]. They both admit a worst-case time complexity of O(er3dr+1). GAC2001
[1] admits a worst-case time complexity of O(er2dr) and has been proved to be an
optimal algorithm for establishing Generalized Arc Consistency.

The GAC3rm algorithm is described in Algorithm 2. Every variable of the CN is put
in a queue in order to be revised one by one using Algorithm 1. If an effective revision is
done (i.e. at least one value is removed from the variable), all neighbors of the variable
are put in the queue. The algorithm continues until a fix-point is reached, i.e. no more
value can be removed in the CN. A neighbor variable is one that shares at least one
constraint with the current variable.

Residual supports (supp[C,X, v]) are used during the revision in order to speed up
the search. Contrary to GAC2001, if the residue is no longer valid, the search for a
valid tuple is restarted from scratch, which allow us to keep the residues from one call
to another, even after a backtrack. Although GAC3rm by itself is not optimal, [8] shows
that maintaining GAC3rm during search (see below) is more efficient than maintaining
GAC2001.

The MGAC algorithm [13] aims at solving a CSP instance and performs a depth-
first search with backtracking while maintaining (generalized) arc consistency. More
precisely, at each step of the search, a variable assignment is performed followed by a
filtering process called constraint propagation which corresponds to enforcing general-
ized arc-consistency.

Recent implementations of MGAC use a binary (2-way) branching scheme [6]: at
each node of the search tree, a variable X is selected, a value a ∈ dom(X) is selected,
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Algorithm 4: initP(P = (X ,C ) : CN): Integer
foreach X ∈ X do1

select v ∈ dom(X) | countConflicts(P |X=v) is minimal2
P ← P |X=v3

return countConflicts(P )4

and two edges are considered: the first one corresponds to X = a and the second one
to X 6= a.

Algorithm 3 corresponds to a recursive version of the MGAC algorithm (using bi-
nary branching). A CSP instance is solved by calling the MGAC function: it returns
true iff the instance is satisfiable. P |X=a denotes the constraint network obtained from
P by restricting the domain of X to the singleton {a} whereas P |X 6=a denotes the con-
straint network obtained from P by removing the value a from the domain of X . P\X
denotes the constraint network obtained from P by removing the variable X .

The heuristic that allows the selection of the pair (X, a) has been recognized has a
crucial issue for a long time. Using different variable ordering heuristics to solve a CSP
instance can lead to drastically different results in terms of efficiency.

In [2], it is proposed to associate a counter, denoted wght[C], with any constraint C
of the problem. These counters are used as constraint weighting. Whenever a constraint
is shown to be unsatisfied (during the constraint propagation process), its weight is
incremented by 1 (see line 11 of Algorithm 1).

The weighted degree of a variable X is then defined as the sum of the weights of
the constraints involving X and at least another uninstantiated variable. The adaptive
heuristic dom/wdeg [2] involves selecting first the variable with the smallest ratio cur-
rent domain size to current weighted degree. As search progresses, the weight of hard
constraints becomes more and more important and this particularly helps the heuristic
to select variables appearing in the hard part of the network. This heuristic has been
shown to be quite efficient [19].

3.2 Local Search algorithms

Although there also has been some interest in using Local Search techniques to solve
the CSP problem [11, 3, 4, 17], these algorithms have not been studied a fraction as
much as MGAC. Contrary to systematic backtracking algorithms like MGAC, local
search techniques are incomplete by nature: if a solution exists, it is not guaranteed to
be found, and the absence of solution can usually not be proved. However, on very large
instances, local search techniques have been proved to be the best practical alternative.
We also found that local learch algorithms are far more efficient than MGAC on quite
small, dense instances.

A local search algorithm works on complete assignments: each variable is assigned
with some value, then the assignment is iteratively repaired until a solution is found.
A repair generally involves changing the value assigned to a variable so that as few
constraints as possible are violated [11]. The initial variable assignments may be ran-
domly generated. However, in order to make the first repairs more significant, we use
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Algorithm 5: initγ(P = (X ,C ) : CN)
foreach X ∈ X do1

foreach v ∈ dom(X) do2
γ(X, v)← 03
foreach C ∈ C |X ∈ vars(C) do4

if ¬check(C|X=v) then γ(X, v)← γ(X, v) + wght[C]5

Algorithm 6: updateγ(X : Variable, vold: Value)
foreach C ∈ C |X ∈ vars(C) do1

foreach Y ∈ vars(C) |X 6= Y do2
foreach vy ∈ dom(Y ) do3

if check(C|Y =vy ) 6= check(C|Y =vy∧X=vold) then4
if check(C|Y =vy ) then5

γ(Y, vy)← γ(Y, vy)− wght[C]6
else7

γ(Y, vy)← γ(Y, vy) + wght[C]8

Algorithm 4 to build the initial variable assignment. The algorithm tries to minimize
the number of conflicting constraints after initialization. countConflicts(P ) returns
the number of falsified constraints involving only assigned variables.

Designing efficient local search algorithms for CSP requires the use of clever data
structures and powerful incremental algorithms in order to keep track of the efficiency
of each repair. [3] proposes to use a data structure γ(X, v) which at any time contains
the number of conflicts a repair would lead to. Algorithms 5 and 6 describes the man-
agement of γ (check(C) controls whether C is satisfied by the current assignments of
vars(C)). Since each assignation has an impact only on the constraints involving the
selected variable, we can count conflicts incrementally at each iteration with a worst-
time complexity of O(Γmaxrd).

There are many cases where no value change can improve the current assignment
in terms of constraint satisfaction. In this case, we have reached a local minimum. The
main challenge over local search techniques is to find the best way to avoid or escape
local minima and carry on the search. A maxIterations parameter is given to each
local search algorithm. It mostly allows to define a restart strategy: if no solution is
found after a fixed number of iterations, the search is restarted with a new initial as-
signment. The best value of maxIterations is highly dependant on the nature of the
problem. This comes against our view of a “black box” CSP solver, and future progress
on CSP4J will be aimed to eliminate that kind of parameter. However, default values
are given to each algorithms and we found them to be quite robust.

The MCRW Engine With a probability p, the repair is chosen randomly instead of
being selected into the set of repairs that improves the current assignment. The first al-
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Algorithm 7: MCRW(P = (X ,C ) : CN, maxIterations: Integer): Boolean
nbConflicts← initP (P ) ; initγ(P ) ; nbIterations← 01
while nbConflicts > 0 do2

select X randomly |X is in conflict3
if random[0, 1] < p then4

select v ∈ dom(X) randomly5
else6

select v ∈ dom(X) | γ(X, v) is minimal7

vold ← current value for X8
if v 6= vold then9

P ← P |X=v10
nbConflicts← γ(X, v)11
updateγ(X, vold)12
if nbIterations++> maxIterations then throw Expiration13

return true14

Algorithm 8: Tabu(P = (X ,C ) : CN, maxIterations: Integer): Boolean
nbConflicts← initP (P ) ; initγ(P ) ; nbIterations← 01
init TABU randomly2
while nbConflicts > 0 do3

select (X, v) 6∈ TABU∨ meets the aspiration criteria | γ(X, v) is minimal4
vold ← current value for X5
insert (X, vold) in TABU and delete oldest element from TABU6
P ← P |X=v7
nbConflicts← γ(X, v)8
updateγ(X, vold)9
if nbIterations++> maxIterations then throw Expiration10

return true11

gorithm implementing this technique was described in [11] and we call it Min-Conflicts
Random Walk (MCRW). Algorithm 7 performs a MCRW local search. At each itera-
tion, a variable in conflict is selected (line 3). A variable X is in conflict if any constraint
involving X is in conflict. Then, with a probability p, a random value (line 5) or, with
a probability 1 − p, the best value (line 7) is selected. p is one additional parameter we
aim to eliminate in further versions of CSP4J. Again, the default value (p = 0.04) is
quite robust for most problems.

The Tabu engine: Previous repairs are recorded so that we can avoid repairs that lead
back to an already visited assignment. A limited number of repairs is remembered, and
older ones are forgotten, allowing us to always have a fairly high number of repairs
available at each iteration. The size of the Tabu List is arbitrary fixed before search.
Note that the aspiration criterion allows to select a repair in the Tabu list if it permits
to achieve a new best assignment. There have been previous works that mention the



CSP4J: a Black-box CSP solving API 85

Algorithm 9: WMC(P = (X ,C ) : CN, maxIterations: Integer): Boolean
nbConflicts← initP (P ) ; initγ(P ) ; nbIterations← 01
while nbConflicts > 0 do2

select (X, v) | γ(X, v) is minimal3
vold ← current value for X4
if γ(X, v) ≥ γ(X, vold) then5

foreach C ∈ C | C is in conflict do6
wght[C]++ ; nbConflicts++7
foreach Y ∈ vars(C) do8

foreach w ∈ dom(Y ) do9
if ¬check(C|Y =w) then γ(Y, w)++10

else11
P ← P |X=v12
nbConflicts← γ(X, v)13
updateγ(X, vold)14

if nbIterations++> maxIterations then throw Expiration15

return true16

Fig. 2. Escaping from a local minimum

efficiency of Tabu search for Constraint Optimization problems (Max-CSP) [3, 4]. Al-
gorithm 8 performs a Tabu search. The size of the Tabu list is one additional parameter
we aim to eliminate in further versions of CSP4J. Again, the default value (30) is quite
robust for most problems.

The WMC Engine Another efficient way to escape from local minima, called the
Breakout method, has also been proposed [12]. We use this method to design a local
search algorithm aimed to find solutions to satisfiable CSPs.

The resulting algorithm, Weighted Min-Conflicts (WMC) is described in Algorithm
9. Line 5 detects local minima. When a local minimum is encountered, all conflicting
constraints are weighted (line 12). Note that a main advantage of WMC over Tabu
search or MCRW is that it involves no parameter outside of maxIterations.

Incrementing the weight of constraints permits to effectively and durably escape
from local minima, as illustrated by Figure 2. Incrementing the constraints “fills” the
local minimum until another parts of the search space are reached. Constraints that are



86 Julien Vion

Algorithm 10: Hybrid(P = (X ,C ): CN, maxIter: Integer, α: Float): Boolean
maxTries← 1 ; maxBT ← maxIter × 8n

ed
1

repeat2
startT ime← now()3
repeat bmaxTriesc times4

try5
return WMC(P , maxIter)6

catch Expiration7

WMCDuration← now()− startT ime8
startT ime← now()9
try10

return MGAC(P , maxBT )11
catch Expiration12
MGACDuration← now()− startT ime13
maxTries← α×maxTries14
maxBT ← α×maxBT ×WMCDuration/MGACDuration15

heavily weighted are expected to be the “hardest” constraints to satisfy. By weighting
them, there importance is enhanced and the algorithm will try to satisfy them in priority.

The Combo engine It is well known that the main drawback of systematic backtrack-
ing strategies such as MGAC is that an early bad choice may lead to explore a huge
sub-tree that could be avoided if the heuristic had lead to focus on a rather small, very
hard or even inconsistent sub-problem. In this case, the solver is said to be subject to
“thrashing”: it rediscovers the same inconsistencies multiple times. On the other hand,
it is important to note that some instances are not inherently very difficult. These often
show a “heavy tailed” behavior when they are solved multiple times with some random-
ization [5]. The dom/wdeg heuristic was designed to avoid thrashing by focusing the
search on one hard sub-problem [2, 17]. This technique is reported to work quite well
on structured problems.

On the other hand, the main drawback of local search algorithms is quite straight-
forward: their inability to prove the unsatisfiability of problems and the absence of
guarantee, even on satisfiable problems, that a solution will be found. The development
of hybrid algorithms, hopefully earning the best from each world, has been devised as
a great challenge in both satisfiability and constraint satisfaction problems [14].

Constraint weighting used by dom/wdeg heuristic and WMC work in a similar
way. Both help to identify hard sub-problems. [10] reports that statistics earned dur-
ing a failed run of local search can be successfully as an oracle to guide a systematic
algorithm in the search of a solution or to extract an incoherent core. We propose to
use directly the weights of the constraints obtained at the end of a WMC run to initi-
ate dom/wdeg weights. We devise a simple hybrid algorithm, described by Algorithm
10 based on this assumption. This algorithm is more toroughly described in [21] (in
French) and [20].
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4 Conclusion and perspectives

We presented CSP4J, an API for Java 5, intended to solve CSPs as part on any Java
application, in a “black-box” scheme. We introduced clues on CSP4J usage and given
some examples of use, the we presented the five engines shipped with CSP4J and their
respective interest.

We will continue to develop CSP4J, by optimizing the algorithms as well as refining
them according to the latest refinements of fundamental research is Constraint Program-
ming, and especially SAT and CSP solving. Next developments of CSP4J will focus on
preprocessing, especially using promising algorithms such as Dual Consistency [7]. We
will also try to eliminate any user-supplied parameter from our algorithms and will fo-
cus towards merging the advantages of all engines so that no expertise at all should be
needed from the user, in the spirit of CLP(FD) used in Prolog interpreters.
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A Report on the B-Prolog CSP Solver

Neng-Fa Zhou

CUNY Brooklyn College & Graduate Center

Abstract. This paper provides details of the B-Prolog CSP solver sub-
mitted to Second International CSP Solvers Competition. It also at-
tempts to shed some light on why the solver performed well in two of
the categories and why it didn’t do so well in other categories.

1 Introduction

This paper provides details of the B-Prolog solver submitted to Second Inter-
national CSP Solvers Competition, and attempts to give a quick analysis of the
results. The constraint propagators used in the solver are implemented in AR
(action rules) [3, 5], a language available in B-Prolog, and the search part is im-
plemented using labeling mix, a built-in in B-Prolog, that allows for the use of
mixed strategies and time limits in labeling variables.

The results of the B-Prolog solver are mixed: On the one hand, it was unex-
pectedly ranked top in two of the categories (global and n-ary intensional), and
on the other hand, it was placed only 13th in the binary intensional category.
The propagators from last year’s solver [4] were used for extensionally defined
constraints. Since the procedures on tables were implemented in Prolog, the poor
performance on extensionally defined constraints was expected.

B-Prolog’s finite-domain solver has the reputation for good performance. As
described in [3], the high performance is partially attributed to the efficient
event-handling architecture. This high performance is normally revealed on not
only n-ary constraints but also binary constraints. The implementation of the
all distinct constraint is based on a weak version of the hall-set finding al-
gorithm [5], which is weaker in terms of pruning power than Régin’s filtering
algorithm [1]. Channeling constraints, which are facilitated by the dom any event
in AR, are used to remedy the weakness of the algorithm. It is unclear if Régin’s
algorithm is used in any other participating solvers. If so, it would be worthwhile
to investigate why the B-Prolog solver outperformed them.

2 Action Rules and Events

The AR (Action Rules) language is designed to facilitate the specification of
event-driven functionality needed by applications such as constraint propagators
and graphical user interfaces where interactions of multiple entities are essential
[3]. An action rule takes the following form:

Agent, Condition, {Event} => Action
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where Agent is an atomic formula that represents a pattern for agents, Condition
is a conjunction of conditions on the agents, Event is a non-empty disjunction
of patterns for events that can activate the agents, and Action is a sequence of
arbitrary subgoals. An action rule degenerates into a commitment rule if Event
together with the enclosing braces are missing. In general, a predicate can be
defined with multiple action rules. For the sake of simplicity, we assume in this
paper that each predicate is defined with only one action rule possibly followed
by a sequence of commitment rules.

Definition 1. A subgoal is called an agent if it can be suspended and activated
by events. For an agent α, a rule “H, C, {E} => B” is applicable to the agent if
there exists a matching substitution θ such that Hθ = α and the condition Cθ
is satisfied.

When an agent is created, the system checks if the action rule in its predicate
is applicable to it.1 If so, the agent will be suspended until it is activated by one
of the events specified in the rule.

Whenever the agent is activated by an event, the condition of the action
rule is tested again. If it is met, the action is executed. The agent does not
vanish after the action is executed, but instead sleeps until it is activated again.
There is no primitive for killing agents explicitly. An agent vanishes only when
a commitment rule is applied to it. The reader is referred to [3] for a detailed
description of the language and its operational semantics.

The following event patterns are supported for programming constraint prop-
agators:

– generated: After an agent is generated but before it is suspended for the
first time. The sole purpose of this pattern is to make it possible to specify
preprocessing and constraint propagation actions in one rule.

– ins(X): when the variable X is instantiated.
– bound(X): when a bound of the domain of X is updated. There is no dis-

tinction between lower and upper bounds changes.
– dom(X,E): when an inner value E is excluded from the domain of X. Since

E is used to reference the excluded value, it must be the first occurrence of
the variable in the rule.

– dom(X): same as dom(X,E) but the excluded value is ignored.
– dom any(X,E): when an arbitrary value E is excluded from the domain of

X. Unlike in dom(X,E), the excluded value E here can be a bound of the
domain of X.

– dom any(X): equivalent to the disjunction of dom(X) and bound(X).

Note that when a variable is instantiated, no bound or dom event is posted.
Consider the following example:

1 Notice that since one-directional matching rather than full-unification is used to
search for an applicable rule and only tests are allowed in the condition, the agent
will remain the same after an applicable rule is found.
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p(X),{dom(X,E)} => write(dom(E)).
q(X),{dom any(X,E)} => write(dom any(E)).
r(X),{bound(X)} => write(bound).
go:-X :: 1..4, p(X), q(X), r(X), X #\= 2, X #\= 4, X #\= 1.

The query go gives the following outputs: dom(2), dom any(2), dom any(4) and
bound.2 The outputs dom(2) and dom any(2) are caused by X #\= 2, and the
outputs dom any(4) and bound are caused by X #\= 4. After the constraint
X #\= 1 is posted, X is instantiated to 3, which posts an ins(X) event but not
a bound or dom event.

A rule is allowed to specify multiple event patterns, but the dom(X,E) and
dom any(X,E) patterns are allowed to co-exist with ins patterns only. For each
co-existing ins(X) pattern, there must be a condition var(X) in the guard so
that the action is never executed when the rule is triggered by an ins event.

Note also that the dom any(X,E) event pattern should be used only on small-
sized domains. If used on large domains, constraint propagators could be flooded
with a huge number of dom any events. For instance, for the propagators defined
in the previous example, the query

X :: 1..1002, q(X), X #>1000

posts 1000 dom any events, while it would post only one bound event if q(X) were
p(X) or r(X). For this reason, in the real implementation propagators for han-
dling dom any(X,E) events are generated only after constraints are preprocessed
and the domains of variables in them become small.

For each event type, each domain variable has a slot for the list of watching
propagators. Therefore, the dom event imposes little space overhead: one slot
for dom(X, E) and another slot for dom any(X, E) for each domain variable X.
There is almost no time overhead because an event is posted only when the
watching list is not empty.

3 Propagators for Extensional Constraints

3.1 Conflict constraints

A conflict relation is represented as a hashtable. Let R = [T1, . . . , Tn] be a
conflict relation where T1, . . . , Tn are the tuples, and let Ri be the projection
of R onto the columns except for column i. For each column i and for each
tuple T in Ri, there is an element in the hashtable with the key k(i, T ) and the
value [A1, . . . , Ak] which is a list of no-good values for column i if T is a partial
solution.

The propagator for a conflict constraint is implemented as follows:

2 In the current implementation of AR, when more than one agent is activated the one
that was generated first is executed first. This explains why dom(2) occurs before
dom any(2) and also why dom any(4) occurs before bound.
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conflict_constraint(Rel,Constr),
no_vars_gt(1,1),{ins(Constr)}
=>
true.

conflict_constraint(Rel,Constr)
=>
project_constr_on_one_arg(Constr,T,I,Xi),
conflict_constraint_action(Rel,k(I,T),Xi).

where Rel is the conflict relation represented as a hashtable and Constr is the
list of variables of a constraint. The propagator is suspended if there are more
than one free variables in the constraint. The second rule is executed if the
constraint contains at most one variable. The call project constr on one arg
(Constr,T,I,Xi) extracts the free variable Xi, its column number I, and the list
of ground arguments T from Constr, and the call conflict constraint action
(Rel,k(I,T),Xi) retrieves the no-good values for Xi from Rel and excludes
them from the domain of Xi.

3.2 Support constraints

Given a support relation, we extract the following information from it: (1) static
bounds information: the minimum and maximum elements in each column; (2)
dynamic bounds information: for each value x in each column i, the minimum
and maximum support elements in each column j (j 6= i); and (3) projected
binary relations: the projected binary relations of the original relation onto each
two columns. Each projected binary relation is represented as a hashtable, so
that for each value in a column we can retrieve its support values in the other
column in the binary relation.

For binary support constraints, each value in the domain of a variable can
have multiple supporting values in the domain of the other variable. We set
up a counter for each value in each domain for counting the support values in
the other domain. Whenever the counter of a value becomes zero, the value is
excluded from its domain. So the job of maintaining arc consistency reduces to
maintaining the counters.

Let BinaryRelation be a hashtable representation of the binary relation on
two variables X and Y. For each value in the domain of X, it takes constant time
to retrieve its supporting values and their associated counters. The propagator
for maintaining Y’s counters is implemented easily as follows:

ac4(BinaryRelation,X,Y),var(X),var(Y),
{dom_any(X,E)}
=>
decrement_counters(BinaryRelation,E,Y).

ac4(BinaryRelation,X,Y) => true.

Whenever a value E is excluded from the domain of X, the counters of the values
in the domain of Y supported by E are decremented. If the counter of a value
becomes zero, the value is excluded from the domain of Y.
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4 Propagators for Intensional Constraints

The B-Prolog solver performs forward checking on disequality (6=) constraints,
maintains interval consistency for inequality (>,≥,<, and ≤) constraints, arc
consistency for binary equality constraints, and a hybrid of interval and arc
consistency for n-ary constraints [3].

The dom(X,E) event facilitates implementing propagators for maintaining
arc consistency for binary equality constraints. For an equality binary constraint,
there is only one supporting value for each value in a domain. Therefore, when-
ever a value is excluded from a domain, we only need to exclude its counterpart
from the other domain to maintain arc consistency. Consider, for example, the
constraint X+Y #= C where X and Y are domain variables and C is an integer.
The propagator defined in the following propagates exclusions of values from
the domain of Y to X to achieve arc consistency:

’X in C-Y_ac’(X,Y,C),var(X),var(Y),
{dom(Y,Ey)}
=>
Ex is C-Ey,
exclude(X,Ex).

’X in C-Y_ac’(X,Y,C) => true.

For the original constraint X+Y #= C, we need to generate two propagators,
namely, ’X in C-Y ac’(X,Y,C) and ’X in C-Y ac’(Y,X,C), to maintain the
arc consistency. Note that in addition to these two propagators, we also need to
generate propagators for maintaining interval consistency since no dom(Y,Ey)
event is posted if the excluded value happens to be a bound. Note also that we
need to preprocess the constraint to make it arc consistent before the propagators
are generated.

5 The all distinct Constraint

Many algorithms have been proposed for maintaining different levels of consis-
tency for the all distinct constraint [2]. The filtering algorithm by Régin [1]
achieves hyper-arc consistency. However, because of the almost cubic order of
complexity, B-Prolog adopts a Hall-set finding algorithm.

Definition 2. For the constraint all distinct([X1,. . .,Xn]) where Xi has the
domain Di (1 ≤ i ≤ n), a set H is a Hall set if the number of subsets of H
among D1, . . ., Dn is greater than or equal to the size of H. Formally, H is a
Hall set if |{Di | Di ⊆ H}| ≥ |H|.

Since there are an exponential number of potential Hall sets, we have to rely
on some heuristics to choose what sets to test. The implementation presented
in [3] checks if the domain of each variable is a Hall set when a constraint is
installed and when the domain is updated. Understandably, since no union of
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domains is considered, this heuristic has its limitations. Consider, for example,
the constraint all distinct([X1,X2,X3,X4]) where the variables have the fol-
lowing domains:

X1 X2 X3 X4

{1, 2} {1, 3} {2, 3} {1, 2, 3, 4}

The heuristic fails to find the Hall set {1, 2, 3} and thus fails to bind X4 to 4.
B-Prolog uses channeling constraints to increase the pruning power. By adding

the constraints primal dual(Xs,Y s) and all distinct(Y s), the dual variables
have the following domains:

Y1 Y2 Y3 Y4

{1, 2, 4} {1, 3, 4} {2, 3, 4} {4}

After Y4 is instantiated to 4, 4 is excluded from the domains of Y1, Y2, and Y3,
and X4 is instantiated to 4 because of the existence of the channeling constraint.
As demonstrated by this example, using dual models can to some extent remedy
the limitation of the Hall-set finding algorithm.

With the dom event, we can use only 2 × n propagators to implement the
channeling constraint ∀i,j(Xi 6= j ⇔ Yj 6= i). Let DualVarVector be a vector
created from the list of dual variables. For each primal variable Xi (with the
index I), a propagator defined below is created to handle exclusions of values
from the domain of Xi.

primal_dual(Xi,I,DualVarVector),var(Xi),
{dom_any(Xi,J)}
=>
arg(J,DualVarVector,Yj),
exclude(Yj,I).

primal_dual(Xi,I,DualVarVector) => true.

Each time a value J is excluded from the domain of Xi, assume Yj is the Jth
variable in DualVarVector, then I must be excluded from the domain of Yj. We
need to exchange primal and dual variables and create a propagator for each
dual variable as well. Therefore, in total 2× n propagators are needed.

Note that a preprocessing phase is needed to ensure that the channeling
constraints are consistent before any propagator is generated. The preprocessing
phase takes O(n2) time.

6 Future Improvements

There is plenty of room for improvement of the solver, whether in the two cat-
egories it won or in other categories where it performed poorly. The B-Prolog
solver was disappointedly ranked only 13th among 16 participating solvers in
the binary intensional category. The following table shows the instances that
the B-Prolog solver failed to solve within the time limit:
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Problem class # failed instances
fapp 245

taillard 148
haystack 48

rlfap 30
queensKnight 18

knights 15
pigeons 12
os-qp 10

A closer look reveals the reason: almost all of the failed instances contain non-
linear (e.g., X ∗ Y = C, abs(X − Y ) = C, and X mod Y = C) and disjunctive
constraints which were not efficiently implemented in the submitted version of
the solver.

It was found later that the answers found for the FISCHER series by the
B-Prolog solver were wrong. Because of the existence of min/2 and max/2, some
variables that belong to the same SCC (Strongly-Connected-Component) are
wrongly put into different SCCs. Since search never backtracks over two different
SCCs, the final solution will be reported to be UNSAT if one of the SCCs is found
to be UNSAT. This problem is unrelated to the B-Prolog system itself.

Future improvements include: (1) refining the propagators for non-linear and
disjunctive constraints; (2) introducing certain constraint reasoning ability to
the solver; (3) and tuning the labeling strategies.
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