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Abstract. Arc-consistency algorithms are the workhorse of back-2001. MAC-2001's arc-consistency component has an optimal
trackers that Maintain Arc-Consistency (MAC). This paper will pro- ©(ed?) worst case time-complexity. The second and third algorithms
vide experimental evidence that, despite common belief to the conare MAC-3 and MAC-3 [Mackworth, 1977; van Dongen, 2003a;
trary, it is not always necessary for a good arc-consistency algorithr2007. The fourth is a new algorithm called MAC;3lt lies in be-
to have an optimal worst case time-complexity. To sacrifice this optitween MAC-3 and MAC-3. MAC-3, MAC-3,; and MAC-3, have
mality allows MAC solvers that (1) do not need additional data struc-a better®(e + nd) space-complexity than MAC-2001 but their
tures during search, (2) have an excellent average time-complexitgrc-consistency components have a non-optig@ld>) worst case
and (3) have a space-complexity which improves significantly on thatime-complexity. The fifth and last algorithm is MAC-20Q11t is
of MAC solvers that have optimal arc-consistency components. Reto MAC-2001 what MAC-3 is to MAC-3. Finally, we shall intro-
sults will be presented from an experimental comparison betweeduce some notation for compactly describing ordering heuristics.
MAC-2001, MAC-3; and related algorithms. MAC-2001 has an  For random and real-world problems and for as far as avoiding the
arc-consistency component with an optimal worst case time-comre-discovery of checks is concerned MAC-2QCdnd MAC-2001
plexity, whereas MAC-3 does not. MAC-2001 requires additional were by far the better algorithms. For any fixed arc-heuristic and for
data structures during search, whereas MACd8es not. MAC-3 random problems where checks were cheap MAC-3, MACx3d
has a space-complexity @(e + nd), wheren is the number of MAC-3, wereall better in clock on the wall time than MAC-2001
variables,d the maximum domain size, ardthe number of con- and MAC-2001}, with MAC-3, the best of all. MAC-200, re-
straints. We shall demonstrate that MAC-2001’s space-complexityjuired about 21% more time on average than MAG-&hereas
is O(edmin(n, d)). MAC-2001 required about 35% more solution MAC-2001 required about 35% more time. For time and solving
time on average than MACz3or easy and hard random problems, real-world problems things were not as clear.
MAC-3,4 was faster for 40% of the real-world problems but slower The results presented in this paper are important because of the
for the remaining real-world problems. Our results are an indicatiorfollowing. Since the introduction of Mohr and Henderson's AC-4
that if checks are cheap then lightweight algorithms like MAZ-3 [Mohr and Henderson, 1986nost work in arc-consistency research
are promising. has been focusing on the design of better algorithms that do not re-
discover (do not repeat checks). This focused research is justified by
the observation that, as checks become more and more expensive,
there will always be a point beyond which algorithms that repeat will
Arc-consistency algorithms significantly reduce the size of the searchecome slower than those that do not and will remain so from then
space of Constraint Satisfaction Problems (CSPs) at low costs. Theyn. However, there are many cases where checks are cheap and it is
are the workhorse of backtrackers that Maintain Arc-Consistencynly possible to avoid re-discoveries at the price of a large additional
during search (MAQSabin and Freuder, 194 bookkeeping. To forsake the bookkeeping at the expense of having to

Currently, there seems to be a shared belief in the constraint sate-discover may improve search if checks are craahif problems
isfaction community that, to be efficient, arc-consistency algorithmsbecome large.
need aroptimal worst case time-complexit}Bessereet al,, 1995; The remainder of this paper is organised as follows. Section 2 is an
Bessére and Rgin, 2001; Zhang and Yap, 200MAC algorithms  introduction to constraint satisfaction. Section 3 presents some nota-
like MAC-2001 that have an optimal worst case time-complex-tion for describing selection heuristics. Section 4 describes related
ity require a space-complexity of at least(ed) for creating data  work. Section 5 provides a detailed description of the algorithms un-
structures for remembering their support-checks. We shall prove thater consideration and contains a proof that MAC-2001's space-com-
MAC-2001's space-complexity i®(ed min(n, d)) because it has plexity is ©(ed min(n, d)). Section 6 presents experimental results.
to maintainthese additional data structures. As usuak the num-  Conclusions are presented in Section 7.
ber of variables in the CSH is the maximum domain size of the
variables ana is the number of constraints. . . .

We shall provide evidence to support the claim that good arc-2 Constraint Satisfaction
c_onsistency glgorithms do not a_Iways need an optimal worst casg binary constraintC
time-complexity. We shall experimentally compare five MAC al-
gorithms. The first algorithm is MAC-200[Bessere and Rgin,

1 Introduction

=y Detween variables andy is a subset of the
cartesian product of the domaif¥z) of z and D(y) of y. A value
v € D(z) is supportedby w € D(y) if (v,w) € Cyy. Similarly,
1 This work has received support from Science Foundation Ireland undet? € D(y) is supported by € D () if (v,w) € Cay.
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where X is a set of variablesD(-) is a function mapping each
x € X to its non-empty domain, and' is a set of constraints be-

tween variables in subsets &f. We shall only consider CSPs whose

constraints are binary. CSPX, D, C') is calledarc-consistentf its
domains are non-empty and for ea€h, € C it is true that every
v € D(x) is supported by and that everyw € D(y) is supported

by x. A support-checkconsistency-check) is a test to find out if two

values support each other.

Thetightnessof the constraint”;, betweenr andy is defined as
1~ [ Cay|/| D(2) %
Thedensityof a CSP is defined &&/(n> — n), forn > 1.

The(directed) constraint grapbf CSP( X, D, C') is the directed

graph whose nodes are given By and whose arcs are given by

Uc,,ec {(z,y),(y,x)}. The degreeof a variable in a CSP is

D(y) |, where- x - denotes cartesian product.

tie breaker is given bp? e @2 ¢ @&, and®”°™ e @7 °™ is the
lexicographical arc-heuristic. As usuas,- denotes function compo-
sition.

4 Related Literature

In 1977, Mackworth presented an arc-consistency algorithm called
AC-3 [Mackworth, 1977. AC-3 has a®(ed®) bound for its worst
case time-complexityMackworth and Freuder, 1985AC-3 has a
O(e+nd) space-complexity. AC-3 cannot remember all its support-
checks. AC-3 usearc-heuristicso repeatedly select and remove an
arc,(z,y ), from a data structure calledqaeue(a set, really) and to

the number of neighbours of that variable in the (directed) constraingse the constraint betweerandy to revisethe domain ofc. Here,

graph of that CSP.

to revise the domain aof using the constraint betweerandy means

MAC is a backtracker that maintains arc-consistency duringo remove the values from () that are not supported by AC-3's

search. MACt¢ uses arc-consistency algorithm AGe maintain arc-
consistency.

arc-heuristics determine the constraint that will be used for the next
support-check. Besides these arc-heuristics there aredalsain-

The following notation is not standard but will turn out useful. Let heyristics These heuristics, if given the constraint that will be used
do(v) be the original degree aof, let d.(v) be the current degree of fqr the next support-check, determine the values that will be used for

v, letk(v) =
associated withy. We will assume thagt(v) <
v is lexicographically less than or equal#o

| D(v) |, and let#(v) be auniquenumber which is
#(w) if and only if

3 Operators for Composing Selection Heuristics

the next support-check. The interested reader is referrékliack-
worth, 1977; Mackworth and Freuder, 1986r further information
about AC-3.

Wallace and Freuder pointed out that arc-heuristics can influence
the efficiency of arc-consistency algorithif\&allace and Freuder,
1997. Similar observations were made by Gemtal. [Gentet al,,

In this section we shall introduce notation to describe and “compose1997. Despite these findings only few authors describe the heuris-
variable and arc selection heuristics. The reader not interested in thies that were used for their experiments. We believe that to facilitate
nitty gritty details of such heuristics may wish to skip this section ease of replication all information to repeat experiments should be

and return to it later. Motivation, a more detailed presentation, andlescribed in full. This includes information about arc-heuristics.

more examples may be found[ivan Dongen, 2003b, Chaptek. 3

It is recalled that a relation on sgtis called aquasi-orderon T’
if it is reflexive and transitive. A relations, onT is calledlinear if
v<wVw<vforallv, w € T. Linear quasi-orders may allow for
“ties,” i.e. they may allow for situations whete< wAw < v Av #
w. A quasi-order< is called gpartial orderif v < wAw v —
v = w for all v, w € T. An order (also called dinear ordel) is a
partial order that is also a linear quasi-order. An ordgreferso to
w ifand only if v < w.

Thecompositiorof order=<5 and linear quasi-ordex; is denoted
<9 e =7. Itis the unique order off" which is defined as follows:

v X2 @1 w

— WrwA-w=31v)V

(v=1rwAw =1 vAY R w).

In words, <. e < is the selection heuristic that us€s and “breaks
ties” using=». Composition associates to the left, i o <5 o <3
is equal to(<3 @ <2) e <.

Let < be a linear quasi-order df and letf :: Y — T be a
function. Then®?, is the unique linear quasi-order af which is
defined as follows:

vl w = f(v) = forallv,weY.

flw),

Finally, letm; ((vi,...,vn)) =v; for1 <i < n.

Bessere and Rgin presented AC-2001, which is based on AC-3
[Bessere and Rgin, 200] (see alsdZhang and Yap, 20Q1ifor a
similar algorithm). AC-2001 revises one domain at a time. The main
difference between AC-3 and AC-2001 is that AC-2001 uses a lex-
icographical domain-heuristic and that for each variahléor each
v € D(z) and each constraint betweerand another variablg it
remembers the last support fore D(x) with y so as to avoid re-
peating checks that were used before to find support far D(x)
with y. AC-2001 has an optimal upper bound®fed?) for its worst
case time-complexity and its space-complexityiéd). AC-2001
behaves well on average. It was observed that AC-3 is a good alterna-
tive for stand alone arc-consistency if checks are cheap and CSPs are
under-constrained but that AC-3 is very slow for over-constrained
CSPs and CSPs in the phase transiti@essere et al, 1999;
Bessere and Rgin, 2001

We made similar observations in experimental comparisons be-
tween AC-7, AC-2001 and AC+3 which is a cross-breed be-
tween Mackworth’'s AC-3 and Gaschnig’s DEMackworth, 1977,
Gaschnig, 1978; van Dongen, 2Q02Ve did not consider search.
The only difference between AC-3 and AG-B3 that AC-3; some-
times takes two arcs out of the queue aidultaneouslyeviseswo
domains with AlgorithmD from [van Dongen, 2041 A double-sup-
port heuristic is a heuristic that prefers checks between two values
each of whose support statuses are unknown. For two-variable CSPs
the double-support heuristic is optimal and requires about half the

We are now in a position where we need no more notation. Foghecks that are required by a lexicographical heuristic if the domain
eXample the minimum domain size heuristic with a |eX|COgraphlcals|zes of the variables are about equa| and Suff|c|ent|y |b@e Don-

tie breaker is given b®< ) ®<, the ordering on the maximum orlg-

inal degree with a lexicographical tie breaker is glvengﬁf . ®> ,
the Brelaz heuristio(cf. [Gentet al,, 199d) with a lexicographical

gen, 2003k AC-3,; and MAC-3; have a low?(e+nd) space-com-
plexity. Our results indicated that ACz3vas promising for stand
alone arc-consistency.



5 Description of Algorithms

function AC-2001(X ) : Boolean;

begin

In this section we shall describe MAC;3MAC-3,, MAC-2001,
and MAC-2001, in more detail. The presentation is to provide a

good understanding of the basic machinery of the algorithms and

to highlight the differences between them. We shall also prove that
MAC-2001 has @) (ed min(n, d)) space-complexity.

Qiz{(w,y) e x?:
while Q # 0 do begin
select and remove any afe, y ) from Q;
if not revise-2001(x, y, change,,) then
return false;
else if change_, then
Q:=QuU{(z =)
end;
return true;

x andy are neighbours;

1 z # y, zis aneighbour of };

end;

5.1 MAC-3; and MAC-3,

AC-3, is a cross-breed between AC-3 and DE\Eackworth, 1977;
Gaschnig, 19718 The only difference between AC-3 and AG-B
that if AC-3;’s arc-heuristic select the arce, y ) from the queue
and if the reverse ar€y, x ) is also in the queue then AC;3will

Figure 1. Arc-based version of AC-2001.

remove both arcs from the queue and and will simultaneously rérynction revise-2001(z, y, var change ) : Boolean;

visetwo domains with algorithnD described ifvan Dongen, 2001;
20034. D uses adouble-suppordomain-heuristic, i.e. a heuristic
which prefers double-support checks. A48 a “poor man’s” ver-
sion of AC-3;; It is not as efficient but easier to implement. It can
be obtained from AC-3 by replacing its call taD by two calls to
Mackworth’s revise to sequentiallyrevise two domains with one
constraint. The difference between AG-8nd AC-3; is AC-3;4's
double-support heuristic. AC53and AC-3, inherit their O (ed?)

begin

change = false;
foreach r € D(z) do
if last[z][r][y] ¢ D(y) then
if 3c € D(y) s.t.c > lasth] [r]ly]
and c supports- then
last[z][r][y] := the first such value;

else begin
D(x) = D(2) \ {r }:
change = true;

end;

return D(z) # 0;
end;

worst case time-complexity and(e + nd) space-complexity from
AC-3. MAC-3; (MAC-3,) is implemented by replacing AC-3 in
MAC-3 by AC-3; (AC-3,). The space-complexity of MAC-3and
MAC-3, is equal to® (e + nd).

Figure 2. revise-2001.

5.2 MAC-2001 and MAC-2001,

Pseudo-code for an arc-based version of AC-2001 andediige-
2001 algorithm upon which it depends is depicted in Figures 1 and 2.
The “foreach s € S do statement” construct assigns the members Therefore, MAC-2001's space-complexity i©(ed min(n,d)).

in S to s from small to big and carries outatement after each  Christian Besgre (private communication) implemented MAC-
assignment. For the purpose of the presentation of AC-2001 it 2001 using Method 2.

assumed that the values in the domains are ordered from small to big. The consequences of MAC-2001's space requirements can be
For each variable, for each value € D(z), and for each neighbour ~Prohibitive. For example, without loss of generality we may assume

y of z itis assumed thaust[z][v][y] is initialised to some value that  the usual lexicographical value ordering. ket= d > 1 and con-
is smaller than the values iR(y). sider the binary CSP where all variables should be pairwise differ-

AC-2001 finds support for € D(zx) with y by checking against ~ent. Finally, assume that Method 2 is used for MAC-2001 (Method 1
the values inD(y) from small to large. It uses a countest[z][v][y] will lead to a similar order of space-complexity). Note that the “first”
to record the last check that was carried out. This allows it to savé&olution can be found with a backtrack free search. Also note that in
checks the next time support forc D(z) has to be found witty if the first solutiori is assigned to théth variable. We shall see that
last[z][v][y] € D(y). Furthermore, checks are saved by not looking MAC-2001 will require a lot of space to solve the given CSP.
for support with values that are less than or equahto[z][v][y] € Just before the assignment ©fo thei-th variable we have the
D(y). following. For each variable, for each variabley # x, and for each

MAC-2001 requires additional data structures during search. I € D(z) = {4,...,n } we havelast[z][v][y] = min({i,...,n }\
maintains the countetast[z][v][y] to remember the last support {v}). To make the CSP arc-consistent after the assignmentoof
for v € D(z) with D(y). The space-complexity dastis O (ed) the i-th current variable, (only) the valuehas to be removed from
[Bessere and Rgin, 200]. It seems to have gone unnoticed so far the domains of the future variables. Unfortunately, for each of the
that MAC-2001 has @(6d min(n’ d)) Space_comp|exity_ The rea- remainingn — ¢ future variablese, for each of the remaining —1
son for this space-complexity is that MAC-2001 hasiaintainthe ~ valuesv € D(xz) \ {1}, and for each of the remaining — i — 1

data structurdast. This only seems to be possible using one of thefuture variableg) # z, i was the last known support fer€ D(z)
following two methods (or a combination): with y. This means thdfn - 2)2 X (’I’L—i— 1) counters must be saved

and incremented during the AC-2001 call following the assignment

1. Save all relevant counters once before AC-2001. Upon backtracksf ; to thei-th variable. In total, MAC-2001 has to saye’  (n —

ing these counters have to be restored. This requir@greed) i)x(n—i—1)ie.(n—2) x(n—-1)xnx (3n—1)/12

space-complexity becaugg(ed) data structures may have to be counters. Fom = d = 500, MAC-2001 will require space for

savedn times. at least 15,521, 020, 750 counters and this may not be available on
2. Save each counter before the assignmentatd[z][v][y] in  every machine. Sometimes MAC algorithms that do not re-discover

revise-2001 and count the number of changeshat were carried  dorequire a lot of space, even for deciding relatively small CSPs that

out. Upon backtracking, restore theounters in the reverse order. allow a backtrack free search.

This comes at the price of a space-complexityxid®) because
each of the2ed counters may have to be saveqd) times.



AC-2001, is to AC-2001 what AC-3 is to AC-3. If its arc-
heuristic select§ z,y ) from the queue and ify, x ) is also in the

6.0e+10 T T T T

gueue then it will remove both and use (at most) two calls:tdse- 500010 |- + |
2001 to revise the domains ofandy. '
i - 4.0e+10 + B
6 Experimental Results 3 4T
<
In this section we shall compare MAC-2001, MAC-2001 E 3.0e+10 - + 1
MAC-3,, MAC-3, and MAC-3 for random and real-world prob- g

lems. For the random problems we implemented support-checks a§ 2.0e+10
cheap lookup operations in arrays. For the real world problems we

implemented support-checks as (more) expensive function calls. 1.0e+10 | A

1 1 00 00 1 1 1 1
61 Implementatlon Detalls e+0.Oe+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10 2.5e+1C
All implementations used the same basic data structures as used by Checks MAC-2001p

MAC-3,. The implementations of MAC-2001 and MAC-2001
were arc-based. This allowed us to evaluate the algorithms for differ-
ent arc-heuristics. Previously, we used Christian Bee& variable Figure 3. Scatter plot of checks for MAC 8and comp vs. checks for

based implementation of MAC-200zan Dongen, 2003b How- MAC-2001, and comp for search and problem size 30.
ever, Besg@re’s implementation came with only one arc-heuristicand ) ] )
it was about 17% slower than our own implementation. having 125 MB of RAM, having a 256 KB cach size, and running at

All solvers were real-full-look-ahead solvers and to ensure thaf clock speed of about 930 MHz. Between pairs of machines there
they visited the same nodes in the search tree they were equipp¥tere Small (less than 1%) variations in clock speed. Each machine
with the same dom/deg variable ordering heuristic. Using the nota?as given a unique identifier in the range from 1 through S0. For each
tion introduced in Section 3 this heuristic is given®§o®f ,where machine random problems were generated for each combination of

f(v) = k(v)/8,(v). We considered three different arc-heuristics, density and tightness. The _CSP generatpr on a particu_lar m_achir_ue
called lez, rlez, and comp. Using the notation introduced in Sec- Was started with the seed given by 1000 times the machine’s identi-

tion 3 these can be defined as: fier. All problems fitted into memory and no swapping occurred. The
total time for our comparison is equivalent to more than 100 days of
lex = ®ﬁ°”2 . ®ﬁ°”1 , computation on a single machine.
rlex = ®%°™ e®%°™  and
= - 9.0e+03 T T T T T
comp = ®ﬁ°”2 ° ®5>C°’T2 ° ®Z°”2 ° ®ﬁ°"1 ° ®‘s>“°"1 . ®Z°’T1 . +
= = = = = = 8.0e+03 1
At the moment of writingcomp is the best known arc-heuristic for 7.0e+03 - + A
MAC-3,. Further in this section we shall see that it is also an ex- n
cellent heuristic for the remaining algorithms. Profiling revealed that _  60¢*% 1 +4+ 1

arc-selection for MAC-3 with comp usually takes between 10%
and 20% of the solution time, whereas selection vdthhardly takes
any time. Howevercomp has a far better effect on constraint prop-
agation than botliez and rlex and investing in it is well spent. We 3.0e+03
intend to cut down on the time for arc-selection widhmp by sup-
porting it with a special data type for the queue. It is not quite clear
why this heuristic has such a good effect on constraint propagation.  1.0e+03
This is something we intend to investigate further.

5.0e+03 B

4.0e+03

Time MAC-3d

2.0e+03

I I I I I

0.0e+00
0.0e+00  2.0e+03 4.0e+03 6.0e+03 8.0e+03 1.0e+04  1.2e+04

Time MAC-2001p
6.2 Random Problems

Random problems were generated 16r< n = d < 30. We will

refer to the class of problems for a given combination ef d as the Figure 4. Scatter plot of time for MAC-3 and comp vs. time for

problem class witisizen. The problems were generated as follows. MAC-2001, andcomp for search and problem size 30.

For each problem size and each combinatioh T") of average den-

sity C and uniform tightnesg'in { (¢/20,;/20) : 1 <4,5 <19} For random problems, the best lightweight algorithm turned out

we generated 50 random CSPs. Next we computed the average nuto- be MAC-3; with a comp heuristic. The best algorithm from
ber of checks and the average time that was required for decidthe MAC-2001 family was MAC-2001 with a comp heuristic.
ing the satisfiability of each problem using MAC search. All prob- Figure 3 depicts a scatter plot of the checks required by MAC-3

lems were run to completion. Frost al’s model B[Gentet al, with comp versus the number of checks required by MAC-2001
2001 random problem generator was used to generate the problemsith comp for problem size 30. Figure 4 depicts a scatter plot of
(http://www.lirmm.fr/"bessiere/generator.html ). the time required by MAC-3with comp versus the time required

The test was carried out in parallel on 50 identical machines. Allby MAC-2001, with comp for problem size 30. Both figures sug-
machines were Intel Pentium Il machines, running SuSe Linux 8.0gest that there is a linear relationship between the number of checks



required by MAC-3 and MAC-200} and between the solution when it comes to saving checks.

times of MAC-3; and MAC-2003%. Similar linear relationships For problem size 30 the average solution time of MAC-2p®as
were observed for other combinations of algorithms. about 36.289 seconds, that of MAC-2001 was about 40.294 sec-
onds, and that of MAC-3was about 29.910 seconds. On average
and over all problems MAC-200Qlrequired about 21% more time

10 b ' ' ' ' ' ' ' -] than MAC-3;, whereas MAC-2001 required about 35% more time.

09} MAC 3y (e o || For any heuristic and for saving time MAC-2001 and
g el MAC-2001, are never better on average than MAC-3, MAG-3
:“g_’ 08 1 MAC2001p tleg -2 | and MAC-3;. Our findings about MAC-3 are consistent with our
s 07f M“ﬁ’é%‘é(?i’%ﬁ O(rl%g e previous workvan Dongen, 2002; ZQoiibThe results about MAQ-
g 06 | BB MAC-2001p (comp) --a-- | | 2001 and MAC-3 ar_e in contrast with other results from the litera-
s T em e meBBBm gy ture[Bessere and Rgin, 200]. However, this should not be a reason
§ 05 §,\:§‘ o 1 for dismissing these findings; Our testing has been fair and thorough
g oa | A\\,_:& -8 §orguige g oo o9 e o aa ] and we cannot recall having seen such comprehensive comparison
2 o e Anéqié:i - RN before. MAC-3 withlex requires about 5 times more checks on aver-
BO3F e Tt age than MAC-2001 and MAC-20QWwith comp but solves more

02t e quickly on average. The lack of intelligence in its strategy for propa-

. . . . . . . . gation does not seem to hinder MAC-3 at all when checks are cheap.
14 16 18 20 22 24 26 28 30 Figures 5 and 6 seem to suggest that as a rule and given one of the
size algorithms MAC-2001 and MAC-20Q.the heuristiccomp was

better tharlez which, in its turn, was better thatriex both for checks
and time. Investigation of the test data revealed that this was true.
Figure 5. Ratio of average #checks vs. problem size for random For random problems and for clock on the wall time the best algo-
problems and search. For each siz_e the average #checks is divided by the rithm was MAC-3; with a comyp heuristic. MAC-3, with a comp
average #checks required by MAC-3 withy. arc-heuristic was a good second. MAG's3double-support heuristic
' ' ' ' ' ' ' ' allows it to improve on MAC-3. Overall, the best algorithm from

10 | B i v s st - b
JRD D S e o the MAC-2001 family required more than 21% more time on aver-
age than MAC-3.
0.8 1
L 6.3 Real-World Problems

0.6 | B--g

S The real-world problems came from the CELAR sUi@ELAR,

oo 1994. We did not consider optimisation but only considered satisfia-
bility. The same problems were considered d8i@ssere and Rgin,
2001. These problems have become a sort of a standard bench-
1 mark for real-world problems. However, see our comments further

04 - MAC-2001 (rlex) —o

MAC-2001p (rlex) --o--

MAC-2001p (lex) --=--
B
§=)

ratio of average solution time

MAC-2001 (lex)
02k MAC-2001 (comp)
MAC-2001p (comp) -—&--

MAé’_‘g\&gér'ﬁ;g i on about these problems. For every problem we computed the aver-

00 . . . . _MAC-3d (comp) o age solution time over 50 runs. Checks were implemented as func-

14 16 18 20 22 24 26 28 30 tion calls and were more expensive than for random problems. For
size all problems the domain size was equalito

The results for the tests are depicted in Table 1. Due to space-re-
strictions the results for MAC-2001 have been omitted. MAC-2001
Figure 6. Ratio of average solution time vs. problem size for random  performed about the same as MAC-2Q@dlit required more checks
problems and search. For each size the average time is divided by the  and time on average. For each problem the least average number of
average time required by MAC-2001 witlhez. checks and the least average solution time for that problem for all arc-
heuristics are printed in bold face. For each of the remaining heuris-
Figure 5 depicts the ratio between the average number of checkics the least average number of checks and least average solution
on the one hand and the average number required by MAC-3 with &ime are printed italicised. Again MAC-200Q1s the best algorithm
lez arc-heuristic on the other for problem sizes 15-30 and differentvhen it comes to saving checks. This time it pays off. MAC-2001
combinations of algorithms and arc-heuristics. Similarly, Figure 6also seems to be the best algorithm when it comes to solving quickly.
depicts the ratio between the average solution time and the averag®AC-3, records the least solution time for RLFAP 1, GRAPH 9
solution time of MAC-2001 with amrlez arc-heuristic. The order and GRAPH 14. These are the problems for whighmin(n, d)
from top to bottom in which the algorithms and heuristics are listedhas the first and third largest size. The larger the problems become,
in the legends of the figures corresponds to the height of their graphtfie better MAC-3 starts to perform relative to the performance of
for problem size 30. Itis difficult to see but what seem to be two linesMAC-2001 and MAC-2004. It is only for the smaller problems
at the bottom of Figure 5 are two pairs of lines. The pair at the bottonthat MAC-2001 and MAC-2001are the best. A possible critique
corresponds to MAC-2001 and MAC-20QWith a comp heuristic.  is that the density of these problems is rather low—it is always be-
The other pair corresponds to MAC-2001 and MAC-200ith low 2%. It should be interesting to compare the algorithms for larger
a lez heuristic. As the problem size increases the lines for MAC-real-world problems.
2001 and MAC-200] with anrlez heuristic also seem to converge.  For the real-world problems that we considered MAC-2p8atd
MAC-2001, and MAC-2001 with acomp heuristic are the best MAC-2001 are the best algorithms both in time and checks. The



sparsity of the constraint graph of these problems suits both MACarc-heuristic, was the most efficient combination when it comes to

2001 and MAC-200} very well. There does not seem to be much saving time. MAC-200] required about 21% more time on average

between them and MAG30r MAC-3, with a congp heuristic. than MAC-3; and MAC-2001 required about 34% more. For the
QN® I oo~ nY

o) « .
st Now a2 Ses do real-world problems things were not as clear. Here MAC-2001 and
o © 3 N ye 2 392 MAC-2001, were the best in solving quickly but MACz3with a
£ o CClmoa®ihoS S mmwn Pl a8 comp arc-heuristic was not much worse.
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