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Abstract. Arc-consistency algorithms are the workhorse of back-
trackers that Maintain Arc-Consistency (MAC). This paper will pro-
vide experimental evidence that, despite common belief to the con-
trary, it is not always necessary for a good arc-consistency algorithm
to have an optimal worst case time-complexity. To sacrifice this opti-
mality allows MAC solvers that (1) do not need additional data struc-
tures during search, (2) have an excellent average time-complexity,
and (3) have a space-complexity which improves significantly on that
of MAC solvers that have optimal arc-consistency components. Re-
sults will be presented from an experimental comparison between
MAC-2001, MAC-3d and related algorithms. MAC-2001 has an
arc-consistency component with an optimal worst case time-com-
plexity, whereas MAC-3d does not. MAC-2001 requires additional
data structures during search, whereas MAC-3d does not. MAC-3d
has a space-complexity ofO(e + nd), wheren is the number of
variables,d the maximum domain size, ande the number of con-
straints. We shall demonstrate that MAC-2001’s space-complexity
isO(edmin(n, d)). MAC-2001 required about 35% more solution
time on average than MAC-3d for easy and hard random problems,
MAC-3d was faster for 40% of the real-world problems but slower
for the remaining real-world problems. Our results are an indication
that if checks are cheap then lightweight algorithms like MAC-3d

are promising.

1 Introduction

Arc-consistency algorithms significantly reduce the size of the search
space of Constraint Satisfaction Problems (CSPs) at low costs. They
are the workhorse of backtrackers that Maintain Arc-Consistency
during search (MAC[Sabin and Freuder, 1994]).

Currently, there seems to be a shared belief in the constraint sat-
isfaction community that, to be efficient, arc-consistency algorithms
need anoptimal worst case time-complexity[Bessìereet al., 1995;
Bessìere and Ŕegin, 2001; Zhang and Yap, 2001]. MAC algorithms
like MAC-2001 that have an optimal worst case time-complex-
ity require a space-complexity of at leastO(ed) for creating data
structures for remembering their support-checks. We shall prove that
MAC-2001’s space-complexity isO(edmin(n, d)) because it has
to maintainthese additional data structures. As usual,n is the num-
ber of variables in the CSP,d is the maximum domain size of the
variables ande is the number of constraints.

We shall provide evidence to support the claim that good arc-
consistency algorithms do not always need an optimal worst case
time-complexity. We shall experimentally compare five MAC al-
gorithms. The first algorithm is MAC-2001[Bessìere and Ŕegin,
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2001]. MAC-2001’s arc-consistency component has an optimal
O(ed2) worst case time-complexity. The second and third algorithms
are MAC-3 and MAC-3d [Mackworth, 1977; van Dongen, 2003a;
2002]. The fourth is a new algorithm called MAC-3p. It lies in be-
tween MAC-3 and MAC-3d. MAC-3, MAC-3d and MAC-3p have
a betterO(e + nd) space-complexity than MAC-2001 but their
arc-consistency components have a non-optimalO(ed3) worst case
time-complexity. The fifth and last algorithm is MAC-2001p. It is
to MAC-2001 what MAC-3p is to MAC-3. Finally, we shall intro-
duce some notation for compactly describing ordering heuristics.

For random and real-world problems and for as far as avoiding the
re-discovery of checks is concerned MAC-2001p and MAC-2001
were by far the better algorithms. For any fixed arc-heuristic and for
random problems where checks were cheap MAC-3, MAC-3p and
MAC-3d wereall better in clock on the wall time than MAC-2001
and MAC-2001p, with MAC-3d the best of all. MAC-2001p re-
quired about 21% more time on average than MAC-3d, whereas
MAC-2001 required about 35% more time. For time and solving
real-world problems things were not as clear.

The results presented in this paper are important because of the
following. Since the introduction of Mohr and Henderson’s AC-4
[Mohr and Henderson, 1986], most work in arc-consistency research
has been focusing on the design of better algorithms that do not re-
discover (do not repeat checks). This focused research is justified by
the observation that, as checks become more and more expensive,
there will always be a point beyond which algorithms that repeat will
become slower than those that do not and will remain so from then
on. However, there are many cases where checks are cheap and it is
only possible to avoid re-discoveries at the price of a large additional
bookkeeping. To forsake the bookkeeping at the expense of having to
re-discover may improve search if checks are cheapand if problems
become large.

The remainder of this paper is organised as follows. Section 2 is an
introduction to constraint satisfaction. Section 3 presents some nota-
tion for describing selection heuristics. Section 4 describes related
work. Section 5 provides a detailed description of the algorithms un-
der consideration and contains a proof that MAC-2001’s space-com-
plexity isO(edmin(n, d)). Section 6 presents experimental results.
Conclusions are presented in Section 7.

2 Constraint Satisfaction

A binaryconstraintCxy between variablesx andy is a subset of the
cartesian product of the domainsD(x) of x andD(y) of y. A value
v ∈ D(x) is supportedby w ∈ D(y) if ( v, w ) ∈ Cxy. Similarly,
w ∈ D(y) is supported byv ∈ D(x) if ( v, w ) ∈ Cxy.

A Constraint Satisfaction Problem(CSP) is a tuple(X,D,C ),



whereX is a set of variables,D(·) is a function mapping each
x ∈ X to its non-empty domain, andC is a set of constraints be-
tween variables in subsets ofX. We shall only consider CSPs whose
constraints are binary. CSP(X,D,C ) is calledarc-consistentif its
domains are non-empty and for eachCxy ∈ C it is true that every
v ∈ D(x) is supported byy and that everyw ∈ D(y) is supported
by x. A support-check(consistency-check) is a test to find out if two
values support each other.

The tightnessof the constraintCxy betweenx andy is defined as
1− |Cxy |/|D(x)×D(y) |, where· × · denotes cartesian product.
Thedensityof a CSP is defined as2e/(n2 − n), for n > 1.

The(directed) constraint graphof CSP(X,D,C ) is the directed
graph whose nodes are given byX and whose arcs are given by
∪Cxy∈C { (x, y ) , ( y, x ) }. The degreeof a variable in a CSP is
the number of neighbours of that variable in the (directed) constraint
graph of that CSP.

MAC is a backtracker that maintains arc-consistency during
search. MAC-i uses arc-consistency algorithm AC-i to maintain arc-
consistency.

The following notation is not standard but will turn out useful. Let
δo(v) be the original degree ofv, let δc(v) be the current degree of
v, let k(v) = |D(v) |, and let#(v) be auniquenumber which is
associated withv. We will assume that#(v) ≤ #(w) if and only if
v is lexicographically less than or equal tow.

3 Operators for Composing Selection Heuristics

In this section we shall introduce notation to describe and “compose”
variable and arc selection heuristics. The reader not interested in the
nitty gritty details of such heuristics may wish to skip this section
and return to it later. Motivation, a more detailed presentation, and
more examples may be found in[van Dongen, 2003b, Chapter 3].

It is recalled that a relation on setT is called aquasi-orderonT
if it is reflexive and transitive. A relation,≺, onT is calledlinear if
v ≺ w ∨ w ≺ v for all v, w ∈ T . Linear quasi-orders may allow for
“ties,” i.e. they may allow for situations wherev ≺ w∧w ≺ v∧v 6=
w. A quasi-order� is called apartial order if v � w ∧ w � v =⇒
v = w for all v, w ∈ T . An order (also called alinear order) is a
partial order that is also a linear quasi-order. An order� prefersv to
w if and only if v � w.

Thecompositionof order�2 and linear quasi-order�1 is denoted
�2 • �1. It is the unique order onT which is defined as follows:

v �2 • �1 w ⇐⇒ (v �1 w ∧ ¬w �1 v) ∨
(v �1 w ∧ w �1 v ∧ v �2 w) .

In words,�2 • �1 is the selection heuristic that uses�1 and “breaks
ties” using�2. Composition associates to the left, i.e.�3 • �2 • �1

is equal to(�3 • �2) • �1.
Let � be a linear quasi-order onT and letf :: Y 7→ T be a

function. Then⊗f� is the unique linear quasi-order onY which is
defined as follows:

v ⊗f� w ⇐⇒ f(v) � f(w) , for all v, w ∈ Y .

Finally, letπi(( v1, . . . , vn )) = vi for 1 ≤ i ≤ n.
We are now in a position where we need no more notation. For

example, the minimum domain size heuristic with a lexicographical
tie breaker is given by⊗#

≤ •⊗
k
≤, the ordering on the maximum orig-

inal degree with a lexicographical tie breaker is given by⊗#
≤ • ⊗

δo
≥ ,

the Brelaz heuristic(cf. [Gentet al., 1996]) with a lexicographical

tie breaker is given by⊗#
≤ • ⊗

δc
≥ • ⊗

k
≤, and⊗#◦π2

≤ • ⊗#◦π1
≤ is the

lexicographical arc-heuristic. As usual,· ◦ · denotes function compo-
sition.

4 Related Literature

In 1977, Mackworth presented an arc-consistency algorithm called
AC-3 [Mackworth, 1977]. AC-3 has aO(ed3) bound for its worst
case time-complexity[Mackworth and Freuder, 1985]. AC-3 has a
O(e+nd) space-complexity. AC-3 cannot remember all its support-
checks. AC-3 usesarc-heuristicsto repeatedly select and remove an
arc,(x, y ), from a data structure called aqueue(a set, really) and to
use the constraint betweenx andy to revisethe domain ofx. Here,
to revise the domain ofx using the constraint betweenx andy means
to remove the values fromD(x) that are not supported byy. AC-3’s
arc-heuristics determine the constraint that will be used for the next
support-check. Besides these arc-heuristics there are alsodomain-
heuristics. These heuristics, if given the constraint that will be used
for the next support-check, determine the values that will be used for
the next support-check. The interested reader is referred to[Mack-
worth, 1977; Mackworth and Freuder, 1985] for further information
about AC-3.

Wallace and Freuder pointed out that arc-heuristics can influence
the efficiency of arc-consistency algorithms[Wallace and Freuder,
1992]. Similar observations were made by Gentet al. [Gentet al.,
1997]. Despite these findings only few authors describe the heuris-
tics that were used for their experiments. We believe that to facilitate
ease of replication all information to repeat experiments should be
described in full. This includes information about arc-heuristics.

Bessìere and Ŕegin presented AC-2001, which is based on AC-3
[Bessìere and Ŕegin, 2001] (see also[Zhang and Yap, 2001] for a
similar algorithm). AC-2001 revises one domain at a time. The main
difference between AC-3 and AC-2001 is that AC-2001 uses a lex-
icographical domain-heuristic and that for each variablex, for each
v ∈ D(x) and each constraint betweenx and another variabley it
remembers the last support forv ∈ D(x) with y so as to avoid re-
peating checks that were used before to find support forv ∈ D(x)
with y. AC-2001 has an optimal upper bound ofO(ed2) for its worst
case time-complexity and its space-complexity isO(ed). AC-2001
behaves well on average. It was observed that AC-3 is a good alterna-
tive for stand alone arc-consistency if checks are cheap and CSPs are
under-constrained but that AC-3 is very slow for over-constrained
CSPs and CSPs in the phase transition[Bessìere et al., 1999;
Bessìere and Ŕegin, 2001].

We made similar observations in experimental comparisons be-
tween AC-7, AC-2001 and AC-3d, which is a cross-breed be-
tween Mackworth’s AC-3 and Gaschnig’s DEE[Mackworth, 1977;
Gaschnig, 1978; van Dongen, 2002]. We did not consider search.
The only difference between AC-3 and AC-3d is that AC-3d some-
times takes two arcs out of the queue andsimultaneouslyrevisestwo
domains with AlgorithmD from [van Dongen, 2001]. A double-sup-
port heuristic is a heuristic that prefers checks between two values
each of whose support statuses are unknown. For two-variable CSPs
the double-support heuristic is optimal and requires about half the
checks that are required by a lexicographical heuristic if the domain
sizes of the variables are about equal and sufficiently large[van Don-
gen, 2003a]. AC-3d and MAC-3d have a lowO(e+nd) space-com-
plexity. Our results indicated that AC-3d was promising for stand
alone arc-consistency.



5 Description of Algorithms

In this section we shall describe MAC-3d, MAC-3p, MAC-2001,
and MAC-2001p in more detail. The presentation is to provide a
good understanding of the basic machinery of the algorithms and
to highlight the differences between them. We shall also prove that
MAC-2001 has aO(edmin(n, d)) space-complexity.

5.1 MAC-3d and MAC-3p
AC-3d is a cross-breed between AC-3 and DEE[Mackworth, 1977;
Gaschnig, 1978]. The only difference between AC-3 and AC-3d is
that if AC-3d’s arc-heuristic select the arc(x, y ) from the queue
and if the reverse arc( y, x ) is also in the queue then AC-3d will
remove both arcs from the queue and and will simultaneously re-
visetwodomains with algorithmD described in[van Dongen, 2001;
2003a]. D uses adouble-supportdomain-heuristic, i.e. a heuristic
which prefers double-support checks. AC-3p is a “poor man’s” ver-
sion of AC-3d; It is not as efficient but easier to implement. It can
be obtained from AC-3d by replacing its call toD by two calls to
Mackworth’s revise to sequentiallyrevise two domains with one
constraint. The difference between AC-3p and AC-3d is AC-3d’s
double-support heuristic. AC-3d and AC-3p inherit theirO(ed3)
worst case time-complexity andO(e + nd) space-complexity from
AC-3. MAC-3d (MAC-3p) is implemented by replacing AC-3 in
MAC-3 by AC-3d (AC-3p). The space-complexity of MAC-3d and
MAC-3p is equal toO(e+ nd).

5.2 MAC-2001 and MAC-2001p
Pseudo-code for an arc-based version of AC-2001 and therevise-
2001 algorithm upon which it depends is depicted in Figures 1 and 2.
The “foreach s ∈ S do statement” construct assigns the members
in S to s from small to big and carries outstatement after each
assignment. For the purpose of the presentation of AC-2001 it is
assumed that the values in the domains are ordered from small to big.
For each variablex, for each valuev ∈ D(x), and for each neighbour
y of x it is assumed thatlast [x][v][y] is initialised to some value that
is smaller than the values inD(y).

AC-2001 finds support forv ∈ D(x) with y by checking against
the values inD(y) from small to large. It uses a counterlast [x][v][y]
to record the last check that was carried out. This allows it to save
checks the next time support forv ∈ D(x) has to be found withy if
last [x][v][y] ∈ D(y). Furthermore, checks are saved by not looking
for support with values that are less than or equal tolast [x][v][y] ∈
D(y).

MAC-2001 requires additional data structures during search. It
maintains the counterlast [x][v][y] to remember the last support
for v ∈ D(x) with D(y). The space-complexity oflast is O(ed)
[Bessìere and Ŕegin, 2001]. It seems to have gone unnoticed so far
that MAC-2001 has aO(edmin(n, d)) space-complexity. The rea-
son for this space-complexity is that MAC-2001 has tomaintainthe
data structurelast . This only seems to be possible using one of the
following two methods (or a combination):

1. Save all relevant counters once before AC-2001. Upon backtrack-
ing these counters have to be restored. This requires aO(ned)
space-complexity becauseO(ed) data structures may have to be
savedn times.

2. Save each counter before the assignment tolast [x][v][y] in
revise-2001 and count the number of changes,c, that were carried
out. Upon backtracking, restore thec counters in the reverse order.

function AC-2001(X ) : Boolean;
begin
Q :=

{
( x, y ) ∈ X2 : x andy are neighbours

}
;

whileQ 6= ∅ do begin
select and remove any arc( x, y ) fromQ;
if notrevise-2001(x, y, changex) then

return false;
else if changex then
Q := Q ∪ { ( z, x ) : z 6= y, z is a neighbour ofx };

end;
return true;

end;

Figure 1. Arc-based version of AC-2001.

function revise-2001(x, y, var change ) : Boolean;
begin

change := false;
foreach r ∈ D(x) do

if last[x][r][y] /∈ D(y) then
if ∃c ∈ D(y) s.t.c > last[x][r][y]

and c supportsr then
last[x][r][y] := the first such valuec;

else begin
D(x) := D(x) \ { r };
change := true;

end;
returnD(x) 6= ∅;

end;

Figure 2. revise-2001.

This comes at the price of a space-complexity ofO(ed2) because
each of the2ed counters may have to be savedO(d) times.

Therefore, MAC-2001’s space-complexity isO(edmin(n, d)).
Christian Bessìere (private communication) implemented MAC-
2001 using Method 2.

The consequences of MAC-2001’s space requirements can be
prohibitive. For example, without loss of generality we may assume
the usual lexicographical value ordering. Letn = d > 1 and con-
sider the binary CSP where all variables should be pairwise differ-
ent. Finally, assume that Method 2 is used for MAC-2001 (Method 1
will lead to a similar order of space-complexity). Note that the “first”
solution can be found with a backtrack free search. Also note that in
the first solutioni is assigned to thei-th variable. We shall see that
MAC-2001 will require a lot of space to solve the given CSP.

Just before the assignment ofi to the i-th variable we have the
following. For each variablex, for each variabley 6= x, and for each
v ∈ D(x) = { i, . . . , n }we havelast [x][v][y] = min({ i, . . . , n }\
{ v }). To make the CSP arc-consistent after the assignment ofi to
the i-th current variable, (only) the valuei has to be removed from
the domains of the future variables. Unfortunately, for each of the
remainingn − i future variablesx, for each of the remainingn − i
valuesv ∈ D(x) \ { i }, and for each of the remainingn − i − 1
future variablesy 6= x, i was the last known support forv ∈ D(x)
with y. This means that(n−i)2×(n−i−1) counters must be saved
and incremented during the AC-2001 call following the assignment
of i to thei-th variable. In total, MAC-2001 has to save

∑n
i=1(n−

i)2 × (n − i − 1), i.e. (n − 2) × (n − 1) × n × (3n − 1)/12
counters. Forn = d = 500, MAC-2001 will require space for
at least 15, 521, 020, 750 counters and this may not be available on
every machine. Sometimes MAC algorithms that do not re-discover
dorequire a lot of space, even for deciding relatively small CSPs that
allow a backtrack free search.



AC-2001p is to AC-2001 what AC-3p is to AC-3. If its arc-
heuristic selects(x, y ) from the queue and if( y, x ) is also in the
queue then it will remove both and use (at most) two calls torevise-
2001 to revise the domains ofx andy.

6 Experimental Results

In this section we shall compare MAC-2001, MAC-2001p,
MAC-3d, MAC-3p and MAC-3 for random and real-world prob-
lems. For the random problems we implemented support-checks as
cheap lookup operations in arrays. For the real world problems we
implemented support-checks as (more) expensive function calls.

6.1 Implementation Details

All implementations used the same basic data structures as used by
MAC-3d. The implementations of MAC-2001 and MAC-2001p

were arc-based. This allowed us to evaluate the algorithms for differ-
ent arc-heuristics. Previously, we used Christian Bessière’s variable
based implementation of MAC-2001[van Dongen, 2003b]. How-
ever, Bessìere’s implementation came with only one arc-heuristic and
it was about 17% slower than our own implementation.

All solvers were real-full-look-ahead solvers and to ensure that
they visited the same nodes in the search tree they were equipped
with the same dom/deg variable ordering heuristic. Using the nota-
tion introduced in Section 3 this heuristic is given by⊗#

≤•⊗
f
≤, where

f(v) = k(v)/δo(v). We considered three different arc-heuristics,
called lex , rlex , andcomp. Using the notation introduced in Sec-
tion 3 these can be defined as:

lex = ⊗#◦π2
≤ • ⊗#◦π1

≤ ,

rlex = ⊗#◦π1
≤ • ⊗#◦π2

≤ , and

comp = ⊗#◦π2
≤ • ⊗δc◦π2

≥ • ⊗k◦π2
≤ • ⊗#◦π1

≤ • ⊗δc◦π1
≥ • ⊗k◦π1

≤ .

At the moment of writingcomp is the best known arc-heuristic for
MAC-3d. Further in this section we shall see that it is also an ex-
cellent heuristic for the remaining algorithms. Profiling revealed that
arc-selection for MAC-3d with comp usually takes between 10%
and 20% of the solution time, whereas selection withlex hardly takes
any time. However,comp has a far better effect on constraint prop-
agation than bothlex andrlex and investing in it is well spent. We
intend to cut down on the time for arc-selection withcomp by sup-
porting it with a special data type for the queue. It is not quite clear
why this heuristic has such a good effect on constraint propagation.
This is something we intend to investigate further.

6.2 Random Problems

Random problems were generated for15 ≤ n = d ≤ 30. We will
refer to the class of problems for a given combination ofn = d as the
problem class withsizen. The problems were generated as follows.
For each problem size and each combination(C, T ) of average den-
sityC and uniform tightnessT in { ( i/20, j/20 ) : 1 ≤ i, j ≤ 19 }
we generated 50 random CSPs. Next we computed the average num-
ber of checks and the average time that was required for decid-
ing the satisfiability of each problem using MAC search. All prob-
lems were run to completion. Frostet al.’s model B [Gent et al.,
2001] random problem generator was used to generate the problems
(http://www.lirmm.fr/˜bessiere/generator.html ).

The test was carried out in parallel on 50 identical machines. All
machines were Intel Pentium III machines, running SuSe Linux 8.0,
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Figure 3. Scatter plot of checks for MAC-3d andcomp vs. checks for
MAC-2001p andcomp for search and problem size 30.

having 125 MB of RAM, having a 256 KB cach size, and running at
a clock speed of about 930 MHz. Between pairs of machines there
were small (less than 1%) variations in clock speed. Each machine
was given a unique identifier in the range from 1 through 50. For each
machine random problems were generated for each combination of
density and tightness. The CSP generator on a particular machine
was started with the seed given by 1000 times the machine’s identi-
fier. All problems fitted into memory and no swapping occurred. The
total time for our comparison is equivalent to more than 100 days of
computation on a single machine.
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Figure 4. Scatter plot of time for MAC-3d andcomp vs. time for
MAC-2001p andcomp for search and problem size 30.

For random problems, the best lightweight algorithm turned out
to be MAC-3d with a comp heuristic. The best algorithm from
the MAC-2001 family was MAC-2001p with a comp heuristic.
Figure 3 depicts a scatter plot of the checks required by MAC-3d

with comp versus the number of checks required by MAC-2001p

with comp for problem size 30. Figure 4 depicts a scatter plot of
the time required by MAC-3d with comp versus the time required
by MAC-2001p with comp for problem size 30. Both figures sug-
gest that there is a linear relationship between the number of checks



required by MAC-3d and MAC-2001p and between the solution
times of MAC-3d and MAC-2001p. Similar linear relationships
were observed for other combinations of algorithms.
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Figure 5 depicts the ratio between the average number of checks
on the one hand and the average number required by MAC-3 with a
lex arc-heuristic on the other for problem sizes 15–30 and different
combinations of algorithms and arc-heuristics. Similarly, Figure 6
depicts the ratio between the average solution time and the average
solution time of MAC-2001 with anrlex arc-heuristic. The order
from top to bottom in which the algorithms and heuristics are listed
in the legends of the figures corresponds to the height of their graphs
for problem size 30. It is difficult to see but what seem to be two lines
at the bottom of Figure 5 are two pairs of lines. The pair at the bottom
corresponds to MAC-2001 and MAC-2001p with acomp heuristic.
The other pair corresponds to MAC-2001 and MAC-2001p with
a lex heuristic. As the problem size increases the lines for MAC-
2001 and MAC-2001p with anrlex heuristic also seem to converge.
MAC-2001p and MAC-2001 with acomp heuristic are the best

when it comes to saving checks.
For problem size 30 the average solution time of MAC-2001p was

about 36.289 seconds, that of MAC-2001 was about 40.294 sec-
onds, and that of MAC-3d was about 29.910 seconds. On average
and over all problems MAC-2001p required about 21% more time
than MAC-3d, whereas MAC-2001 required about 35% more time.

For any heuristic and for saving time MAC-2001 and
MAC-2001p are never better on average than MAC-3, MAC-3p

and MAC-3d. Our findings about MAC-3d are consistent with our
previous work[van Dongen, 2002; 2003b]. The results about MAC-
2001 and MAC-3 are in contrast with other results from the litera-
ture[Bessìere and Ŕegin, 2001]. However, this should not be a reason
for dismissing these findings; Our testing has been fair and thorough
and we cannot recall having seen such comprehensive comparison
before. MAC-3 withlex requires about 5 times more checks on aver-
age than MAC-2001 and MAC-2001p with comp but solves more
quickly on average. The lack of intelligence in its strategy for propa-
gation does not seem to hinder MAC-3 at all when checks are cheap.

Figures 5 and 6 seem to suggest that as a rule and given one of the
algorithms MAC-2001 and MAC-2001p the heuristiccomp was
better thanlex which, in its turn, was better thanrlex both for checks
and time. Investigation of the test data revealed that this was true.

For random problems and for clock on the wall time the best algo-
rithm was MAC-3d with a comp heuristic. MAC-3p with a comp
arc-heuristic was a good second. MAC-3d’s double-support heuristic
allows it to improve on MAC-3p. Overall, the best algorithm from
the MAC-2001 family required more than 21% more time on aver-
age than MAC-3d.

6.3 Real-World Problems

The real-world problems came from the CELAR suite[CELAR,
1994]. We did not consider optimisation but only considered satisfia-
bility. The same problems were considered as in[Bessìere and Ŕegin,
2001]. These problems have become a sort of a standard bench-
mark for real-world problems. However, see our comments further
on about these problems. For every problem we computed the aver-
age solution time over 50 runs. Checks were implemented as func-
tion calls and were more expensive than for random problems. For
all problems the domain size was equal to44.

The results for the tests are depicted in Table 1. Due to space-re-
strictions the results for MAC-2001 have been omitted. MAC-2001
performed about the same as MAC-2001p but required more checks
and time on average. For each problem the least average number of
checks and the least average solution time for that problem for all arc-
heuristics are printed in bold face. For each of the remaining heuris-
tics the least average number of checks and least average solution
time are printed italicised. Again MAC-2001p is the best algorithm
when it comes to saving checks. This time it pays off. MAC-2001p

also seems to be the best algorithm when it comes to solving quickly.
MAC-3d records the least solution time for RLFAP 1, GRAPH 9
and GRAPH 14. These are the problems for whichedmin(n, d)
has the first and third largest size. The larger the problems become,
the better MAC-3d starts to perform relative to the performance of
MAC-2001 and MAC-2001p. It is only for the smaller problems
that MAC-2001 and MAC-2001p are the best. A possible critique
is that the density of these problems is rather low—it is always be-
low 2%. It should be interesting to compare the algorithms for larger
real-world problems.

For the real-world problems that we considered MAC-2001p and
MAC-2001 are the best algorithms both in time and checks. The



sparsity of the constraint graph of these problems suits both MAC-
2001 and MAC-2001p very well. There does not seem to be much
between them and MAC-3d or MAC-3p with a comp heuristic.
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Table 1. Average results for real-world problems.

7 Conclusions and Recommendations

We compared five algorithms called MAC-2001, MAC-2001p,
MAC-3, MAC-3p, and MAC-3d. MAC-2001 and MAC-2001p
have an arc-consistency component with an optimal worst case time-
complexity. The remaining algorithms do not. We demonstrated that
MAC-2001’s space-complexity isO(edmin(n, d)) and we demon-
strated that this size may be prohibitive even for easy CSPs. We com-
pared the algorithms for search and for three different arc-heuristics,
calledlex , rlex , andcomp. We considered random problems where
checks are cheap and real-world problems where checks are expen-
sive. For the random problems our findings are that good arc-consis-
tency algorithms do not always need to have an optimal worst case
time-complexity. We presented results that suggest quite the oppo-
site. For a given arc-heuristic MAC-2001 and MAC-2001p always
required more solution time than the others. MAC-3d and acomp

arc-heuristic, was the most efficient combination when it comes to
saving time. MAC-2001p required about 21% more time on average
than MAC-3d and MAC-2001 required about 34% more. For the
real-world problems things were not as clear. Here MAC-2001 and
MAC-2001p were the best in solving quickly but MAC-3d with a
comp arc-heuristic was not much worse.
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