
Saving Checks does Not Always Save
Time∗

M.R.C. van Dongen

Cork Constraint Computation Centre

Computer Science Department, UCC

September 18, 2003

∗This work has received support from Science Foundation Ireland under Grant 00/PI.1/C075.



Outline

• Arc-Consistency;

• Maintain Arc-Consistency;

• Experimental Results;

• Conclusions & Future Work.



Constraint Propagation: Arc-Consistency

1 2 3x

1 2 3y



Constraint Propagation: Arc-Consistency

1 2 3x

1 2 3y



Constraint Propagation: Arc-Consistency

1 2x

1 2 3y



Arc-Based Arc-Consistency Algorithms

1 2 3x

1 2 3y

1 2 3w



Arc-Based Arc-Consistency Algorithms

1 2 3x

1 2 3y

1 2 3w



Arc-Based Arc-Consistency Algorithms

1 2 3x

1 2 3y

1 2 3w



Arc-Based Arc-Consistency Algorithms

1 2 3x

1 2 3y

1 2 3w



Arc-Based Arc-Consistency Algorithms

1 2 3x

1 2 3y

1 2 3w



Arc-Based Arc-Consistency Algorithms

1 2 3x

1 2 3y

1 2 3w



Arc-Based Arc-Consistency Algorithms

1 2 3x

1 2 3y

1 2 3w



Arc-Based Arc-Consistency Algorithms

1 2 3x

1 2 3y

1 2 3w



Arc-Based Arc-Consistency Algorithms

1 2x

1 2 3y

1 2 3w



Arc-Based Arc-Consistency Algorithms

1 2x

1 2 3y

1 2 3w



Arc-Based Arc-Consistency Algorithms

1 2x

1 2 3y

1 2 3w



Arc-Based Arc-Consistency Algorithms

1 2x

1 2 3y

1 2 3w



Arc-Based Arc-Consistency Algorithms

1 2x

1 2 3y

1 2 3w



Arc-Based Arc-Consistency Algorithms

1 2x

1 2 3y

1 2w



Arc-Based Arc-Consistency Algorithms

1 2x

1 2 3y

1 2w



Arc-Based Arc-Consistency Algorithms

1 2x

1 2 3y

1 2w



Consistency Before Search

To overcome backtracking’s forgetfulness, people started using

constraint propagation to make CSPs more consistent at a local

level before search.

This significantly reduced the number of incompatible candidate

partial assignments.

Unfortunately, it did not overcome backtracking’s total amnesia.



Consistency During Search

To further improve backtracking people started to use algorithms

that maintained certain levels of consistency during search.

MAC (Maintain Arc-Consistency) is one such algorithm.



MAC

1 2 3x

1

2

3

y

1

2

3

z



MAC

1 2 3x

1

2

3

y

1

2

3

z



MAC

1x

1

2

3

y

1

2

3

z



MAC

x

y

z



MAC

2 3x

1

2

3

y

1

2

3

z



MAC

2 3x

1

2

3

y

1

2

3

z



MAC

2x

1

2

3

y

1

2

3

z



MAC

x

y

z



MAC

3x

1

2

3

y

1

2

3

z



MAC

3x

1

2

3

y

1

2

3

z



MAC

3x

1

y
3

z



MAC

3x

1

y
3

z



MAC

3x

1

y
3

z



MAC-2001

Based on AC-2001.

Does not repeat checks (its worst case time-complexity is optimal).

Uses a lexicographical domain-heuristic.

For each constraint C and each value in the domain of the variables

that are constrained by C it remembers the last supporting value.

To remember its checks AC-2001 requires a large O(ed) data

structure that is maintained during search by MAC-2001.

Is reported to behave well on average.



“AC-2001, at the price of a slight extra data structure (just an

integer for each value-constraint pair), reaches an optimal worst-case

time complexity.” [Bessière and Régin, 2001]



“AC-2001, at the price of a slight extra data structure (just an

integer for each value-constraint pair), reaches an optimal worst-case

time complexity.” [Bessière and Régin, 2001]

Note that MAC-2001 has to save/restore its O(ed) counters.

But then MAC-2001 must have a O(edmin(d, n)) space-complexity

because saving state means one of the following:

1. Save relevant counters before arc-consistency. This requires a

O(ned) space-complexity because we may have to do this n times.

2. Save each counter before it is incremented. This comes at the price

of a space-complexity of O(ed2) because we may have to save each

counter d times.



MAC-3d

Revises one or 2 domains at a time.

When it revises 2 domains it uses a double-support domain-heuristic.

Does not remember its checks during search and its worst case

time-complexity can therefore not be optimal.

Does not require additional data structures during search.

Has a O(e+ nd) space-complexity.

This space-complexity is strictly better than MAC-2001’s

O(edmin(d, n)) and AC-2001’s O(ed).



Experimental Results: The algorithms

We compared five algorithms: MAC-3, MAC-3d, MAC-3p,

MAC-2001, and MAC-2001p.

We used three different arc-heuristics: lex , rlex , and comp.



Experimental Results: The Random Problems

For each combination of density and uniform tightness in

{ ( i/20, j/20 ) : 1 ≤ i, j ≤ 19 } we generated 50 random CSPs with

s variables and s values, for s ∈ { 15, . . . , 30 }.

Next, for each combination of density and tightness, we computed

the average number of checks and the average time that were

required to solve the 50 CSPs for that combination.



0.00e+00

5.00e+07

1.00e+08

1.50e+08

2.00e+08

2.50e+08

3.00e+08

3.50e+08

4.00e+08

4.50e+08

 14  16  18  20  22  24  26  28  30

av
er

ag
e 

nu
m

be
r 

of
 c

he
ck

s

size

MAC-3 (lex)
MAC-3p (comp)
MAC-3d (comp)

MAC-2001 (rlex)
MAC-2001p (rlex)

MAC-2001 (lex)
MAC-2001p (lex)

MAC-2001 (comp)
MAC-2001p (comp)



0.00e+00

1.00e+01

2.00e+01

3.00e+01

4.00e+01

5.00e+01

6.00e+01

7.00e+01

 14  16  18  20  22  24  26  28  30

av
er

ag
e 

so
lu

tio
n 

tim
e

size

MAC-2001 (rlex)
MAC-2001p (rlex)

MAC-2001 (lex)
MAC-2001p (lex)

MAC-2001 (comp)
MAC-2001p (comp)

MAC-3 (lex)
MAC-3p (comp)
MAC-3d (comp)



0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 14  16  18  20  22  24  26  28  30

ra
tio

 o
f a

ve
ra

ge
 n

um
be

r 
of

 c
he

ck
s

size

MAC-3 (lex)
MAC-3p (comp)
MAC-3d (comp)
MAC-2001 (rlex)

MAC-2001p (rlex)
MAC-2001 (lex)

MAC-2001p (lex)
MAC-2001 (comp)

MAC-2001p (comp)



0.0

0.2

0.4

0.6

0.8

1.0

 14  16  18  20  22  24  26  28  30

ra
tio

 o
f a

ve
ra

ge
 s

ol
ut

io
n 

tim
e

size

MAC-2001 (rlex)
MAC-2001p (rlex)
MAC-2001p (lex)

MAC-2001 (lex)
MAC-2001 (comp)

MAC-2001p (comp)
MAC-3 (lex)

MAC-3p (comp)
MAC-3d (comp)



0.0e+00

1.0e+10

2.0e+10

3.0e+10

4.0e+10

5.0e+10

6.0e+10

0.0e+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10 2.5e+10

C
he

ck
s 

M
A

C
-3

d

Checks MAC-2001p



0.0e+00

1.0e+03

2.0e+03

3.0e+03

4.0e+03

5.0e+03

6.0e+03

7.0e+03

8.0e+03

9.0e+03

0.0e+00 2.0e+03 4.0e+03 6.0e+03 8.0e+03 1.0e+04 1.2e+04

T
im

e 
M

A
C

-3
d

Time MAC-2001p



Experimental Results: The Real-World Problems

• RLFAP and GRAPH problems from the CELAR suite;

• Large very sparse optimisation problems;

• We only considered the satisfiability problem.



Checks Time
Algorithm Problem lex rlex comp lex rlex comp
MAC-3 RLFAP 1 4.24e+06 4.02e+06 4.17e+06 0.50 0.58 0.59
MAC-3p RLFAP 1 3.89e+06 3.97e+06 3.64e+06 0.47 0.52 0.51
MAC-3d RLFAP 1 2.60e+06 2.67e+06 1.92e+06 0.38 0.43 0.38
MAC-2001p RLFAP 1 1.85e+06 1.85e+06 1.78e+06 0.38 0.43 0.44

MAC-3 RLFAP 11 2.90e+08 1.57e+08 5.66e+07 34.12 20.63 7.86
MAC-3p RLFAP 11 2.13e+08 1.42e+08 4.37e+07 25.78 18.60 6.20
MAC-3d RLFAP 11 1.72e+08 1.15e+08 3.09e+07 23.10 16.91 5.35
MAC-2001p RLFAP 11 3.48e+07 2.91e+07 1.04e+07 11.74 10.25 3.87

MAC-3 GRAPH 9 4.43e+06 4.51e+06 3.90e+06 0.54 0.65 0.58
MAC-3p GRAPH 9 4.33e+06 4.48e+06 3.59e+06 0.54 0.60 0.52
MAC-3d GRAPH 9 3.31e+06 3.43e+06 2.18e+06 0.47 0.52 0.42
MAC-2001p GRAPH 9 1.86e+06 1.87e+06 1.79e+06 0.42 0.46 0.46

MAC-3 GRAPH 10 8.25e+06 8.30e+06 5.68e+06 1.00 1.13 0.85
MAC-3p GRAPH 10 8.08e+06 8.57e+06 5.50e+06 0.98 1.13 0.80
MAC-3d GRAPH 10 7.02e+06 7.49e+06 4.29e+06 0.90 1.05 0.71
MAC-2001p GRAPH 10 2.67e+06 2.74e+06 2.33e+06 0.60 0.72 0.61

MAC-3 GRAPH 14 3.89e+06 3.95e+06 3.40e+06 0.48 0.56 0.50
MAC-3p GRAPH 14 3.83e+06 3.92e+06 3.09e+06 0.48 0.51 0.45
MAC-3d GRAPH 14 2.87e+06 2.96e+06 1.73e+06 0.41 0.45 0.34
MAC-2001p GRAPH 14 1.65e+06 1.65e+06 1.59e+06 0.36 0.39 0.39



Conclusions & Future Work

• MAC-2001’s being good at saving checks is expensive in time.

• ? MAC-3d does not rely on an optimal arc-consistency component;

? MAC-3d does not need additional data structures during search;

? MAC-3d has a better space-complexity; and

? MAC-3d seems to have a better average time-complexity.

• Can we explain these results theoretically?

• What exactly is the role of arc-heuristics?

• Can we learn from this lesson for other consistency algorithms?


