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Constraint Networks

Let D(x) denote the domain of the variable x.

CS is called a constraint on S if CS ⊆×x∈SD(x).

A tuple is said to satisfy CS if it is in CS.

A constraint network is a collection of variables, their

domains, and zero or more constraints between subsets

of these variables.

A constraint network is called binary each of its

constraints is between two variables or less.



Arc-Consistency

A binary constraint network is called arc-consistent if

none of the domains of its variables is empty and every

binary constraint between two variables satisfies the

property that each of the values in the domain of each of

these variables is supported by some value in the domain

of the other variable.
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Heuristics

Arc-consistency algorithms carry out support-checks to

find out about the properties of Constraint Satisfaction

Problems.

They use arc-heuristics to select the constraint that will

be used for the next support-check.

They use domain-heuristics to select the values that will

be used for the next support-check.



Some Existing Arc-Consistency Algorithms

Two well known arc-consistency algorithms are AC-3

with a O(ed3) and AC-7 with a O(ed2) worst-case

time-complexity.

One of the nice properties of AC-7 is that—as opposed

to AC-3—it doesn’t repeat support-checks. As a matter

of fact, its worst-case time-complexity is optimal and it

behaves well in practice.

AC-3 on the other hand has nicer space-complexity

characteristics than AC-7 (O(e + nd) vs. O(ed2)).



Algorithm L
AC-7 never repeats support-checks. It uses a “seek

support” heuristic. It uses directed relations Rαβ and Rβα.

if a ∈ D(α) is unsupported then AC-7 will try to find

support for a using a check of the form ( a, b ) ∈ Rαβ.

if b ∈ D(β) is unsupported then AC-7 will try to find

support for b using a check of the form ( b, a ) ∈ Rβα.

AC-7 normally comes equipped with lexicographical

arc-heuristics and domain-heuristics. Let L be that

algorithm.
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Support-Checks

A zero-support check is a check between two values

whose supports are non-empty.



Support-Checks

A zero-support check is a check between two values

whose supports are non-empty.

A single-support check is a check between a value

whose support is non-empty and a value whose support

is empty.



Support-Checks

A zero-support check is a check between two values

whose supports are non-empty.

A single-support check is a check between a value

whose support is non-empty and a value whose support

is empty.

A double-support check is a check between two values

whose supports are empty.



Algorithm D

An algorithm which uses a heuristic to maximise the

number of double-support checks.

This heuristic can be incorporated into most

arc-consistency algorithms.
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Case Study

Definition 1. [Trace] Let A be an arc-consistency

algorithm, let M be an a by b constraint between α

and β, and let

Mi1j1?, Mi2j2?, . . . , Miljl?

be the support-checks required by A to find the support

of α and β. The trace of M w.r.t. A is the sequence

( i1, j1, Mi1j1 ), ( i2, j2, Mi2j2 ), . . . , ( il, jl, Miljl ).



Traces of L for the Two by Two Case
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Properties of Traces

Let A be an arc-consistency algorithm which does not

repeat support-checks, let t be a trace of a constraint in

M
ab w.r.t. A, and let l be the length of t.

There are exactly 2ab−l constraints in Mab whose traces

w.r.t. A are equal to t.



Theorem 1. [Trace Property] Let t be a trace of a

constraint in M
ab w.r.t. some algorithm A, and let l be

the length of t. The average savings of the constraints in

M
ab whose trace w.r.t. A is equal to t are given by:

(ab − l)2
ab−l

/2
ab

= (ab − l)2
−l
.



Traces of D for the Two by Two Case
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Comparison for the Two by Two Case

Algorithm Savings Checks

L 3× 1× 21 = 6 58

D 1× 1× 21 + 1× 2× 22 = 10 54



A Lower Bound for avgL(a, b)

(2 − ε)a + 2b + O(1) + O(a2
−b

) ≤ avgL(a, b),
where

ε = 2
−s

+ 2

s∑
k=0

(
s

k

)
(−1)

k
(2
k+1

− 1)
−1
.



An Upper Bound for avgD(a, b)

Let a + b ≥ 14. Then

avgD(a, b) ≤ 2max(a, b) + 2

− (2max(a, b) + min(a, b))2− min(a,b)

− (3max(a, b) + 2min(a, b))2− max(a,b).



Comparison of L and D
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Discussion

• First attempt to study average time-complexity of

arc-consistency algorithms. http://www.ucc.ie/
~dongen/papers/pdf/UCC/00/TR0004.pdf.

• Arc-consistency algorithms should prefer double-support

checks at domain level.

• D is better on average than L.

• Evidence has been presented that D is “good.”

http://www.ucc.ie/~dongen/papers/pdf/UCC/00/TR0004.pdf
http://www.ucc.ie/~dongen/papers/pdf/UCC/00/TR0004.pdf


Future Work

1. Incorporate the double-support heuristic into an

algorithm which does not repeat support-checks.

2. Study the average time-complexity of L and D if there

are more than two variables.

3. Generalise the notion of double-support check to k-

consistency, where k > 2.
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