Lightweight MAC Algorithms

M.R.C. van Dongen
dongen@cs.ucc.ie

Cork Constraint Computation Centre
CS Department
University College Cork
Western Road
Cork
Ireland

Technical Report TR-02-2003

April 2003

Available fromhttp:
/lcsweb.ucc.ie/"dongen/papers/4C/03/4C-02-2003.pdf

Abstract

Arc-consistency algorithms are the workhorse of backtrackers that Maintain Arc-Consistency
(MAC). This report will provide experimental evidence that, despite common belief to the con-
trary, it is not always necessary for a good arc-consistency algorithm to have an optimal worst
case time-complexity. To sacrifice this optimality allom#&C solvers that (1) do not need ad-
ditional data structures during search, (2) have an excellent average time-complexity, and (3)
have a space-complexity which improves significantly on thavafC solvers that have opti-

mal arc-consistency components. Results will be presented from an experimental comparison
betweenMAC-2001, MAC-3, and related algorithms. MC-2001has an arc-consistency com-
ponent with an optimal worst case time-complexity, whergiasC-3,; does not. M\C-2001
requires additional data structures during search, whevees-3, does not. M\C-3; has a
space-complexity o®)(e + nd), wheren is the number of variableg, the maximum domain

size, anck the number of constraints. We shall demonstrate M¥&aC-2001's space-complexity

is O(edmin(n, d)). MAC-2001required about 35% more solution time on average tag-3,

for easy and hard random problemsABt 3, recorded the least solution time for 21 of the 25
real-world problems. Our results indicate that if checks are cheap then lightweight algorithms
like MAC-3, are promising.

Contents

1 Introduction

2 Constraint Satisfaction

3 Operators for Selection Heuristics
4 Related Literature

5 Detailed Description of Other MAC-3 Based Algorithms
5.1 Introduction
5.2 MAC-3;andMAC-3,
5.3 MAC-2001and MAC-2001

6 Experimental Results
6.1 Introduction e e
6.2 ImplementationDetails
6.3 RandomProblems.
6.4 Statistical Analysis
6.5 Real-World Problems

7 Conclusions and Recommendations

10
10
10
12

14
14
14
15
18
20

29

List of Tables

6.1
6.2
6.3
6.4
6.5
6.6

Average results for real-world problems RLFAP 1-4. 23
Average results for real-world problems RLFAP5-8. 24.
Average results for real-world problems RLFAP 9-11. 25.
Average results for real-world problems GRAPH 1-5. 26.
Average results for real-world problems GRAPH6-10. 27.
Average results for real-world problems GRAPH 11-14. 28.

List of Figures

4.1 The AC-3algorithm. 8
4.2 Algorithmrevise. e e e 8
5.1 The AC-3algorithm. 11
5.2 AlgorithmD. e e e 11
5.3 Arc-based version of AC-2001. 12
5.4 revise-2001. e e e e e e 12
6.1 Size 30: Scatter plot of time of MAC-20QWith comp arc-heuristic for first

solution vs. average number ofchecks. 16.
6.2 Size 30: Scatter plot of time of MAC;8vith comp arc-heuristic for first solution

vs. average numberofchecks. 16.
6.3 Size 30: Scatter plot of number checks of MAC-20®4th comp arc-heuristic

for first solution vs. number checks of MAG&ith comp arc-heuristic.16
6.4 Size 30: Scatter plot of time of MAC-20QWith comp arc-heuristic for first

solution vs. time of MAC-3 with comp arc-heuristic. 16

6.5 Ratio of average number of checks vs. problem size for random problems and
search. For each size the average number checks is divided by the average num-
ber of checks required by MAC-3 with ther arc-heuristic. 17

6.6 Ratio of average solution time vs. problem size for random problems and search.
For each size the average time is divided by the average time required by MAC-

2001 with therlex arc-heuristic. 17
6.7 Value ofa for Tyy01, = a + b x T3, + ¢ x tightness + d x density for search. . 19
6.8 Value oft for 75001, = a + b x T3, + ¢ x tightness + d x density vs. size. . . . 19
6.9 Value ofc for To001, = a + b x T3, + ¢ X tightness + d x density vs. size. . . . 19
6.10 Value ofd for Tyy1, = a + b x T3, + ¢ X tightness + d X density vs. size. . . . 19
6.11 Value ofR? for Too01, = a + b x T5, + ¢ X tightness + d x density vs. size. . . 19

Chapter 1

Introduction

Arc-consistency algorithms significantly reduce the size of the search space of Constraint Sat-
isfaction Problems@SFs) at low costs. They are the workhorse of backtrackers that Maintain
Arc-Consistency during searcMAC [Sabin and Freuder, 19p4

Currently, there seems to be a shared belief in the constraint satisfaction community that, to
be efficient, arc-consistency algorithms neeaptimalworst case time-complexifyBessereet
al., 1995; Bessire and Rgin, 2001; Zhang and Yap, 200IMAC algorithms likeMAC-2001
that have an optimal worst case time-complexity require a space-complexity of apleastor
creating data structures for remembering their support-checks. We shall proveAiba2001's
space-complexity i®)(ed min(n, d)) because it has tmaintainthese additional data structures.

As usualn is the number of variables in tl@&SP, d is the maximum domain size of the variables
ande is the number of constraints. We shall present an example illustrating that worst case
scenarios foMAC-2001s space-complexity occur for easySPs that allow a backtrack free
search.

We shall provide evidence to support the claim that good arc-consistency algorithms do
not always need an optimal worst case time-complexity. We shall experimentally compare
five MAC algorithms. The first algorithm iAC-2001 [Bessere and Rgin, 200]. MAC-
2007s arc-consistency component has an optigmtd®) worst case time-complexity. The
second and third algorithms amMAC-3 and MAC-3,; [Mackworth, 1977; van Dongen, 2003a;
20024. The fourth is a new algorithm calledAC-3,,. It lies in betweerMAC-3 andMAC-3,.
MAC-3, MAC-3,; andMAC-3, have a bette®(e + nd) space-complexity thamAC-2001 but
their arc-consistency components have a non-optiati*) worst case time-complexity. The
fifth and last algorithm iSMAC-2001,. It is to MAC-2001 whatMAC-3, is to MAC-3. As part
of our presentation we shall introduce some notation to compactly describe ordering heuristics.

For random and real-world problems, for as far as support-checks are concerned, and not
to our surpriseMAC-2001, and MAC-2001 were by far the better algorithms. For any fixed
arc-heuristic and for random problems where checks were afiéap3, MAC-3, andMAC-3,
wereall better in clock on the wall time thaMAC-2001 and MAC-2001,, with MAC-3, the
best of all. MAC-2001, required about 21% more time on average tihaC-3,, whereas
MAC-2001required about 35% more time. For time and solving real-world problms-3,
recorded the least solution time for the vast majority of the problemgiha@-2001andMAC-3,

4

also recorded the best solution times for some of the problems. Things being not as clear as
for the random problems it is not possible to say which algorithm should be preferred for the
real-world problems that we considered.

This report is the second in a sequence to report abAC-3 based algorithms with a
O(e + nd) space-complexity that perform significantly better théC-2001 for easyand hard
problemgvan Dongen, 2003b It is the next in a sequence abddirC-3 based algorithms with
aO(e+nd) space-complexity that are compatible WiltAC algorithms that do not repeat checks
[van Dongen and Bowen, 2000; van Dongen, 2002b; 2002a; 2008le theoretical principles
underlyingAC-3,’s double-support heuristic are best describef/an Dongen, 2003a To the
best of our knowledge the only references to these results have been self-references. Our exam-
ple aboutMAC-2001's O (ed min(n, d)) space-complexity is a first. It points out a weakness of
MAC searchers that do not repeat checks.

The results presented in this report are important because of the following. Since the intro-
duction of Mohr and Henderson’sC-4 [Mohr and Henderson, 1986nost work in arc-consis-
tency research has been focusing on the design of better algorithms that do not re-discover (do
not repeat checks). This focused research is justified by the observation that, as checks become
more and more expensive, there will always be a point beyond which algorithms that repeat will
become slower than those that do not and will remain so from then on. However, there are many
cases where checks are cheap and it is only possible to avoid re-discoveries at the price of a large
additional bookkeeping. To forsake the bookkeeping at the expense of having to re-discover may
improve search if checks are cheapd if problems become large.

The remainder of this report is organised as follows. Section 2 provides an introduction
to constraint satisfaction. Section 3 is an introduction to some notation to describe selection
heuristics. Section 4 will describe related work. Section 5 provides a detailed description of
the algorithms under consideration and contains a proofMi#at-2001's space-complexity is
O(edmin(n,d)). Section 6 presents our experimental results. Conclusions are presented in
Section 7.

Chapter 2

Constraint Satisfaction

A binary constraintC,, between variables andy is a subset of the cartesian product of the
domainsD(z) of z andD(y) of y. Avaluev € D(z) is supporteddyw € D(y) if (v,w) € Cyy.
Similarly, w € D(y) is supported by € D(z) if (v,w) € Cy.

A Constraint Satisfaction ProblefCSP is a tuple(X, D, C'), whereX is a set of variables,
D(-) is a function mapping each € X to its non-empty domain, and is a set of constraints
between variables in subsets ¥t We shall only conside€SPs whose constraints are binary.
CSP(X, D, () is calledarc-consistentf its domains are non-empty and for eaCh, € C it
is true that every € D(z) is supported by, and that everyw € D(y) is supported by:. A
support-checkconsistency-check) is a test to find out if two values support each other.

Thetightnesof the constraint,,, betweenr andy is defined ag — | C,,, | /| D(x) x D(y) |,
where- x - denotes cartesian product. Tthensityof a CSPis defined age/(n* —n), forn > 1.

The (directed) constraint graplof CSP (X, D, (') is the directed graph whose nodes are
given by X and whose arcs are given by, cc { (#,y), (y,2) }. Thedegreeof a variable in a
CSPis the number of neighbours of that variable in the (directed) constraint graph af$irat

MAC is a backtracker that maintains arc-consistency during searglt.-Mises arc-consis-
tency algorithmAC-: to maintain arc-consistency.

The following notation is not standard but will turn out useful. kgtv) be the original
degree ofv, let §.(v) be the current degree of let x(v) = | D(v) |, and let#(v) be aunique
number which is associated with We will assume that(v) < #(w) if and only if v is
lexicographically less than or equaldo

Chapter 3

Operators for Selection Heuristics

In this chapter we shall introduce notation to describe and “compose” variable and arc selection
heuristics. The reader not interested in the nitty gritty details of such heuristics may wish to skip
this chapter and return to it later. The notation was introducéasin Dongen, 2003b, Chapter 3
but to make this report self-contained the main points are repeated here. Motivation, a more
detailed presentation, and more examples may be fouhéimDongen, 2003b, Chaptef. 3

Itis recalled that a relation on sétis called aquasi-orderonT' if it is reflexive and transitive.
A relation, <, onT is calledlinear if v < w VvV w < v for all v, w € T'. Linear quasi-orders may
allow for “ties,” i.e. they may allow for situations wheve< w A w < v Av # w. A quasi-order
=< is called gpartial orderif v K wAw 2 v = v =wforallv,w € T. Anorder (also called
alinear order) is a partial order that is also a linear quasi-order. An orl@refersy to w if and
only if v < w.

The compositiorof order=, and linear quasi-ordex; is denoted<, e <. Itis the unique
order on7" which is defined as follows:

v=pe=jw <= WXjwA-w =10V wAw =X 0A0 S w).

In words, =, e < is the selection heuristic that usgs and “breaks ties” using,. Composition
associates to the left, i.&; ¢ <, ¢ <; is equal to(<3 e <5) e <;.

Let < be a linear quasi-order dh, and letf :: Y — T be a function. Them@f< is the unique
linear quasi-order o which is defined as follows: -

v®];w<:>f(v)jf(w), forallv,w e Y.

F|na"y, Iet’/'('i((/l)l, ceayUp)) = ; for 1 < 1 <n.
We are now in a position where we need no more notation. For example, the minimum
domain size heuristic with a lexicographical tie breaker is giver®§yo ®%, the ordering on

the maximum original degree with a lexicographical tie breaker is give@ﬁ)y ®‘§’, the Bre-
laz heuristic(cf. [Gentet al., 199€) with a lexicographical tie breaker is given @ﬁ) ®5§ oL,
and@gﬂf‘”r2 ° ®ﬁ°’” is the lexicographical arc-heuristic. As usual, denotes function composi-
tion. -

Chapter 4

Related Literature

In 1977, Mackworth presented an arc-consistency algorithm caliead [Mackworth, 1977.
AC-3 has a®(ed?®) bound for its worst case time-complexitylackworth and Freuder, 1985
AC-3has a0 (e + nd) space-complexity. -3 cannot remember all its support-checks. Pseudo
code forAC-3 and for therevise algorithm upon which it depends is depicted in Figures 4.1
and 4.2. Theforeach s € S do statement” construct assigns the membersdro s from small

to big and carries ouitatement after each assignment.CA3 usesarc-heuristicsto repeatedly
select and remove an artyg,y), from a data structure called queue(a set, really) and to
use the constraint betweanandy to revisethe domain ofr. Here, to revise the domain of

x using the constraint betweenandy means to remove the values frotyx) that are not
supported byy. AC-3's arc-heuristics determine the constraint that will be used for the next
support-check. Besides these arc-heuristics there arelafain-heuristics These heuristics,

if given the constraint that will be used for the next support-check, determine the values that
will be used for the next support-check. The interested reader is referfdthtkworth, 1977;
Mackworth and Freuder, 198%or further information aboufC-3.

function AC-3(X) : Boolean;

Q= { (z,y) € X2 : zandy are neighbou@; function revise(z, y, var change,) : Boolean;
while Q # 0 do begin begin
select and remove any afe;, y) from Q; change,, ‘= false;
if notrevise(z,y, change,,) then foreach r € D(x) do
return false; if Ac € D(y) s.t.c supports- then begin
else if change,, then D(z):=D(x)\{r};
Q:=QU{(zz) : z#wy, zisaneighbour of }; change,, = true;
end,; end;
return true; return D(z) # 0;
end; end;
Figure 4.1: The AC-3 algorithm. Figure 4.2: Algorithmrevise.

Wallace and Freuder pointed out that arc-heuristics can influence the efficiency of arc-con-
sistency algorithmBwallace and Freuder, 19R2Similar observations were made by Genal.
[Gentet al, 1997. Despite these findings only a few authors describe the heuristics that were
used for their experiments. We believe that to facilitate ease of replication all information to

8

repeat experiments should be described in full. This includes information about arc-heuristics.

Bessere and Rgin presentedC-2001, which is based oAC-3 [Bessere and Rgin, 2001
(see alsdZhang and Yap, 20Q1for a similar algorithm). A-2001revises one domain at a
time. The main difference betwe&C-3 andAC-2001is thatAC-2001uses a lexicographical
domain-heuristic and that for each variablefor eachv € D(z) and each constraint between
x and another variablg it remembers the last support for € D(z) with y so as to avoid
repeating checks that were used before to find support forD(x) with y. AC-2001has an
optimal upper bound of(ed?) for its worst case time-complexity and its space-complexity is
O(ed). AC-2001behaves well on average. It was observed #&3 is a good alternative for
stand alone arc-consistency if checks are cheapG8m are under-constrained but th&t-3
is very slow for over-constrainedSPs andCSFs in the phase transitidiBessereet al., 1999;
Bessere and Rgin, 200].

We made similar observations in experimental comparisons betweéen AC-2001 and
AC-3,, which is a cross-breed between Mackworths-3 and Gaschnig’'® EE [Mackworth,
1977; Gaschnig, 1978; van Dongen, 20024/ did not consider search. The only difference
betweemAC-3 andAC-3; is thatAC-3, sometimes takes two arcs out of the queue and simultane-
ously reviseswo domains with adouble-supportiomain-heuristic. A double-support heuristic
is a heuristic that prefers checks between two values each of whose support statuses are un-
known. For two-variablecSPs the double-support heuristic is optimal and requires about half
the checks that are required by a lexicographical heuristic if the domain sizes of the variables
are about equal and sufficiently larfean Dongen, 2003a AC-3; and MAC-3, have a low
O(e + nd) space-complexity. Our results indicated tha&t-3,; was promising for stand alone
arc-consistency.

Chapter 5

Detailed Description of Other MAC-3
Based Algorithms

5.1 Introduction

In this chapter we shall descrit@AC-3,;, MAC-3,, MAC-2001, andMAC-2001, in more de-

tail. The presentation is to provide a good understanding of the basic machinery of the algo-
rithms and to highlight the differences between them. The presentation is not meant to describe
an efficient implementation. As part of the presentation we shall provevihat-2001 has a
O(edmin(n, d)) space-complexity.

5.2 MAC-3; and MAC-3,

AC-3; is a cross-breed betweai-3 andDEE [Mackworth, 1977; Gaschnig, 19/8seudo-code

for AC-3; is depicted in Figure 5.1. The only difference betwa&n3 andAC-3, is thatAC-3;
sometimes takes two arcs out of the queue sintiltaneouslyevisestwo domains with Algo-
rithm D. Pseudo code fdP is depicted in Figure 5.2D uses alouble-supportdomain-heuristic,

i.e. a heuristic which prefers double-support checks. The constastgported, single, and
double that are used if® are pairwise different and smaller than the values in the domains of the
variables.

AC-3, is a “poor man’s” version oRC-3;; It is not as efficient but easier to implement. It can
be obtained fronAC-3, by replacing the call t® in the 7" line of AC-3, by “revise(, y, change,)
and revise(y, r, change,).” The difference betweeAC-3, andAC-3, is AC-3,'s double-support
heuristic.

D’s space-complexity i€)(d). In D the row-supportare the values irD(x) that are sup-
ported byy and thecolumn-supportre the values iD(y) that are supported hy. It easy to
prove thatD correctly computes its row-support. To prove that it also correctly computes its
column-support is not much more difficult. The proof relies on the fact that after establishing
row-support any: that is not yet known to be supported can only be supported byam (z)
such thatkind|r] = double A rsupp[r] < c.

10

function AC-34(X) : Boolean;
Q:={(z,y) € X? : zandy are neighbour};
while Q # 0 do begin
select and remove any afe;, y) from Q;
if (y,) is also inQ then begin
remove(y, z) from Q;
if notD(z, y, change,, change,) then
return false;
else begin
if change, then
Q =QU{(zx) : z#y,zisaneighbour of };
if change,, then
Q :=QU{(zy) : z # z, zis aneighbour of };
end
end
else if not revise(x, y, change,,) then
return false;
else if change,, then
Q =QU{(zx) : z#y,zisaneighbour of };
end;
return true;
end;

Figure 5.1: The AC-3algorithm.

function D(z, y, var change,,, var changey) : Boolean;
begin
change,, = false;
change,, = false;
foreach ¢ € D(y) do
csupp|c] := unsupported;
/* Compute row-support. */
foreach r € D(z) do begin
rkind|[r] .= unsupported,
rsupp|r] := unsupported,
if 3¢ € D(y) s.t.csupp|c] = unsupported and c supports- then begin
rsupp|r] := first such value:;

csupprsupp[r]] := 7,
rkind[r] := double;
end

else if 3¢ € D(y) s.t. csupp|c] # unsupported and c supports: then begin
rsupp|r] := first such value:;
rkind[r] 1= single;
end
else begin
D(z) == D(@)\ {r };
change,, ‘= true;
end;
end;
/* Complete column-support. */
foreach ¢ € D(y) s.t.csupp|c] = unsupported do
if #r € D(z) s.t.rsupp[r] < c and rkind[r] = double and r supports: then begin
D(y) := D)\ {ch
changey = true;
end;
return D(z) # 0;
end;

Figure 5.2: AlgorithnD.

11

AC-3; andAC-3, inherit their@®(ed?®) worst case time-complexity and(e+nd) space-com-
plexity from AC-3. MAC-3,; (MAC-3,) is implemented by replacingC-3 in MAC-3 by AC-3;
(AC-3,). The space-complexity ®IAC-3, andMAC-3, is equal toO(e + nd).

5.3 MAC-2001 and MAC-2001,

Pseudo-code for an arc-based versiod0f2001and therevise-2001algorithm upon which it
depends is depicted in Figures 5.3 and 5.4. For the purpose of the presenta&t@2001it is
assumed that the values in the domains are ordered from small to big. For each vgriable
each valuer € D(zx), and for each neighbourof z it is assumed thalust[z][v][y] is initialised
to some value that is smaller than the value®ity).

function revise-2001(z, y, var change) : Boolean;

function AC-2001(X) : Boolean,; begin
begin change = false;
Q:={(z,y) € X? : zandy are neighbour}; foreach r € D(z) do
while Q # 0 do begin if last[z][r][y] ¢ D(y) then
select and remove any afe;, y) from Q; if 3¢ € D(y) s.t.c > last[z][r][y] and c supports then
if not revise-200X(z, y, change,,) then last[z][r][y] := the first such value;
return false; else begin
else if change,, then D(z):=D(x)\{r};
Q:=QU{(zz) : z#wy, zisaneighbour of }; change = true;
end; end;
return true; return D(z) # 0;
end; end;
Figure 5.3: Arc-based version of AC-2001. Figure 5.4:revise-2001.

AC-2001finds support fon € D(z) with y by checking against the values in(y) from
small to large. It uses a countérst[z]|[v][y] to record the last check that was carried out.
This allows it to save checks the next time supportdoe D(z) has to be found withy if
last|x][v][y] € D(y). Furthermore, checks are saved by not looking for support with values that
are less than or equal test[x][v][y] € D(y).

MAC-2001requires additional data structures during search. It maintains the céuwtef[v][y]
to remember the last support fore D(x) with D(y). The space-complexity déstis O(ed)
[Bessere and Rgin, 200]. It seems to have gone unnoticed so far thi&C-2001 has a
O(ed min(n, d)) space-complexity. The reason for this space-complexity isMi#at-2001 has
to maintainthe data structuréust. This only seems to be possible using one of the following
two methods (or a combination):

1. Save all relevant counters once befaw@-2001 Upon backtracking these counters have
to be restored. This requires(a(ned) space-complexity becauge(ed) data structures
may have to be savedtimes.

2. Save each counter before the assignmentstidz|[v][y] in revise-2001 and count the num-
ber of changes;, that were carried out. Upon backtracking, restorectheunters in the

12

reverse order. This comes at the price of a space-complexity(ef?) because each of
the 2ed counters may have to be savedd) times.

Therefore MAC-2001s space-complexity i®)(ed min(n, d)). Christian Bessire (private com-
munication) implementetAC-2001 using Method 2.

The consequences BFAC-2001's space requirements can be prohibitive. For example, with-
out loss of generality we may assume the usual lexicographical value ordering.=Lelt > 1
and consider the binar@SPwhere all variables should be pairwise different. Finally, assume
that Method 2 is used f(MAC-2001 (Method 1 will lead to a similar order of space-complexity).
Note that the “first” solution can be found with a backtrack free search. Also note that in the first
solutioni is assigned to theth variable. We shall see thstAC-2001 will require a lot of space
to solve the givercSP.

Just before the assignmentiab thei-th variable we have the following. For each variable
x, for each variabley # z, and for eactv € D(z) = {4,...,n} we havelast|z|[v][y] =
min({4,...,n} \ {v}). To make theCSParc-consistent after the assignment @b thei-th
current variable, (only) the valuehas to be removed from the domains of the future variables.
Unfortunately, for each of the remainimg— : future variables:, for each of the remaining — ¢
valuesv € D(x) \ {i}, and for each of the remaining— i — 1 future variables, # x, i was
the last known support far € D(x) with y. This means thatn — i)? x (n — i — 1) counters
must be saved and incremented during A@ 2001 call following the assignment af to the
i-th variable. In totalMAC-2001hasto save ;! (n —i)? x (n—i—1),i.e.(n —2) x (n —
1) x n x (3n — 1)/12 counters. Fon = d = 500, MAC-2001 will require space for at least
15,521,020, 750 counters and this may not be available on every machine. Somefdes
algorithms that do not re-discovdp require a lot of space, even for deciding relatively small
CSHhs that allow a backtrack free search.

The last thing that remains to be done in this chapter is to desa@b2001,. This algorithm
is to AC-2001whatAC-3, is to AC-3. If its arc-heuristic selectéz, y) from the queue and if
(y,x) is also in the queue then it will remove both and use (at most) two catts/itee-2001 to
revise the domains aof andy.

13

Chapter 6

Experimental Results

6.1 Introduction

In this chapter we shall experimentally comp&t&C-2001, MAC-2001,, MAC-3,, MAC-3, and

MAC-3 for random and real-world problems. For the random problems we implemented sup-
port-checks as cheap lookup operations in arrays. For the real world problems we implemented
support-checks as (more) expensive function calls.

6.2 Implementation Details

All implementations were based on our own implementatiomafC-3,; and all used the same
basic data structures that were usedt®C-3,. The implementations ol AC-2001andMAC-3,

were arc-based. This allowed us to evaluate the algorithms for different arc-heuristics. Previ-
ously, we used Christian Bessé’s variable based implementationAC-2001 [van Dongen,
2003H. However, Bessire’s implementation came with only one arc-heuristic, was a specialised
version for random problems and was about 17% slower than our own implementation.

All solvers were real-full-look-ahead solvers and to ensure that they visited the same nodes in
the search tree they were equipped with the same dom/deg variable ordering heuristic. Using the
notation introduced in Section 3 this heuristic is givensiy e @7, wheref(v) = x(v)/d,(v).

We considered three different arc-heuristics, called rlex, and comp. Using the notation
introduced in Section 3 these can be defined as:

lex = ®§°W2 o ®§Om :
rlex = ®§°”1 ° ®§°“2 , and
comp = ®7§o7r2 ° ®52007r2 ° ®:;o7r2 ° ®7§07r1 ° ®(Szco7r1 ° ®/;o7r1)

The queue was implemented as a directed gr@phThis data structure containsca(n)
linked list N to represent the nodes 6f that have an incoming ardy = {z : (z,y) € G }.
The data structure also containgén) array that contains a linked lists for each member of
N to represent the other ends of the arcs. The total size of these linked lists does not exceed

14

O(e). This brings the space-complexity for our queue representatigr{¢p. We did not use a
O(n x n) lookup table to quickly find out if a certain arc was in the queue. Had we used such
table then we should have changed our claim about the space-compleM#&®i3, MAC-3,
andMAC-3, to O(nmax(n, d)).

With this implementation of the queue, selecting the best arc with respéat takes(1)
time, whereas selecting the best arc with respecktoandcomp takes®(n) time. The heuristic
comp requires a few more words. At the moment of writing is the best known arc-heuristic for
MAC-3,. Further in this chapter we shall see that it is also an excellent heuristic for the remaining
algorithms. Profiling revealed that arc-selection f#&C-3, with comp usually takes between
10% and 20% of the solution time, whereas selection Veitthardly takes any time. However,
comp has a far better effect on constraint propagation than baetlndrlex and investing in it
is well spent. We intend to cut down the time for arc-selection witlhp by supporting it with
a special data type for the queue. Itis not quite clelaythis heuristic has such a good effect on
constraint propagation. This is something we intend to investigate further.

6.3 Random Problems

Random problems were generated for< n = d < 30. We will refer to the class of problems

for a given combination of. = d as the problem class wigizen. The problems were generated

as follows. For each problem size and each combindt©yi") of average densit¢’ and uni-

form tightnessT" in { (#/20,7/20) : 1 <4,5 <19} we generated 50 rando@SFs. Next we
computed the average number of checks and the average time that was required for deciding the
satisfiability of each problem usingAC search. All problems were run to completion. Frest

al.’s model B[Gentet al, 2001 random problem generator was used to generate the problems
(http:/iwww.lirmm.fr/"bessiere/generator.html).

The test was carried out in parallel on 50 identical machines. All machines were Intel Pen-
tium Il machines, running SuSe Linux 8.0, having 125 MB of RAM, having a 256 KB cach size,
and running at a clock speed of about 930 MHz. Between pairs of machines there were small
(less than 1%) variations in clock speed. Each machine was given a unique identifier in the range
from 1 through 50. For each machine random problems were generated for each combination
of density and tightness. TheSPgenerator on a particular machine was started with the seed
given by 1000 times the machine’s identifier. All problems fitted into memory and no swapping
occurred.The solution timencludedcounting the checksThe total time for our comparison is
equivalent to more than 100 days of computation on a single machine.

Figures 6.1 and 6.2 depict scatter plots of the time requireMBAgZ-2001, and MAC-3,
both equipped with @omp heuristic versus the number of checks that they required to find the
first solution for problem size 30. Both figures suggest that the solution time linearly depends on
the number of checks. A similar linear relationship between the solution time and the number
of checks was observed for all algorithms, for all heuristics, alhgroblem sizes. Note that
the figures demonstrate that many problems were difficult and took tens of minutes to hours to
complete.

Figure 6.3 depicts a scatter plot of the checks requiretMBgZ-3,; with comp versus the

15

1.2e+04 T T T T 9.0e+03

‘
Jr
8.0e+03 -
1.0e+04 [+
7.0e+03 -+
8.0e+03 |- + g 6.0e+03 | _|_+
5 T +
g + 3 5.0e+03 [
& 6.0e+03 | 0
g S s0e+03 |
s
4.0e+03 | 3.0e+03 |
2.0e+03 |
2.0e+03 |-
1.0e+03
0.0e+00 ‘ ‘ ‘ ‘ 0.0e+00 ‘ ‘ ‘ ‘ ‘
0.0e+00 5.0e+09 10e+l0 L5e+10 20e+10 25e+10 0.0e+00 1.0e+10 20e+10 3.0e+10 4.0e+l0 50e+10 6.0e+1C
Checks Checks

Figure 6.1: Size 30: Scatter plot of time of Figure 6.2: Size 30: Scatter plot of time of
MAC-2001, with comp arc-heuristic for first MAC-3,; with comp arc-heuristic for first so-

solution vs. average number of checks. lution vs. average number of checks.
6.0e+10 T T T T 9.0e+03 T T T T
+
8.0e+03
5.0e+10 +
7.0e+03 -+
4.0e+10 - + 1 6.0e+03 | +
+ 4
= + S +
o o 5.0e+03
S =+ S
N 3.0e+10 N
2 2 4.0e+03 |
= =
2.0e+10 3.0e+03
2.0e+03
1.0e+10
1.0e+03
0.0e+00: L L L L 0.0e+00: L L L L L
0.0e+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10 2.5e+10 0.0e+00 2.0e+03 4.0e+03 6.0e+03 8.0e+03 1.0e+04 1.2e+04
Checks Time

Figure 6.3: Size 30: Scatter plot of num-Figure 6.4. Size 30: Scatter plot of time of
ber checks of MAC-2001with comp arc- MAC-2001, with comp arc-heuristic for first
heuristic for first solution vs. number checkssolution vs. time of MAC-3 with comp arc-
of MAC-3, with comp arc-heuristic. heuristic.

16

number of checks required BYAC-2001, with comp for problem size 30. Figure 6.4 depicts a
scatter plot of the time required BYAC-3; with comp versus the time required bYAC-2001,

with comp for problem size 30. Both figures suggest that there is a linear relationship between
the number of checks required BAC-3, andMAC-2001, and between the solution times of
MAC-3,; andMAC-2001,. Again, similar linear relationships were observed for other combina-
tions of algorithms.

T T T T T T T T
10 - q 10 -

T
MAC-3 (lex) —=— G
09 - MAC-3p (comp) ---&—- 4
) MAC-3d (comp) &
S MAC-2001 (rlex) o » 08}
2 o08r MAC-2001p (rlex) - |] £
S MAC-2001 (lex) =
S o7k MAC-2001p (lex) --=-- || S
2 .. MAC-2001 (comp) & = 06l =
£ e MAC-2001p (comp) --&-- g U
El 0.6 B g s ®
s . e . g
& 05F o o o
g B B 041 MAC-2001 (flex) o
& [&~ B SN HIU = SO S SO = SO] ° MAC-2001p (rlex) --o--
5 04 Pea, CBEgLmgLgs N e e MAC-2001p (lex) -~
<] 5. N TS g gy [MAC-2001 (lex) -
© 03 \‘ﬂ_ﬂ B S PNSN 02 MAC-2001 (comp) & |]
. MAC-2001p (comp) --&--
I gy | MAC-3 (lex) —=—
0.2 R = R - = B MAC-3p (comp) -—&-—-
MAC-3d (comp) ----&---
. 0.0 ;i T T
14 16 18 20 22 24 26 28 30 14 16 18 20 22 24 26 28 30

size size

Figure 6.5: Ratio of average number of checkd-igure 6.6: Ratio of average solution time vs.

vs. problem size for random problems andproblem size for random problems and search.
search. For each size the average numbdfor each size the average time is divided by
checks is divided by the average number ofthe average time required by MAC-2001 with

checks required by MAC-3 with thé&z arc- therlex arc-heuristic.

heuristic.

Figure 6.5 depicts the ratio between the average number of checks on the one hand and the
average number afIAC-3 with a lex arc-heuristic on the other for problem sizes 15-30 and
different combinations of algorithms and arc-heuristics. Similarly, Figure 6.6 depicts the ratio
between the average solution time and the average solution tifveAGE2001 with an rlex
arc-heuristic. The order from top to bottom in which the algorithms and heuristics are listed in
the legends of the figures corresponds to the height of their graphs for problem size 30. It is
difficult to see but what seem to be two lines at the bottom of Figure 6.5 are two pairs of lines.
The pair at the bottom correspondsM&C-2001 andMAC-2001, with a comp heuristic. The
other pair corresponds MAC-2001andMAC-2001, with alez heuristic. As the problem size
increases the lines fanAC-2001andMAC-2001, with anrlexz heuristic also seem to converge.
MAC-2001, andMAC-2001with a comp heuristic are the best when it comes to saving checks.

It is interesting to observe that wh&hAC-3 andMAC-3,, are both equipped with the same
heuristic thenMAC-3,, solves more quickly on average (except for small problem sizes). Simi-
larly, MAC-2001, solves more quickly thamMAC-2001 Apparently, the choice to process the
reverse arc if it is in the queue has a good effect on constraint propagation. It is our intention to
further investigate the effect that always processing the reverse arc if it is also in the queue has
on constraint propagation.

17

For problem size 30 the average solution timeMXC-2001, was about 36.289 seconds,
that of MAC-2001 was about 40.294 seconds, and thama#C-3,; was about 29.910 seconds.

On average and over all problemsAC-2001, required about 21% more time thamAC-3,,
whereasMIAC-2001required about 35% more time.

For any heuristic that was under consideration and when it comes to savinglA&@€001
andMAC-2001, are never better on average thdAC-3, MAC-3, andMAC-3,. Our findings
aboutMAC-3, are consistent with our previous wokkan Dongen, 2002a; 200BFhe results
aboutMAC-2001andMAC-3 are in contrast with other results from the literat[Bessére and
Régin, 200]. However, our findings should not be dismissed because the literature does not
agree; Our testing has been fair and thorough and we cannot recall having seen such compre-
hensive comparison before. AC-3 with lex requires about 5 times more checks on average
thanMAC-2001 and MAC-2001, with comp but solves more quickly on average. The lack of
intelligence in it's strategy for propagation does not seem to hineC-3 at all when checks
are cheap. It is even more interesting becaus€-3 performed even better wittomp.

Figures 6.5 and 6.6 seem to suggest that as a rule and given one of the algbtilore001
andMAC-2001, the heuristiccomp was better thadez which, in its turn, was better thariex
both for checks and time. A further investigation of the test data revealed that this was, indeed,
true.

For random problems and for clock on the wall time the best algorithmvves-3,; with a
comp heuristic. MAC-3, with a comp arc-heuristic was a good second ARI-3,’'s double-sup-
port heuristic allows it to improve omAC-3,,. Overall, the best algorithm from thé¢AC-2001
family required more than 21% more time on average Mac-3,.

6.4 Statistical Analysis

In this section we shall statistically analyse the relationship between the average solution time
of MAC-2001,, the quickest algorithm from thIAC-2001 family, andMAC-3,, the quickest
lightweight, both with acomp arc-heuristic. In the remainder of this section,7gbe the average

time required byMAC-i.

To find out about the relationship betwegi,;, and7Z;, we used a standard linear regression
analysis for the modélyyy,, = a+b x T3, + ¢ x tightnesst- d x density for problem sizes 15-30.
Figures 6.7—6.10 depict the values for the coefficients versus the problem size. The error
bars in the figures indicate the size of the 95% confidence intervals of these coefficients.

Figure 6.11 depicts the ratio between the model sum of squares and the sum of squares
values (usually denotefl?). R? was always at least 0.98. When the problem size increased this
R? value tended to converge quickly to 1. This indication that the models are good and became
better as the problem size increased.

Figure 6.8 suggests that the rafig,;, /73, increases as the problem size increases. If this
is a real trend then not only wiMAC-2001, require more time thamAC-3, but also will it
require proportionally more time as problems become more and more difficult.

18

1.00e-01

0.00e+00 | —— ,
-1.00e-01 | ~ ,

© \\

£ -2.00e-01 | ,

k]

£ -3.00e0L | B

[73 A

8

S .400e-01 | \ ,

s 3

@ -5.00e-01 —

¢

8 -6.00e-01 v

g \

& 700e01 ¢ ,
-8.00e-01 | ,
-9.00e-01 | ,
-1.00e+00 : : ‘ ‘ ‘ ‘ ‘ :

14 16 18 20 22 24 26 28 30

Figure 6.7: Value ofi for 7501, = a + b X
T3, + ¢ x tightness + d x density for search.

4.50e-02
4.00e-02 | } |
3.50e-02 |
£ A
& 3.00e02 | P
s i
£
Q 2.50e-02 | |
s}
s |
S 2.00e-02 F -
g / |
5 v
& 150e-02 . }% -
) s “
: ,,/ \E/ “v
& 1.00e-02 | . .
5.00e-03 | s |
,«1/
0.00€+00 [+---tmmmmmmmpmmm e E” |
-5.00e-03) ‘
14 16 18 20 22 24 26 28 30
size

Figure 6.9: Value ot for 75001, = a + b X
75, + ¢ x tightness + d x density VS. size.

T T T T T T T T
1.00e+00 - B
9.95e-01 | bl

[

<

&

S

© 9.90e-01 (- B

S

©

>
9.85e-01 4
9.80e-01 . . . -

14 16 18 20 22 24 26 28 30

Figure 6.11: Value ofR? for To001, = a +
b x T3, + ¢ x tightness + d x density VS.
size.

19

1.20e+00 | AL S

1.18e+00 | B

1.16e+00

1.14e+00 | g 1

linear regression coefficient b

112e+00 |/ —

1.10e+00 I I I I I I I I
14 16 18 20 22 24 26 28 30

Figure 6.8: Value ob for 75001, = a + b X
T;, + c x tightness + d x density VS. Size.

1.20e+01

1.00e+01

8.00e+00

6.00e+00

4.00e+00

T
[
L

2.00e+00

linear regression coefficient d

0.00e+00 ez 4

-2.00e+00 : : : : : : : :
14 16 18 20 22 24 26 28 30

Figure 6.10: Value off for 75091, = a + b x
75, + c x tightness + d x density VS. Size.

6.5 Real-World Problems

The real-world problems came from tl&€LAR suite[CELAR, 1994. We considered all prob-
lems RLFAP 1-11 and GRAPH 1-14). However, we did not consider optimisation but only
considered satisfiability.

These problems have become a sort of a standard benchmark for real-world problems. All
constraints in these problems are of the form-w | < ¢, |[v—w | > clv—w| < ¢, |v—w| > ¢
or| v —w | = ¢ for different coefficientg. Checks were implemented as function calls. We used
the following implementation in C.
#define SATISFIES(/* CONSTRAINT_POINTER * constraint \

, I* int * val_v \
, [*int * val_w \

constraint->rifap_function(constraint->idx_a, \
constraint->idx_b, \
val_v, \
val_w, \
constraint->rlfap_val)

Here constraint->idx _a and constraint->idx _b are the numbers of the variables
that are involved in the constraint andnstraints->rlfap _val stores the coefficient

Note that the function call requires some overhead. The overhead consists of the retrieval of the
numbers of the variables and that of the coefficienFor each comparison operatetr >, <,

>, and= a function was implemented to compare— w | andc. For example, the function to
decide if| v — w | = ¢ was implemented as follows:

int rifap_eq(int idx_a, int idx_b, int val_a, int val_b, int number) {

return (abs(domains[idx_a].numbers[val_a] -
domains[idx_b].numbers[val_b]) == number);
}

and for each constraint of the form» — w| = ¢ between the variables with numbedx _a
andidx _b we initialised the constrainttonstraint " between these variables as follows:

/* initialises “constraint” between variables a and b with numbers idx_a and idx_b

* such that for each v in Domain(a) and w in Doman(b) we have | v - w | == c.
*/

constraint->idx_a = idx_a;

constraint->idx_b = idx_b;

constraint->rlfap_val = c;

constraint->rifap_function = rlfap_eq;

Notice that the functiomlfap _eq requires 4 array subscriptions, one more function call to a
function calledabs, two “offset” computations (thenumbers operations), and a comparison.

It is hoped that the reader agrees that for the real-world problems the checks are more difficult
than for the randon€SPs where they only required two array subscriptions. Note that the solu-
tion timeexcludesounting the checks. Comments about this different set up will be provided at
the end of this section.

All problems were solved on the same machine. This machine was one of the machines that
were used to solve the random problems. The specifications of such machine can be found in
Section 6.3. For every problem we computed the average solution time over 50 runs. For all
problemsd = 44.

The results for the tests are depicted in Tables 6.1-6.6 on Pages 23—-28. For each problem the
least average number of checks and least average solution time recorded for that problem for all

20

arc-heuristics are printed in > For each of the remaining heuristics the least
average number of checks and least average solution time are printedceiand italics The
values in column “ac” tell whether the problem could be made arc-consistent initialy.

Again MAC-2001 andMAC-2001, are the best when it comes to saving checks. It pays off
for RLFAP 11, GRAPH 4 GRAPH 6 GRAPH 10 andGRAPH 11 For these problems they
record the best solution time. AMC-2001, has to share the best solution time wMIAC-3,; and
MAC-3, for GRAPH 6 and GRAPH 11 MAC-3, performs quite well. For 21 out of the 25
problems it records the best solution time and for 15 out of those 21 problems it does so for
comp. MAC-3; solved quickly both for problems that required search and those that did not.

It should be observed that all problems have a relatively low density—it is always below 7%.
It should be interesting to also compare the algorithms for larger real-world problems.

Comment 1 (The impact of counting checks)Remember that the timings that we report on in

this section do not include the time for counting checks. In a paper which was submitted for
publication we reported on results from a subset of the problems that we report on in this sec-
tion. However, for that paper weid include time for counting. It was much to our surprise
when we observed that (for@mp heuristic) when countingvasincludedMAC-3, recorded a
solution time of 5.345 seconds fBILFAP 11whereas it required only 3.723 seconds if count-

ing was excluded. SimilarlyyAC-3 required 7.861 seconds with counting but 4.950 seconds
without. Finally, MAC-2001, required 3.866 seconds with counting and 3.335 seconds without.
These findings demonstrate that counting checks can haigndicantimpact on the solution

time of algorithms, especially if these algorithms spend many checksMA&Gr3, the algo-

rithm that requires most checks fRILFAP 11, the ratio of solution times is 1.588, whereas for
MAC-2001,, the algorithm that requires the fewest checks for the same problem, the ratio is only
1.159. Whereas it may be argued that including the counting of checks simulates an environment
where checks are more expensive, we believe that to separate the counting and timing will result
in a fairer comparison. After allanyalgorithm that spends more thaa? checks is inefficient if

only (very expensive) checks are considered, but there are mealyapplications where checks

are cheap and it is only possible to find out how well an algorithm can perform on such prob-
lems by omitting the counting of checks. Also it should be interesting to find out which users in
professional working environments are more interested in knowing about the number of checks
carried out by the tool calleMAC that they use to solve their daily problems and which of them
are more interested in a significant reduction of its solution time.

Comment 2 (Timing without counting) In the light of Comment 1 it should be interesting to
once more carry out our experiments with random problems this time excluding the counting of
checks from the solution time. We anticipate that:

e The ratio between the average solution times of\Mt#ec-2001 family and the lightweight
family will increase;

e MAC-3 will become (much) more competitive compared to Ba#kC-3, and MAC-3,
from the perspective of average solution time;

21

e MAC-3,’s solution time will improve upon that ®1AC-3,,.

In summary, for the real-world problems that we consideviéd-2001, andMAC-2001are
the best algorithms when it comes to checksA®A3, recorded the quickest solution time for
the vast majority of the problems. We have provided reasons why the counting of checks should
be excluded from the solution time.

22

‘7—T dV471d swa|goid pjiom-[eal 1o} synsal abeiany :T°9 a|jgeL

88T'0 6S2°0 29T'0 S0+9829°L 90+806%'T 90+3087'TS8A 0pL'T /96€ 089 ¥ dv4T1d “T00Z-OVIN
8620 69S'0 69T'0 90+3Y9¥'T 90+9EEL'T 90+9E09'T Sohk 94.'T /96€ 089 Vv dvd1d TO00Z-OVIN
7910 6¥C0 90+9EGL'T 90+3.¥9'T SS9k 9’7 /96€ 089 v dV4d1d Pe-OvVIN

T8T0 9/2°0 L.T'0 90+37SO°'T 90+3.0S'C 90+290%'C S9hk %/'T /96€ 089 v dV41d ‘e-OVIN
00€'0 86E€'0 68T'0 90+9T.Z'C 90+9TZE'E€ 90+988.°C SoK 95/'T L96€ 089 v dvdld €-OVIN
TSTO €ST0 OvTOo G0+980G'6 G0+998%7'6S9A 94G'E 09/2 00v €dv41d “T00Z-OVI
6GT'0 89T'0 6ET'0 GO+39ZZT'6 GO+9E0S'G0+9T6Y'6 S9A %G'E 09/¢ 007 €dvd1d TO00Z-OVIN
GET'0 TZI039900°T 90+302¢'T 90+99/E€T S8k %G'E 09/¢ 00 € dvd1d Pe-OvVIN

SVT'0 6VT'0 9ET'0 90+90E8'T 90+8920'C 90+98.6'T S9A G'E 09/¢ 00 €dvd1d ‘e-OVIN
/ST'0 8ST'0 9ET'0 90+9TOT'Z 90+8GG0'C 90+9ZET'Z S9A %G'E 09/Z¢ 00 €dvdld €-OVIN
/S0'0 090°0 /S0'0 GO+9ZET'¥ S0+8/9€'% SO+9¥9E¥S8A 942’9 GEZT 002 Zdv4T1d “T00Z-OVIA
090'0 #90°'0 9S00 SO+30¥T'v G0+9/9L B0+30.EV S8k %Z'9 GECT 00Z <Z2dvd1d TO00Z-OVIN
TG00 L¥0°0 GD+9976'G S0+9089°'S S9A 92’9 GECT 002 <cdvd1d Pe-OvVIN

2S0°0 /SO0 #S0'0 GO+998€'. G0+98Z¢'8 GO+9/GT'8 S8k 9429 GECT 00Z ¢Zdvd1d ‘e-OVIN
8G0°'0 8S0'0 €£S0'0 S0+9¥65'8 G0+98/G'8 G0+98/9'8 Sah %Z'9 GECT 002 ¢ dvdid €-OVIN
Gre'0 TEEO0 9820 90+92G8'T 90+9678° TS9A %E'T 8vSS 9T6 T dvdT1d “T00Z-OVIA
8/€0 T6E0 G820 90+98/L°'T 90+8GG8'T 90+90G8'T SoA E'T 879G 9176 TdVvd1d TO0Z-OVIN
€8¢'0 86¢0 90+96T6'T 90+92/9'C 90+986G°C SoAk %E'T 8799 916 Tdvd1d Pe-OvVIN

LES0 2SS0 8820 90+9GE9°€ 90+9696'C 90+9Z68'€ S9Ak %e'T 8799 916 Tdvd1d ‘e-OVIN
€880 9/£°0 0620 90+3S9T'¥ 90+3%¥20'% 90+3T¥rZv S9A %e'T 8799 916 Tdvd1d €-OVIN
duod xa)d x9) duwioo)4 z9] oe Ausuap 9 U wajqoid wylioby

awirL SY99yD

23

‘8—G 4414 swajqoid pliom-eal o} synsal abelany :Z'9 ajgel

LTO0 800 8¥0'0 V0O+9EB8E'E GO+9ET6'F GO+3096'tr OU WP'T /G 916 8dv41d “T00Z-OVIN
.10 T80'0 €900 GO+3TTI¥r'6 GO0+9985'Y G0+3/88'9 OU U%V'T /G 916 8dvd1d TO00Z-OVIN
0/0'0 S€0°0 G0+208Y'¥ G0+91¥9.°€ OU Wi'T /S 916 8dvd1d Pe-OvVIN
9T00 800 S¥0'0 P0O+o9€E9’C G0O+9/./8'9 GO+9EGZ'9 OU WP'T /S 916 8dvd1d ‘e-OvVIN
89T'0 6400 6S00 90+°TLT'T G0+9901'9 GO+3v¥6'8 OU UWi'T vw/lS 916 8dvd1d €-OVIN
G000 €¥0°'0 ¢CEO0'0 P0+9288'¢ GO+99/V'€ GO+998G'€E OU 069°C G982 00v Ldvd1d “T00Z-OVI
GG0°'0 €00 SGEOO0 GO+ov/.9F GO+98LT'GS GO+9GEEY OU %I'E G98¢ O00% [Ldvd1d TO00Z-OVIN
8€0°0 €200 G0+98GY'E GO0+9EEL'COU UWO'E G98¢ 00% /L dvd1d Pe-OvVIN
¥¥00 O0€00 P0+°9888°¢ GO+3GZT'S GO+9C¢TStr OU 09°E G98¢ 00% /L dvd1d ‘e-OVIN
TG00 S/00 €E00 S0+°2009'9 GO+9TZT'8 GO+9/E¥'S OU 9%9'E G98¢Z¢ 00% [dvd1d €-OVIN
8T00 T900 /v0'0 SGO+9T6T T GO+9TcL'G GO+99/.T'GOU 06/.°9 Z2ET 00C2 9dv41d “T00Z-OVIN
8600 6900 TS0'0 4G0+°98TS9'S GO+9¥609 4GO+990.'G OU 9.9 CCET 002 9dvd1d TO00Z-OVIN
GG0'0 000 @D+9€/9'9 GO0+90T9'G Ou 0.9 ¢¢eT 002 9dVv4d1d Pe-OvVIN
GTO0 9900 TG00 GO+998E€'T GO+999G9'6 GO+97GZ'8 OU 9%/L'9 ¢¢ET 00Z 9dvd1d ‘e-OVIN
/G600 6400 /SO0 SO+e2v¥#0'8 90+9TST'T SGO+99¥.6 OU 9%/L°9 ¢C¢ET 002 9dvdid €-OVIN
YI6'T 996'¢ TSv'v 90+9¥T9'G L0+92Z¥T'TS9A o%E'E 8662 00v Sdvd1d “T00Z-OVIN
026'T 926'C 8680#+98G¥'C 90+8/9/.°G L0+99%T'T Sk og'e 86G¢ 007V SdVvd1d TO0Z-OVIN
798'T 96E£'E€ G6T'L 90+99G8'+% L0+3.0E€'C L0+9€9G'8 Sk og'e 86G¢ 00 Sdvd1d Pe-OvVIN
G88'T LIV'E LTZ'L 90+30¥T'S L0+3/GE'C LO+9E€E9'8 Sak og'e 86G¢ 00 Sdvd1d ‘e-OVIN
98TE €2.°9 90+9TT9'S /L0+32T¥'C L0+36¥9'8 SoA %e'e 86G¢ 00 Sdvd1d €-OVIN
duod xa)d x9) duwioo)4 z9] oe Ausuap 9 U wajqoid wylioby

awiL S RELe)

24

"TT—6 dVv41d swajqo.d pliom-feal 1o} synsal abelany :£'9 ajqel

/968 6V96 L0+9906°Z L0+8%78%7'€S9A 9%48'T €O0Ty 089 TITdv4T1d “T00Z-OVI

ev.'e vl'6 676'0T LO+9E¥0'T L0+9.//°Z0+30SG'E SoA %g'T €0Ty 089 TTdvd1d T00Z-OVIA
€2L°€ OITTT SOSPT LO+9E60°S 80+8YST'T 80+98TL'T S9A %8'T €0Try 089 TTdv4dTd Pe-OvVIN
STV /88'TT /[9/.'GT LO0+9V/.EV 80+96TF'T 8O0+9EET'C S8k %8'T €0Try 089 TTdvdT1d Ie-OVIN
0S6'v ¥¥S'¢T T6T'6T L0+9GG9'S 80+899S9°'T 80+9006'2 SoA %38'T €0Ty 089 TT ddv4d1d €-OVIN
/€00 ¥#.00 OVO'0O GO+9G2¢/.'T GO0+96/8 SO+3CTS'Yr OU 048'T €0TF 089 0T dvd1d “002-OVIN
6¢T°0 80T0 <¢€00 GO+3T9E'8 GO+9G/.E'9 GO+9/.T6°'E OU 08T €0Tyr 089 0T dvd1d T00Z-OVIN
0€0'0 9900 G0+3T6S ¥ G0+308C°€O0U 063°T €0Tr 089 OT dvd1d Pe-OVIN

€00 €00 8EOO GO+9TC6'T GO+9€G6'9 GO+909G'S OuU %31 €0Try 089 OT dvdT1d ‘e-OVIN
GZT0 L0T0O TEOO 90+3¥90°'T S0+92C6E6 SO+3.06'F OU 048°T €0Tyr 089 0T dvd1d €-OVIN
/€00 ¥#.00 OVO'0O GO+9GZ¢/.'T 6GO0+°96/.81 GO+9CTG'Yy OU 048'T €OTY 089 6 dv41d “T00Z-OVIN
610 80T'0 <ZEOO0 GO+9T9E'8 GO+9GLE'9 GO+3LT6'E OU 048'T €0Ty 089 6 dVv4T1d TO00Z-OVIN
00’0 2900 G0+9T6S ¥ G0+908C°€ OU %8'T €0Ty 089 6 dv41d Pe-OvVIN

ve00 v.00 8EOD'0 GO+9TC6'T GO+3EG6'9 GO+909G'G OU 0638°T €0Ty 089 6 dv4d1d Ie-OVIN
GZT0 /0T0 O0E00 90+2¥90°'T SG0O+926E6 SO+9/06'7 OU %B'T €0Tr 089 6 dv4d1d €-OVIN
duw,0o xI)d x9] duwo0o xa)d x9) oe Alsuap) U wajgoid wyiob|y

awl] SY¥93YyD

25

‘G—T HAVYHD mEO_QO._Q pl1OM-|eal 10} S)jnsal abelany v'9 9|gel

G000 8TO0 LTOO0 V0+999%¥°¢ SO+9¥6S HO+96G9°'T OU 0p/)°G YETT 002 SHAVYD “T00Z-OVIA
8T0'0 6200 STO0 GO+9EQT'T GO+92vE'C GO+9S69'T OU O/L'G PETT 00 G HAVHSD TO00Z-OVIN
9T0'0 ¢T00 GO0+9%¢/.'T GO+9/ESTOU 06/.°G VETT 00 S HAVYO Pe-OvVIN
8IWO G100 vO+3¥T9'¢ GO+99T¥'¢ G0+3/6Z¢ OU 0p/)°G VETT 00Z G HAVYO ‘e-OVIN
9T0'0 ¢CEO'0 STO'0 SO+9Z6E'T GO+9ECEY GO+9TSHP'Z OU %w/l'G YETT 002 S HJAVYO €-OVIN
/vT'0 ¢ST0 6ETO 90+9002'T 90+306T IS8 %82 vvZz 00V v HAVYD “T00Z-OVIA
¥ST°0 V910 90+9GST'T 90+8G6T BO+9E6T' T So9A %8'C vvec 00V v HAVYHSDO TO0Z-OVIN
6830 TFT'0 90+9TZS'T 90+9¥88'T 90+3TI8T S9A %8¢ vvcZ 007 v HAVYO Pe-OvVIN
T9T'0 ¥.T'0 6ST'0 90+9€90°Z 90+960%'C 90+9TEEZ S8A %8'Z vveZ 00V v HAVYO ‘e-OVIN
¥9T'0 28T'0 2ZST'0 90+989T'Z 90+96%¥7'CZ 90+9TSE'Z SoA 9438'C vvZZc 00V v HAVYO €-OVIN
/90'0 690°0 9900 GO+9£/6'G G0+9866°GS9A 95/ YETT 002 €HAVYD “T00Z-OVIA
690°0 €/0°0 S90°0 G0+8//8'GS S0+99176°G0+9.T09 S8k 0p/2°G VETT 00 € HAVYHDO TO00Z-OVIN
ZBY00 S0+9906°L GO+966E£'6 GO+9£2E'6 S9A 04L'G VETT 00Z € HdAdVYO Pe-OvVIN
#/0'0 T80'0 9.0°0 90+30.0°T 90+3002'T 90+3S6T'T S9A 04/°G YETT 00Z € HdAdVYO ‘e-OvVIN
€/0'0 080'0 #/0°0 90+9€0T'T 90+3/02'T 90+92T2T S8hk %/'S VETT 00Z € HdVYO €-OVIN
6TT0 0ZT0 OTTO G0+9/7.'9 GO+3GEL 9S8 9482 GvZZ 00F CHIVYD “T00Z-OVIN
TZT0 2ST'0 LOT'0 GO+3/TS'9 SO+9T¥.'90+96EL9 S8k %8'C GvZc¢ 007 <CHAVHD TO00Z-OVIN
8¢T0 STT'0 SG0+868.'8 90+992V'T 90+96/.E'T S8k %8¢ Gvc¢ 007 ¢ HAdVdDO Pe-OvVIN
8210 TYT'0 OST'0 90+98GS'T 90+9/88'T 90+9828'T S8k %8'Z Gcc 00 ¢ HAVHO ‘e-OVIN
ZET0 LPT'0 GZT'0 90+9G0L'T 90+9006°'T 90+99/8'T S8A %8¢ GvZZ 00y <Z HJAVHO €-OVIN
0800 ¢S00 8v00 GO+9GTT'E GO+3.0T'€S9A 094/'G YETT 002 THAVYD “T00Z-OVIA
2S00 SS0'0 8700 GO+9GE0'E GO+96TT'E GO+9ZTT'E Sk o/L'G VETT 00 THAVYHSD TO00Z-OVIN
0S0'0 9¥R039E0T'7 GO+9¥/8'G G0+96£9'G S8k 095G VETT 00Z T HAVYO Pe-OvVIN
2S00 8500 #S0°0 S0+98/0°L GO+8/¥2'8 GO+9696°L S8k 04.°G VETT 00Z T HJAVYO ‘e-OvVIN
GG0'0 8S0'0 £S0°0 SO+9¥6.°L GO+9¥EE'8 GO+9¥.€8 S9A 95)°G VETT 002 T HJAVYO €-OVIN
dwos xapu 2] dwod X9l z9) oe Ausuap) U wsajqo.d wylob|y

swllL SY33yd

26

'0T—9 HdVHS swajgo.id pliom-[eal 10} synsai abeiany :G'9 ajgel

¥8¥'0 €.9°0 9G1V°0 90+96E.°C 90+82/9°'7S9A %/L'T L06E 089 OT HAVYD “T00Z-OVIN
€190 8890 90+9¥SE'Z 90+9T189'80+8689'C S9A %/'T /06 089 OT HAVYDO TO00Z-OVIN
6670 €690 /950 90+d¥6Z'v 90+888%7'L 90+96T0°L S9A 0/.'T /06E 089 OT HAVdD Pe-OVIN
¥¥G'0 G2.°0 T09'0 90+9T0S'S 90+9£/G'8 90+9G/0°'8 Sk o.'T /06 089 OT HAVYO ‘e-OVIN
29GS0 €T.'0 €850 90+98/9°'G 90+920£'8 90+9€G2'8 Sak /L'T /06 089 OT HAVYDO €-OVIN
99€'0 89€0 0¢g0 90+9T/8'T 90+9G98'TS8A 9%e'T 9v2ZS 916 6 HdAVYD “00Z-OVIN
T6E0 9I¥'0 TTE0 90+996L°T 90+20.8'90+3/98°T SoA e'T o¢S 916 6 HAVHSDO TO00Z-OVIN
TTE0 €S€0 G039T/LT'Z 90+9VEV'E 90+8S0E'€ S8k o%e'T 97¢S 916 6 HJVdIO Pe-OVIN
/GE'0 080 B8EE'0 90+998G°€ 90+dV.¥'y 90+9ZE€Ey Sohk el 9%7¢S 916 6 HJVAID Ie-OVIN
G8E'0 227’0 0ZE'0 90+2068'€ 90+980S'% 90+9G2y'v SoA o%e'T ¢S 976 6 HAVUO €-OVIN
¥€C'0 TECO 6020 90+9G9Z'T 90+88G2'TS8A %9'T /G/E 089 8 HAVYD “00Z-OVIA
9¥2'0 ¥92°0 ¥02'0 90+962Z'T 90+9G92'90+2092'T SoA 99'T /G/€ 089 8 HAVHD T00Z-OVIN
02’0 0€C0 903-99/G'T 90+92G2'C 90+3¥6TC S8k 9%9'T /G/€ 089 8 HAVdO Pe-OvVIN
6E20 €S20 TEZ'0 90+9629°C 90+30TT'S 90+3070°E S9h 9%9'T /G/€ 089 8 HJVdIO ‘e-OVIN
€G2'0 G/20 TZZ2'0 90+96E8'Z 90+3FYT'E 90+3THFT'E S9A %97 .S/ 089 8 HJVAO €-OVIN
€000 TrO0'0 6200 €0+90T6'9 GO+928T &GO+99CT'E OU 0p).°C 0.TZ 00F L HdVYD “00Z-OVIN
6700 E€¥0°0 G200 GO+9T.V'C GO+9G.1V'E GO+3TZ8¢ OU %/L'C 0.T¢ 007 /. HdAVdSD TO00Z-OVIN
LE0°0 2200 G0+9¢TZ'E G0+9G6G°COU 9%/L°C 0LT¢ 00 L HAVIO Pe-OVIN

dav@W0 8200 €0+90G9¢€°L GO+98T.Lt GO+9E0T'r OuU 9%/l'¢ 0/T¢ 007 /L HJdVdO Ie-OVIN

90’0 €¥0'0 ¥200 SGO0+°8.T'E€ G0+9G998'% G0+92S8'E OU 9%/.'C 0/TZ 00 [HdVd9 €-OVIN
4S@W0 /LEO0'0 €0+9T99°L GO+s96vV'vr GO+9T86'C OU Op/L°C 0.TZ 007 9 HdVdD “00Z-OVIN

¢v0'0 2C900 SGEO'0 GO+9979°'¢ GO+96TYV'vr GO+9¥86'EC OU 9%/.°C 0/T¢ 007 9 HdVdSO TO00Z-OVIN
Gv¥0'0 8200 GO+9TGT¥ GO0+9GZE'E0U 0p/)°C 0.TZ¢ 00 9 HJdVd9 Pe-OVIN

480 9€0'0 €0+3/.96°L GO+99TC'9 G0+9092'G OuU 9%/L°¢C 0/T¢ 007 9 HJdVd9 ‘e-OVIN

6E0°0 7900 SEO'0 SO+°8TIE'E€ S0O+9500°L SGO+90TS'S OU 9%/L°C 04TZ¢ 007 9 HJdVd9 €-OVIN
dwod xa)u x9) dwiod 9] x9] oe Ausuap 2 U wajqoid wyioby

awiL 39940

27

“YT-TT HAVYD swa|qolid pliom-[eal 10} s)nsai abelany :9'9 a|qel

TT€0 v0E0 T.LZCO 90+92S9'T 90+3TG9'TS8A %T'T 8€9% 9T6 VI HAVYD “T00Z-OVIN
/280 TGE'0 €920 90+3TBS'T 90+92G9°'T 90+9TG9'TS9A %T'T 8€9Y 976 VT HAVID T00Z-OVIA
y@9TO 90+9¥EL'T 90+8.G6'C 90+9998°C Sk %T'T 8E9Y 916 VT HJVUD Pe-OVIN
80S0 ¢2EE£0 6620 90+2060°C 90+9£Z6'S 90+9.28°€ Sak %T'T 8E9Y 916 VT HJVAID ‘e-OVIN
0S€'0 +¥9E'0 282°0 90+3TOV'E 90+9G¥6°'E 90+9¥68'E Sk %T'T 8E9Y 916 VT HJVAO €-OVIN
TTO0 ¢600 9S00 *VO+ovvZ'¢ GO0+90G59 GO+97EC'9 OU OE'T €/25 916 ST HAVYD “00Z-OVIN
¢0T'0 LL00 200 SGO+°99¢T'¥ SG0+962.'G0+9068'%r OU 0E'T €/¢9 916 €T HdvVdD T00Z-OVIN
¢800 Tv00 G0+9€G/L'G GO+92GG 7 OoU UWE'T €/¢5 916 €T HdAVdD Pe-OVIN
060 <2900 PYO+98.EC G0+9899'8 GO+°908%°'L OU WKE'T €.¢9 916 €T HdVd9 ‘e-OVIN
G600 ¢/00 OvBO¥=lEL VY GSO+9/ELQ GO+9TST9 OU %E'T €/¢S 916 ET HdVdD €-OVIN
€200 TS00 €E00 PO+oG0t'9 GO+39¥S'E€ GO+9EBF'E OU 0p/L°T LTOF 089 2T HAVYD “00Z-OVI
6/00 €00 v200 SGO0+o¥96°'c GO+390V'S GO+996/.°C OU 0Op/)'T LTO0V 089 ¢ZTHJAVdD T00Z-OVIN
970’0 €200 G0+998¢°€ G0+3¥0G'CcOoU 0p/)°T LTOY 089 <ZT HAVYDO Pe-OVIN
00’0 0500 0eE00 wO+9.EL9 GO+99081r GO+99¢Tv Ou 0pL'T LTOY 089 <ZT HAVYO Ie-OVIN
7.0°'0 0400 ZZ903°SES'Y S0+9668'9 SGO0+3017Z2'E OU O/L'T .T0F 089 <ZT HAVIO €-OVIN
800 G200 €0+90.¥'8 GO+9¥8L°C G0+96.9°¢ OU 09%9I'T /G/E€ 089 TTHAVYD “00Z-OVIN
€ET0 €E00 LTOO SG0O+°690'G9 GO+3vvE'C GO+9/96'T OU 069°T /G/€ 089 TTHAVHD T00Z-OVIN
€00 /LTOO G0+90/.Z'¢ G0+36/..°TOU 0H9°T /G/€ 089 TT HAVYO Pe-OVIN
900 <2200 €0+9996'8 GO+9CTS'E GO+9¥Cc0'E Ou %91 /G/€ 089 TT HAVYO ‘e-OVIN
/Z2T'0 TEO'O STHOFSE9G'9 G0+9988°¢ SO0+99¥Z2'Z¢ OU 069°'T .S/ 089 TT HAVYO €-OVIN
dwod x4 3] dutoo Z9) x3] oe Ausuap 2 U wa|goid wyiob|y

swllL SH33yD

28

Chapter 7

Conclusions and Recommendations

We compared five algorithms call&dAC-2001, MAC-2001,, MAC-3, MAC-3,,, andMAC-3,.
MAC-2001 and MAC-2001, have an arc-consistency component with an optimal worst case
time-complexity. The remaining algorithms do not. We demonstratedthAgt-2001's space-com-
plexity is O(ed min(n, d)) and we demonstrated that this size may be prohibitive eve@ $&s

that are relatively easy. We compared the algorithms for search and for three different arc-heuris-
tics, calledlex, rlex, andcomp. We considered random problems where checks are cheap and
real-world problems where checks are expensive. For the random problems we included the
counting of checks in the solution time. For the real-world problems we did not. For the random
problems our findings are that good arc-consistency algorithms do not always need to have an
optimal worst case time-complexity. We presented results that suggest quite the opposite. For
a given arc-heuristit/AC-2001 and MAC-2001, always required more solution time than the
others. MAC-3,; with comp arc-heuristic, was the most efficient combination when it comes to
saving time. MAC-2001, required about 21% more time on average thaxC-3, and MAC-
2001required about 34% more. For the real-world problems things were not as clear. For these
problemsMAC-2001andMAC-2001, were the best in saving checks BIRAC-3,; with a comp
arc-heuristic recorded the best solution time for the vast majority of these problems. Since the
differences were not as clear as for the random problems it is difficult to say which algorithm
should be preferred for the real-world problems that we considered in our test. Finally, we have
observed that including the counting of checks in the the solution time results in an increase of
about 59% for some algorithms. It is for this reason that we argue that to find out how well
algorithms perform (at least where problems are easy or where checks are cheap) the counting
of checks should be separated from measuring the solution time. We anticipate that if we were
to compare the algorithms once more for random problems, this time separating the counting
and timing, then the ratio between the best solution time fromvA€-2001 family and the

best solution time from the lightweight algorithms will increase. To conduct such experiment is
something we intend to do in the near future.

29

Acknowledgements

First of all I should like to thank Christian Begse for letting us use his solver in an early stage

of this work and for useful discussions. | should like to thank Rick Wallace and Ken Brown for
early discussions. Also | wish to thank Christian van den Bosch for setting up and carrying out
the experiments. Finally, | should like to express my gratitude to Gene Freuder for his support
of this work. This work has received support from Science Foundation Ireland under Grant
00/P1.1/CO75.

30

Bibliography

[Bessere and Rgin, 2001 C. Bessére and J.-C. Bgin. Refining the basic constraint propaga-
tion algorithm. InProceedings of the Seventeenth International Joint Conference on Atrtificial
Intelligence pages 309-315, 2001.

[Bessereet al, 1999 C. Bessere, E.C. Freuder, and J.-Cé@n. Using inference to reduce
arc consistency computation. In C.S. Mellish, edidrpceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligencgolume 1, pages 592-598, Moa#i,
Québec, Canada, 1995. Morgan Kaufmann Publishers, Inc., San Mateo, California, USA.

[Bessereet al, 1999 C. Bessere, E.G. Freuder, and J.-Cegin. Using constraint metaknowl-
edge to reduce arc consistency computatinificial Intelligence 107(1):125-148, 1999.

[CELAR, 1994 CELAR. Radio link frequency assignment problem benchnfgokd/ftp.
cs.city.ac.uk/pub/constraints/csp-benchmarks/celar , 1994,

[Gaschnig, 1978J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new
algorithms for satisficing assignment problemsPmceeding of the Second Biennial Confer-
ence, Canadian Society for the Computational Studies of Intelliggacges 268-277, 1978.

[Gentet al, 1994 |.P. Gent, Macintyre E., P. Prosser, B.M. Smith, and T. Walsh. An empiri-
cal study of dynamic variable ordering heuristics for the constraint satisfaction problem. In
E.C. Freuder, editoPrinciples and Practice of Constraint Programmingages 179-193.
Springer, 1996.

[Gentet al, 1997 |.P. Gent, E. Maclntyre, P. Prosser, P. Shaw, and T. Walsh. The constrained-
ness of arc consistency. Rroceedings of the Third International Conference on Principles
and Practice of Constraint Programmingages 327—-340. Springer, 1997.

[Gentet al, 2001 lan Gent, Ewan Maclintyre, Patrick Prosser, Barbara Smith, and Toby Walsh.
Random constraint satisfaction: Flaws and struct@anstraints 6(4):345-372, 2001.

[Mackworth and Freuder, 1985A.K. Mackworth and E.C. Freuder. The complexity of some
polynomial network consistency algorithms for constraint satisfaction problefntficial
Intelligence 25(1):65-73, 1985.

[Mackworth, 197T7 A.K. Mackworth. Consistency in networks of relationéurtificial Intelli-
gence 8:99-118, 1977.

31

[Mohr and Henderson, 198@R. Mohr and T. Henderson. Arc and path consistency revisited.
Artificial Intelligence 28:225-233, 1986.

[Sabin and Freuder, 19pD. Sabin and E.C. Freuder. Contradicting conventional wisdom in
constraint satisfaction. In A.G. Cohn, edit®roceedings of the Eleventh European Confer-
ence on Artificial Intelligencgpages 125-129. John Wiley and Sons, 1994.

[van Dongen and Bowen, 20DM.R.C. van Dongen and J.A. Bowen. Improving arc-
consistency algorithms with double-support checks. Ptaceedings of the Eleventh Irish
Conference on Atrtificial Intelligence and Cognitive Sciempages 140-149, 2000.

[van Dongen, 2004aM.R.C. van Dongen. AC-3an efficient arc-consistency algorithm with a
low space-complexity. In P. Van Hentenryck, edit®rpceedings of the Eighth International
Conference on Principles and Practice of Constraint Programnmuadume 2470 ol ecture
notes in Computer Sciengeages 755—-760. Springer, 2002.

[van Dongen, 2004bM.R.C. van Dongen. AC-3an efficient arc-consistency algorithm with a
low space-complexity. Technical Report TR-01-2002, Cork Constraint Computation Centre,
2002.

[van Dongen, 2003aM.R.C. van Dongen. Domain-heuristics for arc-consistency algorithms.
In B. O’Sullivan, editor,Recent Advances in Constraint®lume 2627 ofLecture Notes in
Artificial Intelligence pages 61-75. Springer, 2003. To be published.

[van Dongen, 2003bM.R.C. van Dongen. Lightweight arc-consistency algorithms. Technical
Report TR-01-2003, Cork Constraint Computation Centre, 2003.

[Wallace and Freuder, 19pR.J. Wallace and E.C. Freuder. Ordering heuristics for arc consis-
tency algorithms. IRAI/GI/VI '92, pages 163—-169, Vancouver, British Columbia, Canada,
1992.

[Zhang and Yap, 20Q1Y. Zhang and R.H.C. Yap. Making AC-3 an optimal algorithm.Plro-
ceedings of the Seventeenth International Joint Conference on Artificial Intelligpages
316-321, 2001.

32

