
Lightweight MAC Algorithms

M.R.C. van Dongen
dongen@cs.ucc.ie

Cork Constraint Computation Centre
CS Department

University College Cork
Western Road

Cork
Ireland

Technical Report TR-02-2003

April 2003

Available fromhttp:
//csweb.ucc.ie/˜dongen/papers/4C/03/4C-02-2003.pdf

Abstract

Arc-consistency algorithms are the workhorse of backtrackers that Maintain Arc-Consistency
(MAC). This report will provide experimental evidence that, despite common belief to the con-
trary, it is not always necessary for a good arc-consistency algorithm to have an optimal worst
case time-complexity. To sacrifice this optimality allowsMAC solvers that (1) do not need ad-
ditional data structures during search, (2) have an excellent average time-complexity, and (3)
have a space-complexity which improves significantly on that ofMAC solvers that have opti-
mal arc-consistency components. Results will be presented from an experimental comparison
betweenMAC-2001, MAC-3d and related algorithms. MAC-2001has an arc-consistency com-
ponent with an optimal worst case time-complexity, whereasMAC-3d does not. MAC-2001
requires additional data structures during search, whereasMAC-3d does not. MAC-3d has a
space-complexity ofO(e + nd), wheren is the number of variables,d the maximum domain
size, ande the number of constraints. We shall demonstrate thatMAC-2001’s space-complexity
isO(edmin(n, d)). MAC-2001required about 35% more solution time on average thanMAC-3d
for easy and hard random problems. MAC-3d recorded the least solution time for 21 of the 25
real-world problems. Our results indicate that if checks are cheap then lightweight algorithms
like MAC-3d are promising.

Contents

1 Introduction 4

2 Constraint Satisfaction 6

3 Operators for Selection Heuristics 7

4 Related Literature 8

5 Detailed Description of Other MAC-3 Based Algorithms 10
5.1 Introduction .10
5.2 MAC-3d and MAC-3p .10
5.3 MAC-2001 and MAC-2001p .12

6 Experimental Results 14
6.1 Introduction .14
6.2 Implementation Details .14
6.3 Random Problems .15
6.4 Statistical Analysis .18
6.5 Real-World Problems .20

7 Conclusions and Recommendations 29

1

List of Tables

6.1 Average results for real-world problems RLFAP 1–4.23
6.2 Average results for real-world problems RLFAP 5–8.24
6.3 Average results for real-world problems RLFAP 9–11.25
6.4 Average results for real-world problems GRAPH 1–5.26
6.5 Average results for real-world problems GRAPH 6–10.27
6.6 Average results for real-world problems GRAPH 11–14.28

2

List of Figures

4.1 The AC-3 algorithm. .8
4.2 Algorithmrevise. 8

5.1 The AC-3d algorithm. .11
5.2 AlgorithmD. .11
5.3 Arc-based version of AC-2001. .12
5.4 revise-2001. .12

6.1 Size 30: Scatter plot of time of MAC-2001p with comp arc-heuristic for first
solution vs. average number of checks. .16

6.2 Size 30: Scatter plot of time of MAC-3d with comp arc-heuristic for first solution
vs. average number of checks. .16

6.3 Size 30: Scatter plot of number checks of MAC-2001p with comp arc-heuristic
for first solution vs. number checks of MAC-3d with comp arc-heuristic. 16

6.4 Size 30: Scatter plot of time of MAC-2001p with comp arc-heuristic for first
solution vs. time of MAC-3d with comp arc-heuristic.16

6.5 Ratio of average number of checks vs. problem size for random problems and
search. For each size the average number checks is divided by the average num-
ber of checks required by MAC-3 with thelex arc-heuristic.17

6.6 Ratio of average solution time vs. problem size for random problems and search.
For each size the average time is divided by the average time required by MAC-
2001 with therlex arc-heuristic. .17

6.7 Value ofa for T2001p = a+ b× T3d + c× tightness + d× density for search. . 19
6.8 Value ofb for T2001p = a+ b× T3d + c× tightness + d× density vs. size. . . . 19
6.9 Value ofc for T2001p = a+ b× T3d + c× tightness + d× density vs. size. . . . 19
6.10 Value ofd for T2001p = a+ b× T3d + c× tightness + d× density vs. size. . . . 19
6.11 Value ofR2 for T2001p = a+ b× T3d + c× tightness + d× density vs. size. . . 19

3

Chapter 1

Introduction

Arc-consistency algorithms significantly reduce the size of the search space of Constraint Sat-
isfaction Problems (CSPs) at low costs. They are the workhorse of backtrackers that Maintain
Arc-Consistency during search (MAC [Sabin and Freuder, 1994]).

Currently, there seems to be a shared belief in the constraint satisfaction community that, to
be efficient, arc-consistency algorithms need anoptimalworst case time-complexity[Bessìereet
al., 1995; Bessìere and Ŕegin, 2001; Zhang and Yap, 2001]. MAC algorithms likeMAC-2001
that have an optimal worst case time-complexity require a space-complexity of at leastO(ed) for
creating data structures for remembering their support-checks. We shall prove thatMAC-2001’s
space-complexity isO(edmin(n, d)) because it has tomaintainthese additional data structures.
As usual,n is the number of variables in theCSP, d is the maximum domain size of the variables
and e is the number of constraints. We shall present an example illustrating that worst case
scenarios forMAC-2001’s space-complexity occur for easyCSPs that allow a backtrack free
search.

We shall provide evidence to support the claim that good arc-consistency algorithms do
not always need an optimal worst case time-complexity. We shall experimentally compare
five MAC algorithms. The first algorithm isMAC-2001 [Bessìere and Ŕegin, 2001]. MAC-
2001’s arc-consistency component has an optimalO(ed2) worst case time-complexity. The
second and third algorithms areMAC-3 andMAC-3d [Mackworth, 1977; van Dongen, 2003a;
2002a]. The fourth is a new algorithm calledMAC-3p. It lies in betweenMAC-3 andMAC-3d.
MAC-3, MAC-3d andMAC-3p have a betterO(e + nd) space-complexity thanMAC-2001 but
their arc-consistency components have a non-optimalO(ed3) worst case time-complexity. The
fifth and last algorithm isMAC-2001p. It is to MAC-2001 what MAC-3p is to MAC-3. As part
of our presentation we shall introduce some notation to compactly describe ordering heuristics.

For random and real-world problems, for as far as support-checks are concerned, and not
to our surprise,MAC-2001p and MAC-2001 were by far the better algorithms. For any fixed
arc-heuristic and for random problems where checks were cheapMAC-3, MAC-3p andMAC-3d
wereall better in clock on the wall time thanMAC-2001 and MAC-2001p, with MAC-3d the
best of all. MAC-2001p required about 21% more time on average thanMAC-3d, whereas
MAC-2001 required about 35% more time. For time and solving real-world problemsMAC-3d
recorded the least solution time for the vast majority of the problems butMAC-2001andMAC-3p

4

also recorded the best solution times for some of the problems. Things being not as clear as
for the random problems it is not possible to say which algorithm should be preferred for the
real-world problems that we considered.

This report is the second in a sequence to report aboutMAC-3 based algorithms with a
O(e+ nd) space-complexity that perform significantly better thanMAC-2001 for easyandhard
problems[van Dongen, 2003b]. It is the next in a sequence aboutMAC-3 based algorithms with
aO(e+nd) space-complexity that are compatible withMAC algorithms that do not repeat checks
[van Dongen and Bowen, 2000; van Dongen, 2002b; 2002a; 2003b]. The theoretical principles
underlyingAC-3d’s double-support heuristic are best described in[van Dongen, 2003a]. To the
best of our knowledge the only references to these results have been self-references. Our exam-
ple aboutMAC-2001’s O(edmin(n, d)) space-complexity is a first. It points out a weakness of
MAC searchers that do not repeat checks.

The results presented in this report are important because of the following. Since the intro-
duction of Mohr and Henderson’sAC-4 [Mohr and Henderson, 1986], most work in arc-consis-
tency research has been focusing on the design of better algorithms that do not re-discover (do
not repeat checks). This focused research is justified by the observation that, as checks become
more and more expensive, there will always be a point beyond which algorithms that repeat will
become slower than those that do not and will remain so from then on. However, there are many
cases where checks are cheap and it is only possible to avoid re-discoveries at the price of a large
additional bookkeeping. To forsake the bookkeeping at the expense of having to re-discover may
improve search if checks are cheapand if problems become large.

The remainder of this report is organised as follows. Section 2 provides an introduction
to constraint satisfaction. Section 3 is an introduction to some notation to describe selection
heuristics. Section 4 will describe related work. Section 5 provides a detailed description of
the algorithms under consideration and contains a proof thatMAC-2001’s space-complexity is
O(edmin(n, d)). Section 6 presents our experimental results. Conclusions are presented in
Section 7.

5

Chapter 2

Constraint Satisfaction

A binary constraintCxy between variablesx andy is a subset of the cartesian product of the
domainsD(x) of x andD(y) of y. A valuev ∈ D(x) is supportedbyw ∈ D(y) if (v, w) ∈ Cxy.
Similarly,w ∈ D(y) is supported byv ∈ D(x) if (v, w) ∈ Cxy.

A Constraint Satisfaction Problem(CSP) is a tuple(X,D,C), whereX is a set of variables,
D(·) is a function mapping eachx ∈ X to its non-empty domain, andC is a set of constraints
between variables in subsets ofX. We shall only considerCSPs whose constraints are binary.
CSP (X,D,C) is calledarc-consistentif its domains are non-empty and for eachCxy ∈ C it
is true that everyv ∈ D(x) is supported byy and that everyw ∈ D(y) is supported byx. A
support-check(consistency-check) is a test to find out if two values support each other.

Thetightnessof the constraintCxy betweenx andy is defined as1−|Cxy |/|D(x)×D(y) |,
where· × · denotes cartesian product. Thedensityof a CSPis defined as2e/(n2−n), for n > 1.

The (directed) constraint graphof CSP (X,D,C) is the directed graph whose nodes are
given byX and whose arcs are given by∪Cxy∈C { (x, y) , (y, x) }. Thedegreeof a variable in a
CSPis the number of neighbours of that variable in the (directed) constraint graph of thatCSP.

MAC is a backtracker that maintains arc-consistency during search. MAC-i uses arc-consis-
tency algorithmAC-i to maintain arc-consistency.

The following notation is not standard but will turn out useful. Letδo(v) be the original
degree ofv, let δc(v) be the current degree ofv, let κ(v) = |D(v) |, and let#(v) be aunique
number which is associated withv. We will assume that#(v) ≤ #(w) if and only if v is
lexicographically less than or equal tow.

6

Chapter 3

Operators for Selection Heuristics

In this chapter we shall introduce notation to describe and “compose” variable and arc selection
heuristics. The reader not interested in the nitty gritty details of such heuristics may wish to skip
this chapter and return to it later. The notation was introduced in[van Dongen, 2003b, Chapter 3]
but to make this report self-contained the main points are repeated here. Motivation, a more
detailed presentation, and more examples may be found in[van Dongen, 2003b, Chapter 3].

It is recalled that a relation on setT is called aquasi-orderonT if it is reflexive and transitive.
A relation,≺, onT is calledlinear if v ≺ w ∨ w ≺ v for all v, w ∈ T . Linear quasi-orders may
allow for “ties,” i.e. they may allow for situations wherev ≺ w ∧w ≺ v ∧ v 6= w. A quasi-order
� is called apartial order if v � w∧w � v =⇒ v = w for all v,w ∈ T . An order (also called
a linear order) is a partial order that is also a linear quasi-order. An order� prefersv tow if and
only if v � w.

Thecompositionof order�2 and linear quasi-order�1 is denoted�2 • �1. It is the unique
order onT which is defined as follows:

v �2 • �1 w ⇐⇒ (v �1 w ∧ ¬w �1 v) ∨ (v �1 w ∧ w �1 v ∧ v �2 w) .

In words,�2 • �1 is the selection heuristic that uses�1 and “breaks ties” using�2. Composition
associates to the left, i.e.�3 • �2 • �1 is equal to(�3 • �2) • �1.

Let� be a linear quasi-order onT , and letf :: Y 7→ T be a function. Then⊗f� is the unique
linear quasi-order onY which is defined as follows:

v ⊗f� w ⇐⇒ f(v) � f(w) , for all v, w ∈ Y .

Finally, letπi((v1, . . . , vn)) = vi for 1 ≤ i ≤ n.
We are now in a position where we need no more notation. For example, the minimum

domain size heuristic with a lexicographical tie breaker is given by⊗#
≤ • ⊗κ≤, the ordering on

the maximum original degree with a lexicographical tie breaker is given by⊗#
≤ • ⊗

δo
≥ , theBre-

laz heuristic(cf. [Gentet al., 1996]) with a lexicographical tie breaker is given by⊗#
≤ •⊗

δc
≥ •⊗κ≤,

and⊗#◦π2

≤ •⊗#◦π1

≤ is the lexicographical arc-heuristic. As usual,· ◦ · denotes function composi-
tion.

7

Chapter 4

Related Literature

In 1977, Mackworth presented an arc-consistency algorithm calledAC-3 [Mackworth, 1977].
AC-3 has aO(ed3) bound for its worst case time-complexity[Mackworth and Freuder, 1985].
AC-3 has aO(e+ nd) space-complexity. AC-3 cannot remember all its support-checks. Pseudo
code forAC-3 and for therevise algorithm upon which it depends is depicted in Figures 4.1
and 4.2. The “foreach s ∈ S do statement” construct assigns the members inS to s from small
to big and carries outstatement after each assignment. AC-3 usesarc-heuristicsto repeatedly
select and remove an arc,(x, y), from a data structure called aqueue(a set, really) and to
use the constraint betweenx andy to revisethe domain ofx. Here, to revise the domain of
x using the constraint betweenx and y means to remove the values fromD(x) that are not
supported byy. AC-3’s arc-heuristics determine the constraint that will be used for the next
support-check. Besides these arc-heuristics there are alsodomain-heuristics. These heuristics,
if given the constraint that will be used for the next support-check, determine the values that
will be used for the next support-check. The interested reader is referred to[Mackworth, 1977;
Mackworth and Freuder, 1985] for further information aboutAC-3.

function AC-3(X) : Boolean;
Q :=

{
(x, y) ∈ X2 : x andy are neighbours

}
;

while Q 6= ∅ do begin
select and remove any arc(x, y) fromQ;
if not revise(x, y, changex) then

return false;
else if changex then
Q := Q ∪ { (z, x) : z 6= y, z is a neighbour ofx };

end;
return true;

end;

Figure 4.1: The AC-3 algorithm.

function revise(x, y, var changex) : Boolean;
begin

changex := false;
foreach r ∈ D(x) do

if @c ∈ D(y) s.t.c supportsr then begin
D(x) := D(x) \ { r };
changex := true;

end;
return D(x) 6= ∅;

end;

Figure 4.2: Algorithmrevise.

Wallace and Freuder pointed out that arc-heuristics can influence the efficiency of arc-con-
sistency algorithms[Wallace and Freuder, 1992]. Similar observations were made by Gentet al.
[Gentet al., 1997]. Despite these findings only a few authors describe the heuristics that were
used for their experiments. We believe that to facilitate ease of replication all information to

8

repeat experiments should be described in full. This includes information about arc-heuristics.
Bessìere and Ŕegin presentedAC-2001, which is based onAC-3 [Bessìere and Ŕegin, 2001]

(see also[Zhang and Yap, 2001] for a similar algorithm). AC-2001 revises one domain at a
time. The main difference betweenAC-3 andAC-2001 is thatAC-2001uses a lexicographical
domain-heuristic and that for each variablex, for eachv ∈ D(x) and each constraint between
x and another variabley it remembers the last support forv ∈ D(x) with y so as to avoid
repeating checks that were used before to find support forv ∈ D(x) with y. AC-2001has an
optimal upper bound ofO(ed2) for its worst case time-complexity and its space-complexity is
O(ed). AC-2001behaves well on average. It was observed thatAC-3 is a good alternative for
stand alone arc-consistency if checks are cheap andCSPs are under-constrained but thatAC-3
is very slow for over-constrainedCSPs andCSPs in the phase transition[Bessìereet al., 1999;
Bessìere and Ŕegin, 2001].

We made similar observations in experimental comparisons betweenAC-7, AC-2001 and
AC-3d, which is a cross-breed between Mackworth’sAC-3 and Gaschnig’sDEE [Mackworth,
1977; Gaschnig, 1978; van Dongen, 2002a]. We didnot consider search. The only difference
betweenAC-3 andAC-3d is thatAC-3d sometimes takes two arcs out of the queue and simultane-
ously revisestwo domains with adouble-supportdomain-heuristic. A double-support heuristic
is a heuristic that prefers checks between two values each of whose support statuses are un-
known. For two-variableCSPs the double-support heuristic is optimal and requires about half
the checks that are required by a lexicographical heuristic if the domain sizes of the variables
are about equal and sufficiently large[van Dongen, 2003a]. AC-3d and MAC-3d have a low
O(e + nd) space-complexity. Our results indicated thatAC-3d was promising for stand alone
arc-consistency.

9

Chapter 5

Detailed Description of Other MAC-3
Based Algorithms

5.1 Introduction

In this chapter we shall describeMAC-3d, MAC-3p, MAC-2001, andMAC-2001p in more de-
tail. The presentation is to provide a good understanding of the basic machinery of the algo-
rithms and to highlight the differences between them. The presentation is not meant to describe
an efficient implementation. As part of the presentation we shall prove thatMAC-2001 has a
O(edmin(n, d)) space-complexity.

5.2 MAC-3d and MAC-3p
AC-3d is a cross-breed betweenAC-3 andDEE [Mackworth, 1977; Gaschnig, 1978]. Pseudo-code
for AC-3d is depicted in Figure 5.1. The only difference betweenAC-3 andAC-3d is thatAC-3d
sometimes takes two arcs out of the queue andsimultaneouslyrevisestwo domains with Algo-
rithmD. Pseudo code forD is depicted in Figure 5.2.D uses adouble-supportdomain-heuristic,
i.e. a heuristic which prefers double-support checks. The constantsunsupported , single, and
double that are used inD are pairwise different and smaller than the values in the domains of the
variables.

AC-3p is a “poor man’s” version ofAC-3d; It is not as efficient but easier to implement. It can
be obtained fromAC-3d by replacing the call toD in the 7th line of AC-3d by “revise(x, y, changex)
and revise(y, x, changey).” The difference betweenAC-3p andAC-3d is AC-3d’s double-support
heuristic.
D’s space-complexity isO(d). In D the row-supportare the values inD(x) that are sup-

ported byy and thecolumn-supportare the values inD(y) that are supported byx. It easy to
prove thatD correctly computes its row-support. To prove that it also correctly computes its
column-support is not much more difficult. The proof relies on the fact that after establishing
row-support anyc that is not yet known to be supported can only be supported by anr ∈ D(x)
such thatrkind [r] = double ∧ rsupp[r] < c.

10

function AC-3d(X) : Boolean;
Q :=

{
(x, y) ∈ X2 : x andy are neighbours

}
;

while Q 6= ∅ do begin
select and remove any arc(x, y) fromQ;
if (y, x) is also inQ then begin

remove(y, x) fromQ;
if notD(x, y, changex, changey) then

return false;
else begin

if changex then
Q := Q ∪ { (z, x) : z 6= y, z is a neighbour ofx };

if changey then
Q := Q ∪ { (z, y) : z 6= x, z is a neighbour ofy };

end
end
else if not revise(x, y, changex) then

return false;
else if changex then
Q := Q ∪ { (z, x) : z 6= y, z is a neighbour ofx };

end;
return true;

end;

Figure 5.1: The AC-3d algorithm.

function D(x, y, var changex, var changey) : Boolean;
begin

changex := false;
changey := false;
foreach c ∈ D(y) do

csupp[c] := unsupported ;
/* Compute row-support. */
foreach r ∈ D(x) do begin

rkind [r] := unsupported ;
rsupp[r] := unsupported ;
if ∃c ∈ D(y) s.t.csupp[c] = unsupported and c supportsr then begin

rsupp[r] := first such valuec;
csupp[rsupp[r]] := r;
rkind [r] := double;

end
else if ∃c ∈ D(y) s.t.csupp[c] 6= unsupported and c supportsr then begin

rsupp[r] := first such valuec;
rkind [r] := single;

end
else begin
D(x) := D(x) \ { r };
changex := true;

end;
end;
/* Complete column-support. */
foreach c ∈ D(y) s.t.csupp[c] = unsupported do

if @r ∈ D(x) s.t.rsupp[r] < c and rkind [r] = double and r supportsc then begin
D(y) := D(y) \ { c };
changey := true;

end;
return D(x) 6= ∅;

end;

Figure 5.2: AlgorithmD.

11

AC-3d andAC-3p inherit theirO(ed3) worst case time-complexity andO(e+nd) space-com-
plexity from AC-3. MAC-3d (MAC-3p) is implemented by replacingAC-3 in MAC-3 by AC-3d
(AC-3p). The space-complexity ofMAC-3d andMAC-3p is equal toO(e+ nd).

5.3 MAC-2001 and MAC-2001p
Pseudo-code for an arc-based version ofAC-2001and therevise-2001algorithm upon which it
depends is depicted in Figures 5.3 and 5.4. For the purpose of the presentation ofAC-2001 it is
assumed that the values in the domains are ordered from small to big. For each variablex, for
each valuev ∈ D(x), and for each neighboury of x it is assumed thatlast [x][v][y] is initialised
to some value that is smaller than the values inD(y).

function AC-2001(X) : Boolean;
begin
Q :=

{
(x, y) ∈ X2 : x andy are neighbours

}
;

while Q 6= ∅ do begin
select and remove any arc(x, y) fromQ;
if not revise-2001(x, y, changex) then

return false;
else if changex then
Q := Q ∪ { (z, x) : z 6= y, z is a neighbour ofx };

end;
return true;

end;

Figure 5.3: Arc-based version of AC-2001.

function revise-2001(x, y, var change) : Boolean;
begin

change := false;
foreach r ∈ D(x) do

if last [x][r][y] /∈ D(y) then
if ∃c ∈ D(y) s.t.c > last [x][r][y] and c supportsr then

last [x][r][y] := the first such valuec;
else begin
D(x) := D(x) \ { r };
change := true;

end;
return D(x) 6= ∅;

end;

Figure 5.4:revise-2001.

AC-2001finds support forv ∈ D(x) with y by checking against the values inD(y) from
small to large. It uses a counterlast [x][v][y] to record the last check that was carried out.
This allows it to save checks the next time support forv ∈ D(x) has to be found withy if
last [x][v][y] ∈ D(y). Furthermore, checks are saved by not looking for support with values that
are less than or equal tolast [x][v][y] ∈ D(y).

MAC-2001requires additional data structures during search. It maintains the counterlast [x][v][y]
to remember the last support forv ∈ D(x) with D(y). The space-complexity oflast is O(ed)
[Bessìere and Ŕegin, 2001]. It seems to have gone unnoticed so far thatMAC-2001 has a
O(edmin(n, d)) space-complexity. The reason for this space-complexity is thatMAC-2001has
to maintain the data structurelast . This only seems to be possible using one of the following
two methods (or a combination):

1. Save all relevant counters once beforeAC-2001. Upon backtracking these counters have
to be restored. This requires aO(ned) space-complexity becauseO(ed) data structures
may have to be savedn times.

2. Save each counter before the assignment tolast [x][v][y] in revise-2001 and count the num-
ber of changes,c, that were carried out. Upon backtracking, restore thec counters in the

12

reverse order. This comes at the price of a space-complexity ofO(ed2) because each of
the2ed counters may have to be savedO(d) times.

Therefore,MAC-2001’s space-complexity isO(edmin(n, d)). Christian Bessière (private com-
munication) implementedMAC-2001using Method 2.

The consequences ofMAC-2001’s space requirements can be prohibitive. For example, with-
out loss of generality we may assume the usual lexicographical value ordering. Letn = d > 1
and consider the binaryCSPwhere all variables should be pairwise different. Finally, assume
that Method 2 is used forMAC-2001(Method 1 will lead to a similar order of space-complexity).
Note that the “first” solution can be found with a backtrack free search. Also note that in the first
solutioni is assigned to thei-th variable. We shall see thatMAC-2001will require a lot of space
to solve the givenCSP.

Just before the assignment ofi to thei-th variable we have the following. For each variable
x, for each variabley 6= x, and for eachv ∈ D(x) = { i, . . . , n } we havelast [x][v][y] =
min({ i, . . . , n } \ { v }). To make theCSParc-consistent after the assignment ofi to the i-th
current variable, (only) the valuei has to be removed from the domains of the future variables.
Unfortunately, for each of the remainingn− i future variablesx, for each of the remainingn− i
valuesv ∈ D(x) \ { i }, and for each of the remainingn − i − 1 future variablesy 6= x, i was
the last known support forv ∈ D(x) with y. This means that(n − i)2 × (n − i − 1) counters
must be saved and incremented during theAC-2001 call following the assignment ofi to the
i-th variable. In total,MAC-2001 has to save

∑n
i=1(n − i)2 × (n − i − 1), i.e. (n − 2) × (n −

1) × n × (3n − 1)/12 counters. Forn = d = 500, MAC-2001 will require space for at least
15, 521, 020, 750 counters and this may not be available on every machine. SometimesMAC
algorithms that do not re-discoverdo require a lot of space, even for deciding relatively small
CSPs that allow a backtrack free search.

The last thing that remains to be done in this chapter is to describeAC-2001p. This algorithm
is to AC-2001what AC-3p is to AC-3. If its arc-heuristic selects(x, y) from the queue and if
(y, x) is also in the queue then it will remove both and use (at most) two calls torevise-2001 to
revise the domains ofx andy.

13

Chapter 6

Experimental Results

6.1 Introduction

In this chapter we shall experimentally compareMAC-2001, MAC-2001p, MAC-3d, MAC-3p and
MAC-3 for random and real-world problems. For the random problems we implemented sup-
port-checks as cheap lookup operations in arrays. For the real world problems we implemented
support-checks as (more) expensive function calls.

6.2 Implementation Details

All implementations were based on our own implementation ofMAC-3d and all used the same
basic data structures that were used byMAC-3d. The implementations ofMAC-2001andMAC-3p
were arc-based. This allowed us to evaluate the algorithms for different arc-heuristics. Previ-
ously, we used Christian Bessière’s variable based implementation ofMAC-2001 [van Dongen,
2003b]. However, Bessière’s implementation came with only one arc-heuristic, was a specialised
version for random problems and was about 17% slower than our own implementation.

All solvers were real-full-look-ahead solvers and to ensure that they visited the same nodes in
the search tree they were equipped with the same dom/deg variable ordering heuristic. Using the
notation introduced in Section 3 this heuristic is given by⊗#

≤ • ⊗
f
≤, wheref(v) = κ(v)/δo(v).

We considered three different arc-heuristics, calledlex , rlex , andcomp. Using the notation
introduced in Section 3 these can be defined as:

lex = ⊗#◦π2

≤ • ⊗#◦π1

≤ ,

rlex = ⊗#◦π1

≤ • ⊗#◦π2

≤ , and

comp = ⊗#◦π2

≤ • ⊗δc◦π2
≥ • ⊗κ◦π2

≤ • ⊗#◦π1

≤ • ⊗δc◦π1
≥ • ⊗κ◦π1

≤ .

The queue was implemented as a directed graphG. This data structure contains aO(n)
linked listN to represent the nodes ofG that have an incoming arc:N = {x : (x, y) ∈ G }.
The data structure also contains aO(n) array that contains a linked lists for each member of
N to represent the other ends of the arcs. The total size of these linked lists does not exceed

14

O(e). This brings the space-complexity for our queue representation toO(e). We did not use a
O(n × n) lookup table to quickly find out if a certain arc was in the queue. Had we used such
table then we should have changed our claim about the space-complexity ofMAC-3, MAC-3p
andMAC-3d toO(nmax(n, d)).

With this implementation of the queue, selecting the best arc with respect tolex takesO(1)
time, whereas selecting the best arc with respect torlex andcomp takesO(n) time. The heuristic
comp requires a few more words. At the moment of writing is the best known arc-heuristic for
MAC-3d. Further in this chapter we shall see that it is also an excellent heuristic for the remaining
algorithms. Profiling revealed that arc-selection forMAC-3d with comp usually takes between
10% and 20% of the solution time, whereas selection withlex hardly takes any time. However,
comp has a far better effect on constraint propagation than bothlex andrlex and investing in it
is well spent. We intend to cut down the time for arc-selection withcomp by supporting it with
a special data type for the queue. It is not quite clearwhythis heuristic has such a good effect on
constraint propagation. This is something we intend to investigate further.

6.3 Random Problems

Random problems were generated for15 ≤ n = d ≤ 30. We will refer to the class of problems
for a given combination ofn = d as the problem class withsizen. The problems were generated
as follows. For each problem size and each combination(C, T) of average densityC and uni-
form tightnessT in { (i/20, j/20) : 1 ≤ i, j ≤ 19 } we generated 50 randomCSPs. Next we
computed the average number of checks and the average time that was required for deciding the
satisfiability of each problem usingMAC search. All problems were run to completion. Frostet
al.’s model B[Gentet al., 2001] random problem generator was used to generate the problems
(http://www.lirmm.fr/˜bessiere/generator.html).

The test was carried out in parallel on 50 identical machines. All machines were Intel Pen-
tium III machines, running SuSe Linux 8.0, having 125 MB of RAM, having a 256 KB cach size,
and running at a clock speed of about 930 MHz. Between pairs of machines there were small
(less than 1%) variations in clock speed. Each machine was given a unique identifier in the range
from 1 through 50. For each machine random problems were generated for each combination
of density and tightness. TheCSPgenerator on a particular machine was started with the seed
given by 1000 times the machine’s identifier. All problems fitted into memory and no swapping
occurred.The solution timeincludedcounting the checks. The total time for our comparison is
equivalent to more than 100 days of computation on a single machine.

Figures 6.1 and 6.2 depict scatter plots of the time required byMAC-2001p and MAC-3d
both equipped with acomp heuristic versus the number of checks that they required to find the
first solution for problem size 30. Both figures suggest that the solution time linearly depends on
the number of checks. A similar linear relationship between the solution time and the number
of checks was observed for all algorithms, for all heuristics, andall problem sizes. Note that
the figures demonstrate that many problems were difficult and took tens of minutes to hours to
complete.

Figure 6.3 depicts a scatter plot of the checks required byMAC-3d with comp versus the

15

0.0e+00

2.0e+03

4.0e+03

6.0e+03

8.0e+03

1.0e+04

1.2e+04

0.0e+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10 2.5e+10

M
A

C
-2

00
1p

Checks

Figure 6.1: Size 30: Scatter plot of time of
MAC-2001p with comp arc-heuristic for first
solution vs. average number of checks.

0.0e+00

1.0e+03

2.0e+03

3.0e+03

4.0e+03

5.0e+03

6.0e+03

7.0e+03

8.0e+03

9.0e+03

0.0e+00 1.0e+10 2.0e+10 3.0e+10 4.0e+10 5.0e+10 6.0e+10

M
A

C
-3

d

Checks

Figure 6.2: Size 30: Scatter plot of time of
MAC-3d with comp arc-heuristic for first so-
lution vs. average number of checks.

0.0e+00

1.0e+10

2.0e+10

3.0e+10

4.0e+10

5.0e+10

6.0e+10

0.0e+00 5.0e+09 1.0e+10 1.5e+10 2.0e+10 2.5e+10

M
A

C
-2

00
1p

Checks

Figure 6.3: Size 30: Scatter plot of num-
ber checks of MAC-2001p with comp arc-
heuristic for first solution vs. number checks
of MAC-3d with comp arc-heuristic.

0.0e+00

1.0e+03

2.0e+03

3.0e+03

4.0e+03

5.0e+03

6.0e+03

7.0e+03

8.0e+03

9.0e+03

0.0e+00 2.0e+03 4.0e+03 6.0e+03 8.0e+03 1.0e+04 1.2e+04

M
A

C
-2

00
1p

Time

Figure 6.4: Size 30: Scatter plot of time of
MAC-2001p with comp arc-heuristic for first
solution vs. time of MAC-3d with comp arc-
heuristic.

16

number of checks required byMAC-2001p with comp for problem size 30. Figure 6.4 depicts a
scatter plot of the time required byMAC-3d with comp versus the time required byMAC-2001p
with comp for problem size 30. Both figures suggest that there is a linear relationship between
the number of checks required byMAC-3d andMAC-2001p and between the solution times of
MAC-3d andMAC-2001p. Again, similar linear relationships were observed for other combina-
tions of algorithms.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 14 16 18 20 22 24 26 28 30

ra
tio

 o
f a

ve
ra

ge
 n

um
be

r
of

 c
he

ck
s

size

MAC-3 (lex)
MAC-3p (comp)
MAC-3d (comp)
MAC-2001 (rlex)

MAC-2001p (rlex)
MAC-2001 (lex)

MAC-2001p (lex)
MAC-2001 (comp)

MAC-2001p (comp)

Figure 6.5: Ratio of average number of checks
vs. problem size for random problems and
search. For each size the average number
checks is divided by the average number of
checks required by MAC-3 with thelex arc-
heuristic.

0.0

0.2

0.4

0.6

0.8

1.0

 14 16 18 20 22 24 26 28 30

ra
tio

 o
f a

ve
ra

ge
 s

ol
ut

io
n

tim
e

size

MAC-2001 (rlex)
MAC-2001p (rlex)
MAC-2001p (lex)

MAC-2001 (lex)
MAC-2001 (comp)

MAC-2001p (comp)
MAC-3 (lex)

MAC-3p (comp)
MAC-3d (comp)

Figure 6.6: Ratio of average solution time vs.
problem size for random problems and search.
For each size the average time is divided by
the average time required by MAC-2001 with
therlex arc-heuristic.

Figure 6.5 depicts the ratio between the average number of checks on the one hand and the
average number ofMAC-3 with a lex arc-heuristic on the other for problem sizes 15–30 and
different combinations of algorithms and arc-heuristics. Similarly, Figure 6.6 depicts the ratio
between the average solution time and the average solution time ofMAC-2001 with an rlex
arc-heuristic. The order from top to bottom in which the algorithms and heuristics are listed in
the legends of the figures corresponds to the height of their graphs for problem size 30. It is
difficult to see but what seem to be two lines at the bottom of Figure 6.5 are two pairs of lines.
The pair at the bottom corresponds toMAC-2001 andMAC-2001p with a comp heuristic. The
other pair corresponds toMAC-2001 andMAC-2001p with a lex heuristic. As the problem size
increases the lines forMAC-2001andMAC-2001p with anrlex heuristic also seem to converge.
MAC-2001p andMAC-2001with a comp heuristic are the best when it comes to saving checks.

It is interesting to observe that whenMAC-3 andMAC-3p are both equipped with the same
heuristic thenMAC-3p solves more quickly on average (except for small problem sizes). Simi-
larly, MAC-2001p solves more quickly thanMAC-2001. Apparently, the choice to process the
reverse arc if it is in the queue has a good effect on constraint propagation. It is our intention to
further investigate the effect that always processing the reverse arc if it is also in the queue has
on constraint propagation.

17

For problem size 30 the average solution time ofMAC-2001p was about 36.289 seconds,
that of MAC-2001 was about 40.294 seconds, and that ofMAC-3d was about 29.910 seconds.
On average and over all problemsMAC-2001p required about 21% more time thanMAC-3d,
whereasMAC-2001 required about 35% more time.

For any heuristic that was under consideration and when it comes to saving timeMAC-2001
andMAC-2001p are never better on average thanMAC-3, MAC-3p andMAC-3d. Our findings
aboutMAC-3d are consistent with our previous work[van Dongen, 2002a; 2003b] The results
aboutMAC-2001andMAC-3 are in contrast with other results from the literature[Bessìere and
Régin, 2001]. However, our findings should not be dismissed because the literature does not
agree; Our testing has been fair and thorough and we cannot recall having seen such compre-
hensive comparison before. MAC-3 with lex requires about 5 times more checks on average
thanMAC-2001 andMAC-2001p with comp but solves more quickly on average. The lack of
intelligence in it’s strategy for propagation does not seem to hinderMAC-3 at all when checks
are cheap. It is even more interesting becauseMAC-3 performed even better withcomp.

Figures 6.5 and 6.6 seem to suggest that as a rule and given one of the algorithmsMAC-2001
andMAC-2001p the heuristiccomp was better thanlex which, in its turn, was better thanrlex
both for checks and time. A further investigation of the test data revealed that this was, indeed,
true.

For random problems and for clock on the wall time the best algorithm wasMAC-3d with a
comp heuristic. MAC-3p with a comp arc-heuristic was a good second. MAC-3d’s double-sup-
port heuristic allows it to improve onMAC-3p. Overall, the best algorithm from theMAC-2001
family required more than 21% more time on average thanMAC-3d.

6.4 Statistical Analysis

In this section we shall statistically analyse the relationship between the average solution time
of MAC-2001p, the quickest algorithm from theMAC-2001 family, andMAC-3d, the quickest
lightweight, both with acomp arc-heuristic. In the remainder of this section, letTi be the average
time required byMAC-i.

To find out about the relationship betweenT2001p andT3d we used a standard linear regression
analysis for the modelT2001p = a+b×T3d +c× tightness+d×density for problem sizes 15–30.
Figures 6.7–6.10 depict the values for the coefficientsa–d versus the problem size. The error
bars in the figures indicate the size of the 95% confidence intervals of these coefficients.

Figure 6.11 depicts the ratio between the model sum of squares and the sum of squares
values (usually denotedR2). R2 was always at least 0.98. When the problem size increased this
R2 value tended to converge quickly to 1. This indication that the models are good and became
better as the problem size increased.

Figure 6.8 suggests that the ratioT2001p/T3d increases as the problem size increases. If this
is a real trend then not only willMAC-2001p require more time thanMAC-3d but also will it
require proportionally more time as problems become more and more difficult.

18

-1.00e+00

-9.00e-01

-8.00e-01

-7.00e-01

-6.00e-01

-5.00e-01

-4.00e-01

-3.00e-01

-2.00e-01

-1.00e-01

0.00e+00

1.00e-01

 14 16 18 20 22 24 26 28 30

lin
ea

r
re

gr
es

si
on

 c
oe

ffi
ci

en
t a

size

Figure 6.7: Value ofa for T2001p = a + b ×
T3d + c× tightness +d×density for search.

1.10e+00

1.12e+00

1.14e+00

1.16e+00

1.18e+00

1.20e+00

 14 16 18 20 22 24 26 28 30

lin
ea

r
re

gr
es

si
on

 c
oe

ffi
ci

en
t b

size

Figure 6.8: Value ofb for T2001p = a + b ×
T3d + c× tightness + d× density vs. size.

-5.00e-03

0.00e+00

5.00e-03

1.00e-02

1.50e-02

2.00e-02

2.50e-02

3.00e-02

3.50e-02

4.00e-02

4.50e-02

 14 16 18 20 22 24 26 28 30

lin
ea

r
re

gr
es

si
on

 c
oe

ffi
ci

en
t c

size

Figure 6.9: Value ofc for T2001p = a + b ×
T3d + c× tightness + d× density vs. size.

-2.00e+00

0.00e+00

2.00e+00

4.00e+00

6.00e+00

8.00e+00

1.00e+01

1.20e+01

 14 16 18 20 22 24 26 28 30

lin
ea

r
re

gr
es

si
on

 c
oe

ffi
ci

en
t d

size

Figure 6.10: Value ofd for T2001p = a+ b×
T3d + c× tightness + d× density vs. size.

9.80e-01

9.85e-01

9.90e-01

9.95e-01

1.00e+00

 14 16 18 20 22 24 26 28 30

va
lu

e
of

 R
^2

size

Figure 6.11: Value ofR2 for T2001p = a +
b × T3d + c × tightness + d × density vs.
size.

19

6.5 Real-World Problems

The real-world problems came from theCELAR suite[CELAR, 1994]. We considered all prob-
lems (RLFAP 1–11 and GRAPH 1–14). However, we did not consider optimisation but only
considered satisfiability.

These problems have become a sort of a standard benchmark for real-world problems. All
constraints in these problems are of the form| v−w | ≤ c, | v−w | ≥ c | v−w | < c, | v−w | > c
or | v−w | = c for different coefficientsc. Checks were implemented as function calls. We used
the following implementation in C.

#define SATISFIES(/* CONSTRAINT_POINTER */ constraint \
, /* int */ val_v \
, /* int */ val_w \
) \

constraint->rlfap_function(constraint->idx_a, \
constraint->idx_b, \
val_v, \
val_w, \
constraint->rlfap_val)

Here constraint->idx a and constraint->idx b are the numbers of the variables
that are involved in the constraint andconstraints->rlfap val stores the coefficientc.
Note that the function call requires some overhead. The overhead consists of the retrieval of the
numbers of the variables and that of the coefficientc. For each comparison operator≤, ≥, <,
>, and= a function was implemented to compare| v − w | andc. For example, the function to
decide if| v − w | = c was implemented as follows:

int rlfap_eq(int idx_a, int idx_b, int val_a, int val_b, int number) {
return (abs(domains[idx_a].numbers[val_a] -

domains[idx_b].numbers[val_b]) == number);
}

and for each constraint of the form| v − w | = c between the variables with numbersidx a
andidx b we initialised the constraint “constraint ” between these variables as follows:

/* initialises ‘‘constraint’’ between variables a and b with numbers idx_a and idx_b
* such that for each v in Domain(a) and w in Doman(b) we have | v - w | == c.
*/

constraint->idx_a = idx_a;
constraint->idx_b = idx_b;
constraint->rlfap_val = c;
constraint->rlfap_function = rlfap_eq;

Notice that the functionrlfap eq requires 4 array subscriptions, one more function call to a
function calledabs , two “offset” computations (the.numbers operations), and a comparison.
It is hoped that the reader agrees that for the real-world problems the checks are more difficult
than for the randomCSPs where they only required two array subscriptions. Note that the solu-
tion timeexcludescounting the checks. Comments about this different set up will be provided at
the end of this section.

All problems were solved on the same machine. This machine was one of the machines that
were used to solve the random problems. The specifications of such machine can be found in
Section 6.3. For every problem we computed the average solution time over 50 runs. For all
problemsd = 44.

The results for the tests are depicted in Tables 6.1–6.6 on Pages 23–28. For each problem the
least average number of checks and least average solution time recorded for that problem for all

20

arc-heuristics are printed ingreen and bold face. For each of the remaining heuristics the least
average number of checks and least average solution time are printed inblue and italics. The
values in column “ac” tell whether the problem could be made arc-consistent initialy.

Again MAC-2001 andMAC-2001p are the best when it comes to saving checks. It pays off
for RLFAP 11, GRAPH 4, GRAPH 6, GRAPH 10, andGRAPH 11. For these problems they
record the best solution time. MAC-2001p has to share the best solution time withMAC-3d and
MAC-3p for GRAPH 6 and GRAPH 11. MAC-3d performs quite well. For 21 out of the 25
problems it records the best solution time and for 15 out of those 21 problems it does so for
comp. MAC-3d solved quickly both for problems that required search and those that did not.

It should be observed that all problems have a relatively low density—it is always below 7%.
It should be interesting to also compare the algorithms for larger real-world problems.

Comment 1 (The impact of counting checks)Remember that the timings that we report on in
this section do not include the time for counting checks. In a paper which was submitted for
publication we reported on results from a subset of the problems that we report on in this sec-
tion. However, for that paper wedid include time for counting. It was much to our surprise
when we observed that (for acomp heuristic) when countingwasincludedMAC-3d recorded a
solution time of 5.345 seconds forRLFAP 11whereas it required only 3.723 seconds if count-
ing was excluded. Similarly,MAC-3 required 7.861 seconds with counting but 4.950 seconds
without. Finally,MAC-2001p required 3.866 seconds with counting and 3.335 seconds without.
These findings demonstrate that counting checks can have asignificantimpact on the solution
time of algorithms, especially if these algorithms spend many checks. ForMAC-3, the algo-
rithm that requires most checks forRLFAP 11, the ratio of solution times is 1.588, whereas for
MAC-2001p, the algorithm that requires the fewest checks for the same problem, the ratio is only
1.159. Whereas it may be argued that including the counting of checks simulates an environment
where checks are more expensive, we believe that to separate the counting and timing will result
in a fairer comparison. After all,anyalgorithm that spends more thaned2 checks is inefficient if
only (very expensive) checks are considered, but there are manyrealapplications where checks
are cheap and it is only possible to find out how well an algorithm can perform on such prob-
lems by omitting the counting of checks. Also it should be interesting to find out which users in
professional working environments are more interested in knowing about the number of checks
carried out by the tool calledMAC that they use to solve their daily problems and which of them
are more interested in a significant reduction of its solution time.

Comment 2 (Timing without counting) In the light of Comment 1 it should be interesting to
once more carry out our experiments with random problems this time excluding the counting of
checks from the solution time. We anticipate that:

• The ratio between the average solution times of theMAC-2001 family and the lightweight
family will increase;

• MAC-3 will become (much) more competitive compared to bothMAC-3p and MAC-3d
from the perspective of average solution time;

21

• MAC-3p’s solution time will improve upon that ofMAC-3d.

In summary, for the real-world problems that we consideredMAC-2001p andMAC-2001are
the best algorithms when it comes to checks. MAC-3d recorded the quickest solution time for
the vast majority of the problems. We have provided reasons why the counting of checks should
be excluded from the solution time.

22

C
he

ck
s

T
im

e
A

lg
or

ith
m

P
ro

bl
em

n
e

de
ns

ity
ac

le
x

rl
ex

co
m

p
le

x
rl

ex
co

m
p

M
A

C
-3

R
LF

A
P

1
91

6
55

48
1.

3%
ye

s
4.

24
1e

+
06

4.
02

4e
+

06
4.

16
5e

+
06

0.
29

0
0.

37
6

0.
38

3
M

A
C

-3
p

R
LF

A
P

1
91

6
55

48
1.

3%
ye

s
3.

89
2e

+
06

3.
96

9e
+

06
3.

63
5e

+
06

0.
28

8
0.

33
2

0.
33

7
M

A
C

-3
d

R
LF

A
P

1
91

6
55

48
1.

3%
ye

s
2.

59
8e

+
06

2.
67

2e
+

06
1.

91
9e

+
060.
25

0
0

.2
9

8
0

.2
8

3
M

A
C

-2
0

0
1

R
LF

A
P

1
91

6
55

48
1.

3%
ye

s
1.

85
0e

+
06

1.
85

5e
+

06
1.

77
8e

+
06

0.
28

5
0.

39
1

0.
37

8
M

A
C

-2
0

0
1 p

R
LF

A
P

1
91

6
55

48
1.

3%
ye

s1
.8

4
9

e
+

0
6

1
.8

5
2

e
+

0
6

1.
77

6e
+

06
0.

28
6

0.
33

1
0.

34
5

M
A

C
-3

R
LF

A
P

2
20

0
12

35
6.

2%
ye

s
8.

67
8e

+
05

8.
57

8e
+

05
8.

59
4e

+
05

0.
05

3
0.

05
8

0.
05

8
M

A
C

-3
p

R
LF

A
P

2
20

0
12

35
6.

2%
ye

s
8.

15
7e

+
05

8.
42

8e
+

05
7.

38
6e

+
05

0.
05

4
0.

05
7

0.
05

2
M

A
C

-3
d

R
LF

A
P

2
20

0
12

35
6.

2%
ye

s
5.

68
0e

+
05

5.
94

6e
+

053
.8

14
e+

05
0

.0
4

7
0

.0
5

1
0.

04
2

M
A

C
-2

0
0

1
R

LF
A

P
2

20
0

12
35

6.
2%

ye
s

4.
37

0e
+

05
4

.3
6

7
e

+
0

5
4.

14
0e

+
05

0.
05

6
0.

06
4

0.
06

0
M

A
C

-2
0

0
1 p

R
LF

A
P

2
20

0
12

35
6.

2%
ye

s4
.3

6
4

e
+

0
5

4
.3

6
7

e
+

0
5

4.
13

2e
+

05
0.

05
7

0.
06

0
0.

05
7

M
A

C
-3

R
LF

A
P

3
40

0
27

60
3.

5%
ye

s
2.

13
2e

+
06

2.
05

5e
+

06
2.

10
1e

+
06

0.
13

6
0.

15
8

0.
15

7
M

A
C

-3
p

R
LF

A
P

3
40

0
27

60
3.

5%
ye

s
1.

97
8e

+
06

2.
02

6e
+

06
1.

83
0e

+
06

0.
13

6
0.

14
9

0.
14

3
M

A
C

-3
d

R
LF

A
P

3
40

0
27

60
3.

5%
ye

s
1.

37
6e

+
06

1.
42

0e
+

06
1.

00
6e

+
060.
1

2
1

0
.1

3
5

0.
12

0
M

A
C

-2
0

0
1

R
LF

A
P

3
40

0
27

60
3.

5%
ye

s
9.

49
1e

+
05

9
.5

0
3

e
+

0
5

9.
12

2e
+

05
0.

13
9

0.
16

8
0.

15
9

M
A

C
-2

0
0

1 p
R

LF
A

P
3

40
0

27
60

3.
5%

ye
s9

.4
8

6
e

+
0

5
9.

50
8e

+
05

9.
11

0e
+

05
0.

14
0

0.
15

3
0.

15
1

M
A

C
-3

R
LF

A
P

4
68

0
39

67
1.

7%
ye

s
2.

78
8e

+
06

3.
32

1e
+

06
2.

27
1e

+
06

0.
18

9
0.

39
8

0.
30

0
M

A
C

-3
p

R
LF

A
P

4
68

0
39

67
1.

7%
ye

s
2.

40
6e

+
06

2.
50

7e
+

06
1.

05
4e

+
06

0.
17

7
0.

27
6

0.
18

1
M

A
C

-3
d

R
LF

A
P

4
68

0
39

67
1.

7%
ye

s
1.

64
7e

+
06

1.
75

3e
+

066
.7

09
e+

05
0.

14
5

0
.2

4
9

0
.1

6
4

M
A

C
-2

0
0

1
R

LF
A

P
4

68
0

39
67

1.
7%

ye
s

1.
60

3e
+

06
1.

73
3e

+
06

1.
46

4e
+

06
0.

16
9

0.
36

9
0.

29
8

M
A

C
-2

0
0

1 p
R

LF
A

P
4

68
0

39
67

1.
7%

ye
s1

.4
8

0
e

+
0

6
1

.4
9

0
e

+
0

6
7.

62
8e

+
05

0.
16

2
0.

25
9

0.
18

8

Ta
bl

e
6.

1:
A

ve
ra

ge
re

su
lts

fo
r

re
al

-w
or

ld
pr

ob
le

m
s

R
LF

A
P

1–
4.

23

C
he

ck
s

T
im

e
A

lg
or

ith
m

P
ro

bl
em

n
e

de
ns

ity
ac

le
x

rl
ex

co
m

p
le

x
rl

ex
co

m
p

M
A

C
-3

R
LF

A
P

5
40

0
25

98
3.

3%
ye

s
8.

64
9e

+
07

2.
41

2e
+

07
5.

61
1e

+
06

6.
72

3
3.

19
6

1.
83

5
M

A
C

-3
p

R
LF

A
P

5
40

0
25

98
3.

3%
ye

s
8.

63
3e

+
07

2.
35

7e
+

07
5.

14
0e

+
06

7.
21

7
3.

41
7

1.
88

5
M

A
C

-3
d

R
LF

A
P

5
40

0
25

98
3.

3%
ye

s
8.

56
3e

+
07

2.
30

7e
+

07
4.

85
6e

+
06

7.
19

5
3.

39
6

1.
86

4
M

A
C

-2
0

0
1

R
LF

A
P

5
40

0
25

98
3.

3%
ye

s
1.

14
6e

+
07

5.
76

7e
+

06
2.

45
8e

+
064.
2

9
8

2
.9

2
6

1.
92

0
M

A
C

-2
0

0
1 p

R
LF

A
P

5
40

0
25

98
3.

3%
ye

s1
.1

4
2

e
+

0
7

5
.6

1
4

e
+

0
6

2.
19

2e
+

06
4.

45
1

2.
96

6
1.

91
4

M
A

C
-3

R
LF

A
P

6
20

0
13

22
6.

7%
no

9.
74

6e
+

05
1.

15
1e

+
06

8.
04

4e
+

05
0.

05
7

0.
07

9
0.

05
7

M
A

C
-3
p

R
LF

A
P

6
20

0
13

22
6.

7%
no

8.
25

4e
+

05
9.

56
6e

+
05

1.
38

6e
+

05
0.

05
1

0.
06

6
0.

01
5

M
A

C
-3
d

R
LF

A
P

6
20

0
13

22
6.

7%
no

5.
61

0e
+

05
6.

67
3e

+
059

.6
51

e+
04

0
.0

4
0

0
.0

5
5

0.
01

4
M

A
C

-2
0

0
1

R
LF

A
P

6
20

0
13

22
6.

7%
no

5.
70

6e
+

05
6.

09
4e

+
05

5.
51

8e
+

05
0.

05
1

0.
06

9
0.

05
8

M
A

C
-2

0
0

1 p
R

LF
A

P
6

20
0

13
22

6.
7%

no
5

.1
7

6
e

+
0

5
5

.7
2

1
e

+
0

5
1.

19
1e

+
05

0.
04

7
0.

06
1

0.
01

8
M

A
C

-3
R

LF
A

P
7

40
0

28
65

3.
6%

no
5.

43
7e

+
05

8.
12

1e
+

05
5.

50
0e

+
05

0.
03

3
0.

07
5

0.
05

1
M

A
C

-3
p

R
LF

A
P

7
40

0
28

65
3.

6%
no

4.
51

2e
+

05
5.

12
5e

+
05

2.
88

8e
+

04
0.

03
0

0.
04

4
0.

00
4

M
A

C
-3
d

R
LF

A
P

7
40

0
28

65
3.

6%
no

2
.7

3
3

e
+

0
5

3
.4

5
8

e
+

0
5

1.
68

4e
+

04
0

.0
2

3
0

.0
3

8
0.

00
4

M
A

C
-2

0
0

1
R

LF
A

P
7

40
0

28
65

3.
6%

no
4.

33
5e

+
05

5.
17

8e
+

05
4.

67
4e

+
05

0.
03

5
0.

07
3

0.
05

5
M

A
C

-2
0

0
1 p

R
LF

A
P

7
40

0
28

65
3.

6%
no

3.
58

6e
+

05
3.

47
6e

+
05

2.
88

2e
+

04
0.

03
2

0.
04

3
0.

00
5

M
A

C
-3

R
LF

A
P

8
91

6
57

44
1.

4%
no

8.
94

4e
+

05
6.

40
6e

+
05

1.
17

1e
+

06
0.

05
9

0.
07

9
0.

16
8

M
A

C
-3
p

R
LF

A
P

8
91

6
57

44
1.

4%
no

6.
25

3e
+

05
6.

87
7e

+
05

3.
63

3e
+

04
0.

04
5

0.
07

8
0.

01
6

M
A

C
-3
d

R
LF

A
P

8
91

6
57

44
1.

4%
no

3
.7

6
4

e
+

0
5

4
.4

8
0

e
+

0
5

2.
59

3e
+

04
0

.0
3

5
0

.0
7

0
0.

01
5

M
A

C
-2

0
0

1
R

LF
A

P
8

91
6

57
44

1.
4%

no
6.

88
7e

+
05

4.
58

5e
+

05
9.

41
1e

+
05

0.
06

3
0.

08
1

0.
17

4
M

A
C

-2
0

0
1 p

R
LF

A
P

8
91

6
57

44
1.

4%
no

4.
96

0e
+

05
4.

91
3e

+
05

3.
38

3e
+

04
0.

04
8

0.
07

8
0.

01
7

Ta
bl

e
6.

2:
A

ve
ra

ge
re

su
lts

fo
r

re
al

-w
or

ld
pr

ob
le

m
s

R
LF

A
P

5–
8.

24

C
he

ck
s

T
im

e
A

lg
or

ith
m

P
ro

bl
em

n
e

de
ns

ity
ac

le
x

rl
ex

co
m

p
le

x
rl

ex
co

m
p

M
A

C
-3

R
LF

A
P

9
68

0
41

03
1.

8%
no

4.
90

7e
+

05
9.

39
2e

+
05

1.
06

4e
+

06
0.

03
0

0.
10

7
0.

12
5

M
A

C
-3
p

R
LF

A
P

9
68

0
41

03
1.

8%
no

5.
55

0e
+

05
6.

95
3e

+
05

1.
92

1e
+

05
0.

03
8

0.
07

4
0.

03
4

M
A

C
-3
d

R
LF

A
P

9
68

0
41

03
1.

8%
no

3
.2

8
0

e
+

0
5

4
.5

9
1

e
+

0
5

1.
17

0e
+

05
0.

02
9

0
.0

6
7

0
.0

3
0

M
A

C
-2

0
0

1
R

LF
A

P
9

68
0

41
03

1.
8%

no
3.

91
7e

+
05

6.
37

5e
+

05
8.

36
1e

+
05

0.
03

2
0.

10
8

0.
12

9
M

A
C

-2
0

0
1 p

R
LF

A
P

9
68

0
41

03
1.

8%
no

4.
51

3e
+

05
4.

87
9e

+
05

1.
72

5e
+

05
0.

04
0

0.
07

4
0.

03
7

M
A

C
-3

R
LF

A
P

10
68

0
41

03
1.

8%
no

4.
90

7e
+

05
9.

39
2e

+
05

1.
06

4e
+

06
0.

03
1

0.
10

7
0.

12
5

M
A

C
-3
p

R
LF

A
P

10
68

0
41

03
1.

8%
no

5.
55

0e
+

05
6.

95
3e

+
05

1.
92

1e
+

05
0.

03
8

0.
07

3
0.

03
4

M
A

C
-3
d

R
LF

A
P

10
68

0
41

03
1.

8%
no

3
.2

8
0

e
+

0
5

4
.5

9
1

e
+

0
5

1.
17

0e
+

05
0.

02
9

0
.0

6
5

0
.0

3
0

M
A

C
-2

0
0

1
R

LF
A

P
10

68
0

41
03

1.
8%

no
3.

91
7e

+
05

6.
37

5e
+

05
8.

36
1e

+
05

0.
03

2
0.

10
8

0.
12

9
M

A
C

-2
0

0
1 p

R
LF

A
P

10
68

0
41

03
1.

8%
no

4.
51

3e
+

05
4.

87
9e

+
05

1.
72

5e
+

05
0.

04
0

0.
07

4
0.

03
7

M
A

C
-3

R
LF

A
P

11
68

0
41

03
1.

8%
ye

s
2.

90
0e

+
08

1.
56

6e
+

08
5.

65
5e

+
07

19
.1

91
12

.5
44

4.
95

0
M

A
C

-3
p

R
LF

A
P

11
68

0
41

03
1.

8%
ye

s
2.

13
3e

+
08

1.
41

9e
+

08
4.

37
4e

+
07

15
.7

67
11

.8
87

4.
15

2
M

A
C

-3
d

R
LF

A
P

11
68

0
41

03
1.

8%
ye

s
1.

71
8e

+
08

1.
15

4e
+

08
3.

09
3e

+
07

14
.5

05
11

.1
10

3.
72

3
M

A
C

-2
0

0
1

R
LF

A
P

11
68

0
41

03
1.

8%
ye

s
3.

55
0e

+
07

2
.7

7
7

e
+

0
7

1.
04

3e
+

07
10

.9
49

9.
14

4
3.

74
3

M
A

C
-2

0
0

1 p
R

LF
A

P
11

68
0

41
03

1.
8%

ye
s3

.4
8

4
e

+
0

7
2.

90
6e

+
07

1.
03

9e
+

07
9

.6
4

9
8

.5
6

7
3.

33
5

Ta
bl

e
6.

3:
A

ve
ra

ge
re

su
lts

fo
r

re
al

-w
or

ld
pr

ob
le

m
s

R
LF

A
P

9–
11

.

25

C
he

ck
s

T
im

e
A

lg
or

ith
m

P
ro

bl
em

n
e

de
ns

ity
ac

le
x

rl
ex

co
m

p
le

x
rl

ex
co

m
p

M
A

C
-3

G
R

A
P

H
1

20
0

11
34

5.
7%

ye
s

8.
37

4e
+

05
8.

33
4e

+
05

7.
79

4e
+

05
0.

05
3

0.
05

8
0.

05
5

M
A

C
-3
p

G
R

A
P

H
1

20
0

11
34

5.
7%

ye
s

7.
96

9e
+

05
8.

24
7e

+
05

7.
07

8e
+

05
0.

05
4

0.
05

8
0.

05
2

M
A

C
-3
d

G
R

A
P

H
1

20
0

11
34

5.
7%

ye
s

5.
63

9e
+

05
5.

87
4e

+
05

4.
10

3e
+

050.
0

4
6

0
.0

5
0

0.
04

1
M

A
C

-2
0

0
1

G
R

A
P

H
1

20
0

11
34

5.
7%

ye
s

3.
11

2e
+

05
3.

11
9e

+
05

3.
03

5e
+

05
0.

04
8

0.
05

5
0.

05
2

M
A

C
-2

0
0

1 p
G

R
A

P
H

1
20

0
11

34
5.

7%
ye

s3
.1

0
7

e
+

0
5

3
.1

1
5

e
+

0
5

3.
03

2e
+

05
0.

04
8

0.
05

2
0.

05
0

M
A

C
-3

G
R

A
P

H
2

40
0

22
45

2.
8%

ye
s

1.
87

6e
+

06
1.

90
0e

+
06

1.
70

5e
+

06
0.

12
5

0.
14

7
0.

13
2

M
A

C
-3
p

G
R

A
P

H
2

40
0

22
45

2.
8%

ye
s

1.
82

8e
+

06
1.

88
7e

+
06

1.
55

8e
+

06
0.

13
0

0.
14

1
0.

12
8

M
A

C
-3
d

G
R

A
P

H
2

40
0

22
45

2.
8%

ye
s

1.
37

9e
+

06
1.

42
6e

+
06

8.
78

9e
+

05
0.

11
5

0.
12

8
0.

10
4

M
A

C
-2

0
0

1
G

R
A

P
H

2
40

0
22

45
2.

8%
ye

s
6.

73
9e

+
05

6
.7

4
1

e
+

0
5

6.
51

7e
+

05
0

.1
0

7
0.

13
2

0.
12

1
M

A
C

-2
0

0
1 p

G
R

A
P

H
2

40
0

22
45

2.
8%

ye
s6

.7
3

5
e

+
0

5
6.

74
7e

+
05

6.
50

8e
+

05
0.

11
0

0
.1

2
0

0.
11

9
M

A
C

-3
G

R
A

P
H

3
20

0
11

34
5.

7%
ye

s
1.

21
2e

+
06

1.
20

7e
+

06
1.

10
3e

+
06

0.
07

4
0.

08
0

0.
07

3
M

A
C

-3
p

G
R

A
P

H
3

20
0

11
34

5.
7%

ye
s

1.
19

5e
+

06
1.

20
0e

+
06

1.
07

0e
+

06
0.

07
6

0.
08

1
0.

07
4

M
A

C
-3
d

G
R

A
P

H
3

20
0

11
34

5.
7%

ye
s

9.
32

3e
+

05
9.

39
9e

+
05

7.
90

6e
+

05
0.

06
8

0
.0

7
2

0.
06

4
M

A
C

-2
0

0
1

G
R

A
P

H
3

20
0

11
34

5.
7%

ye
s

6.
01

7e
+

05
5

.9
4

6
e

+
0

5
5.

87
7e

+
05

0
.0

6
5

0.
07

3
0.

06
9

M
A

C
-2

0
0

1 p
G

R
A

P
H

3
20

0
11

34
5.

7%
ye

s5
.9

9
8

e
+

0
5

5.
97

3e
+

05
5.

79
7e

+
05

0.
06

6
0.

06
9

0.
06

7
M

A
C

-3
G

R
A

P
H

4
40

0
22

44
2.

8%
ye

s
2.

35
1e

+
06

2.
44

9e
+

06
2.

16
8e

+
06

0.
15

2
0.

18
2

0.
16

4
M

A
C

-3
p

G
R

A
P

H
4

40
0

22
44

2.
8%

ye
s

2.
33

1e
+

06
2.

40
9e

+
06

2.
06

3e
+

06
0.

15
9

0.
17

4
0.

16
1

M
A

C
-3
d

G
R

A
P

H
4

40
0

22
44

2.
8%

ye
s

1.
81

1e
+

06
1.

88
4e

+
06

1.
52

1e
+

06
0.

14
1

0.
15

8
0

.1
3

9
M

A
C

-2
0

0
1

G
R

A
P

H
4

40
0

22
44

2.
8%

ye
s

1.
19

3e
+

06
1

.1
9

5
e

+
0

6
1.

15
5e

+
06

0.
13

6
0.

16
4

0.
15

4
M

A
C

-2
0

0
1 p

G
R

A
P

H
4

40
0

22
44

2.
8%

ye
s1

.1
9

0
e

+
0

6
1.

20
0e

+
06

1.
12

5e
+

06
0.

13
9

0
.1

5
2

0.
14

7
M

A
C

-3
G

R
A

P
H

5
20

0
11

34
5.

7%
no

2.
45

1e
+

05
4.

32
3e

+
05

1.
39

2e
+

05
0.

01
5

0.
03

2
0.

01
6

M
A

C
-3
p

G
R

A
P

H
5

20
0

11
34

5.
7%

no
2.

29
7e

+
05

2.
41

6e
+

05
2.

61
4e

+
04

0.
01

5
0.

01
8

0.
00

4
M

A
C

-3
d

G
R

A
P

H
5

20
0

11
34

5.
7%

no
1

.5
3

7
e

+
0

5
1.

72
4e

+
05

1.
90

6e
+

04
0

.0
1

2
0

.0
1

6
0.

00
4

M
A

C
-2

0
0

1
G

R
A

P
H

5
20

0
11

34
5.

7%
no

1.
69

5e
+

05
2.

34
2e

+
05

1.
10

3e
+

05
0.

01
5

0.
02

9
0.

01
8

M
A

C
-2

0
0

1 p
G

R
A

P
H

5
20

0
11

34
5.

7%
no

1.
65

9e
+

05
1

.5
9

4
e

+
0

5
2.

46
6e

+
04

0.
01

7
0.

01
8

0.
00

5

Ta
bl

e
6.

4:
A

ve
ra

ge
re

su
lts

fo
r

re
al

-w
or

ld
pr

ob
le

m
s

G
R

A
P

H
1–

5.

26

C
he

ck
s

T
im

e
A

lg
or

ith
m

P
ro

bl
em

n
e

de
ns

ity
ac

le
x

rl
ex

co
m

p
le

x
rl

ex
co

m
p

M
A

C
-3

G
R

A
P

H
6

40
0

21
70

2.
7%

no
5.

51
0e

+
05

7.
00

5e
+

05
3.

31
8e

+
05

0.
03

5
0.

06
4

0.
03

9
M

A
C

-3
p

G
R

A
P

H
6

40
0

21
70

2.
7%

no
5.

26
0e

+
05

6.
21

5e
+

05
7.

95
7e

+
03

0.
03

6
0.

05
2

0.
00

3
M

A
C

-3
d

G
R

A
P

H
6

40
0

21
70

2.
7%

no
3

.3
2

5
e

+
0

5
4

.1
5

1
e

+
0

5
5.

97
8e

+
03

0
.0

2
8

0
.0

4
5

0.
00

3
M

A
C

-2
0

0
1

G
R

A
P

H
6

40
0

21
70

2.
7%

no
3.

98
4e

+
05

4.
41

9e
+

05
2.

64
6e

+
05

0.
03

5
0.

06
2

0.
04

2
M

A
C

-2
0

0
1 p

G
R

A
P

H
6

40
0

21
70

2.
7%

no
3.

98
1e

+
05

4.
44

9e
+

05
7.

56
1e

+
03

0.
03

7
0.

05
2

0.
00

3
M

A
C

-3
G

R
A

P
H

7
40

0
21

70
2.

7%
no

3.
85

2e
+

05
4.

85
5e

+
05

3.
17

8e
+

05
0.

02
4

0.
04

3
0.

04
6

M
A

C
-3
p

G
R

A
P

H
7

40
0

21
70

2.
7%

no
4.

10
3e

+
05

4.
71

8e
+

05
7.

35
0e

+
03

0.
02

8
0.

04
2

0.
00

2
M

A
C

-3
d

G
R

A
P

H
7

40
0

21
70

2.
7%

no
2

.5
9

5
e

+
0

5
3.

21
2e

+
05

5.
36

2e
+

03
0

.0
2

2
0

.0
3

7
0.

00
2

M
A

C
-2

0
0

1
G

R
A

P
H

7
40

0
21

70
2.

7%
no

2.
82

1e
+

05
3.

47
5e

+
05

2.
47

1e
+

05
0.

02
5

0.
04

3
0.

04
9

M
A

C
-2

0
0

1 p
G

R
A

P
H

7
40

0
21

70
2.

7%
no

3.
12

6e
+

05
3

.1
8

2
e

+
0

5
6.

91
0e

+
03

0.
02

9
0.

04
1

0.
00

3
M

A
C

-3
G

R
A

P
H

8
68

0
37

57
1.

6%
ye

s
3.

14
1e

+
06

3.
14

4e
+

06
2.

83
9e

+
06

0.
22

1
0.

27
5

0.
25

3
M

A
C

-3
p

G
R

A
P

H
8

68
0

37
57

1.
6%

ye
s

3.
04

0e
+

06
3.

11
0e

+
06

2.
62

9e
+

06
0.

23
1

0.
25

3
0.

23
9

M
A

C
-3
d

G
R

A
P

H
8

68
0

37
57

1.
6%

ye
s

2.
19

4e
+

06
2.

25
2e

+
06

1.
57

6e
+

060.
20

3
0

.2
3

0
0

.2
0

4
M

A
C

-2
0

0
1

G
R

A
P

H
8

68
0

37
57

1.
6%

ye
s

1.
26

0e
+

06
1

.2
6

5
e

+
0

6
1.

22
9e

+
06

0.
20

4
0.

26
4

0.
24

6
M

A
C

-2
0

0
1 p

G
R

A
P

H
8

68
0

37
57

1.
6%

ye
s1

.2
5

8
e

+
0

6
1

.2
6

5
e

+
0

6
1.

22
5e

+
06

0.
20

9
0.

23
1

0.
23

4
M

A
C

-3
G

R
A

P
H

9
91

6
52

46
1.

3%
ye

s
4.

42
5e

+
06

4.
50

8e
+

06
3.

89
0e

+
06

0.
32

0
0.

42
2

0.
38

5
M

A
C

-3
p

G
R

A
P

H
9

91
6

52
46

1.
3%

ye
s

4.
33

2e
+

06
4.

47
4e

+
06

3.
58

6e
+

06
0.

33
8

0.
38

0
0.

35
7

M
A

C
-3
d

G
R

A
P

H
9

91
6

52
46

1.
3%

ye
s

3.
30

5e
+

06
3.

43
4e

+
06

2.
17

1e
+

060.
30

8
0

.3
5

3
0

.3
1

1
M

A
C

-2
0

0
1

G
R

A
P

H
9

91
6

52
46

1.
3%

ye
s

1.
86

7e
+

06
1

.8
7

0
e

+
0

6
1.

79
6e

+
06

0.
31

1
0.

41
6

0.
39

1
M

A
C

-2
0

0
1 p

G
R

A
P

H
9

91
6

52
46

1.
3%

ye
s1

.8
6

5
e

+
0

6
1.

87
1e

+
06

1.
79

2e
+

06
0.

32
0

0.
35

8
0.

36
6

M
A

C
-3

G
R

A
P

H
10

68
0

39
07

1.
7%

ye
s

8.
25

3e
+

06
8.

30
2e

+
06

5.
67

8e
+

06
0.

58
3

0.
71

3
0.

56
2

M
A

C
-3
p

G
R

A
P

H
10

68
0

39
07

1.
7%

ye
s

8.
07

5e
+

06
8.

57
3e

+
06

5.
50

1e
+

06
0.

60
1

0.
72

5
0.

54
4

M
A

C
-3
d

G
R

A
P

H
10

68
0

39
07

1.
7%

ye
s

7.
01

9e
+

06
7.

48
8e

+
06

4.
29

4e
+

06
0.

56
7

0.
69

3
0.

49
9

M
A

C
-2

0
0

1
G

R
A

P
H

10
68

0
39

07
1.

7%
ye

s
2.

68
9e

+
062

.6
8

1
e

+
0

6
2.

35
4e

+
06

0.
45

1
0.

58
8

0.
51

3
M

A
C

-2
0

0
1 p

G
R

A
P

H
10

68
0

39
07

1.
7%

ye
s2

.6
7

2
e

+
0

6
2.

73
9e

+
06

2.
33

2e
+

06
0.

45
6

0
.5

7
3

0
.4

8
4

Ta
bl

e
6.

5:
A

ve
ra

ge
re

su
lts

fo
r

re
al

-w
or

ld
pr

ob
le

m
s

G
R

A
P

H
6–

10
.

27

C
he

ck
s

T
im

e
A

lg
or

ith
m

P
ro

bl
em

n
e

de
ns

ity
ac

le
x

rl
ex

co
m

p
le

x
rl

ex
co

m
p

M
A

C
-3

G
R

A
P

H
11

68
0

37
57

1.
6%

no
2.

24
6e

+
05

2.
88

6e
+

05
6.

56
3e

+
050.
0

1
5

0
.0

3
1

0.
12

7
M

A
C

-3
p

G
R

A
P

H
11

68
0

37
57

1.
6%

no
3.

02
4e

+
05

3.
51

2e
+

05
8.

96
6e

+
03

0.
02

2
0.

03
6

0.
00

4
M

A
C

-3
d

G
R

A
P

H
11

68
0

37
57

1.
6%

no
1

.7
7

9
e

+
0

5
2

.2
7

0
e

+
0

5
6.

88
6e

+
03

0.
01

7
0.

03
3

0.
00

4
M

A
C

-2
0

0
1

G
R

A
P

H
11

68
0

37
57

1.
6%

no
1.

96
7e

+
05

2.
34

4e
+

05
5.

06
9e

+
05

0.
01

7
0.

03
3

0.
13

3
M

A
C

-2
0

0
1 p

G
R

A
P

H
11

68
0

37
57

1.
6%

no
2.

67
9e

+
05

2.
78

4e
+

05
8.

47
0e

+
03

0.
02

5
0.

03
8

0.
00

4
M

A
C

-3
G

R
A

P
H

12
68

0
40

17
1.

7%
no

3.
24

0e
+

05
6.

89
9e

+
05

4.
53

5e
+

050.
0

2
2

0.
07

0
0.

07
4

M
A

C
-3
p

G
R

A
P

H
12

68
0

40
17

1.
7%

no
4.

12
6e

+
05

4.
80

6e
+

05
6.

73
7e

+
04

0.
03

0
0.

05
0

0.
02

0
M

A
C

-3
d

G
R

A
P

H
12

68
0

40
17

1.
7%

no
2

.5
0

4
e

+
0

5
3

.2
8

6
e

+
0

5
4.

91
2e

+
04

0.
02

3
0

.0
4

6
0.

01
9

M
A

C
-2

0
0

1
G

R
A

P
H

12
68

0
40

17
1.

7%
no

2.
79

6e
+

05
5.

40
6e

+
05

3.
96

4e
+

05
0.

02
4

0.
07

3
0.

07
9

M
A

C
-2

0
0

1 p
G

R
A

P
H

12
68

0
40

17
1.

7%
no

3.
48

3e
+

05
3.

54
6e

+
05

6.
40

5e
+

04
0.

03
3

0.
05

1
0.

02
3

M
A

C
-3

G
R

A
P

H
13

91
6

52
73

1.
3%

no
6.

15
1e

+
05

6.
73

7e
+

05
4.

73
7e

+
050.
0

4
0

0
.0

7
2

0.
09

5
M

A
C

-3
p

G
R

A
P

H
13

91
6

52
73

1.
3%

no
7.

48
0e

+
05

8.
66

8e
+

05
2.

37
8e

+
04

0.
05

2
0.

09
0

0.
01

0
M

A
C

-3
d

G
R

A
P

H
13

91
6

52
73

1.
3%

no
4

.5
5

2
e

+
0

5
5.

75
3e

+
05

1.
77

6e
+

04
0.

04
1

0.
08

2
0.

01
0

M
A

C
-2

0
0

1
G

R
A

P
H

13
91

6
52

73
1.

3%
no

4.
89

0e
+

05
5

.7
2

9
e

+
0

5
4.

12
6e

+
05

0.
04

2
0.

07
7

0.
10

2
M

A
C

-2
0

0
1 p

G
R

A
P

H
13

91
6

52
73

1.
3%

no
6.

23
4e

+
05

6.
55

0e
+

05
2.

24
4e

+
04

0.
05

6
0.

09
2

0.
01

1
M

A
C

-3
G

R
A

P
H

14
91

6
46

38
1.

1%
ye

s
3.

89
4e

+
06

3.
94

5e
+

06
3.

40
1e

+
06

0.
28

2
0.

36
4

0.
33

0
M

A
C

-3
p

G
R

A
P

H
14

91
6

46
38

1.
1%

ye
s

3.
82

7e
+

06
3.

92
3e

+
06

3.
09

0e
+

06
0.

29
9

0.
33

2
0.

30
8

M
A

C
-3
d

G
R

A
P

H
14

91
6

46
38

1.
1%

ye
s

2.
86

6e
+

06
2.

95
7e

+
06

1.
73

4e
+

06
0.

26
7

0
.3

0
4

0.
25

9
M

A
C

-2
0

0
1

G
R

A
P

H
14

91
6

46
38

1.
1%

ye
s1

.6
5

1
e

+
0

6
1

.6
5

2
e

+
0

6
1.

59
1e

+
06

0
.2

6
3

0.
35

1
0.

32
7

M
A

C
-2

0
0

1 p
G

R
A

P
H

14
91

6
46

38
1.

1%
ye

s1
.6

5
1

e
+

0
6

1
.6

5
2

e
+

0
6

1.
58

9e
+

06
0.

27
1

0
.3

0
4

0.
31

1

Ta
bl

e
6.

6:
A

ve
ra

ge
re

su
lts

fo
r

re
al

-w
or

ld
pr

ob
le

m
s

G
R

A
P

H
11

–1
4.

28

Chapter 7

Conclusions and Recommendations

We compared five algorithms calledMAC-2001, MAC-2001p, MAC-3, MAC-3p, andMAC-3d.
MAC-2001 and MAC-2001p have an arc-consistency component with an optimal worst case
time-complexity. The remaining algorithms do not. We demonstrated thatMAC-2001’s space-com-
plexity isO(edmin(n, d)) and we demonstrated that this size may be prohibitive even forCSPs
that are relatively easy. We compared the algorithms for search and for three different arc-heuris-
tics, calledlex , rlex , andcomp. We considered random problems where checks are cheap and
real-world problems where checks are expensive. For the random problems we included the
counting of checks in the solution time. For the real-world problems we did not. For the random
problems our findings are that good arc-consistency algorithms do not always need to have an
optimal worst case time-complexity. We presented results that suggest quite the opposite. For
a given arc-heuristicMAC-2001 andMAC-2001p always required more solution time than the
others. MAC-3d with comp arc-heuristic, was the most efficient combination when it comes to
saving time. MAC-2001p required about 21% more time on average thanMAC-3d andMAC-
2001required about 34% more. For the real-world problems things were not as clear. For these
problemsMAC-2001 andMAC-2001p were the best in saving checks butMAC-3d with a comp
arc-heuristic recorded the best solution time for the vast majority of these problems. Since the
differences were not as clear as for the random problems it is difficult to say which algorithm
should be preferred for the real-world problems that we considered in our test. Finally, we have
observed that including the counting of checks in the the solution time results in an increase of
about 59% for some algorithms. It is for this reason that we argue that to find out how well
algorithms perform (at least where problems are easy or where checks are cheap) the counting
of checks should be separated from measuring the solution time. We anticipate that if we were
to compare the algorithms once more for random problems, this time separating the counting
and timing, then the ratio between the best solution time from theMAC-2001 family and the
best solution time from the lightweight algorithms will increase. To conduct such experiment is
something we intend to do in the near future.

29

Acknowledgements

First of all I should like to thank Christian Bessière for letting us use his solver in an early stage
of this work and for useful discussions. I should like to thank Rick Wallace and Ken Brown for
early discussions. Also I wish to thank Christian van den Bosch for setting up and carrying out
the experiments. Finally, I should like to express my gratitude to Gene Freuder for his support
of this work. This work has received support from Science Foundation Ireland under Grant
00/PI.1/C075.

30

Bibliography

[Bessìere and Ŕegin, 2001] C. Bessìere and J.-C. Ŕegin. Refining the basic constraint propaga-
tion algorithm. InProceedings of the Seventeenth International Joint Conference on Artificial
Intelligence, pages 309–315, 2001.

[Bessìereet al., 1995] C. Bessìere, E.C. Freuder, and J.-C. Régin. Using inference to reduce
arc consistency computation. In C.S. Mellish, editor,Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence, volume 1, pages 592–598, Montréal,
Québec, Canada, 1995. Morgan Kaufmann Publishers, Inc., San Mateo, California, USA.

[Bessìereet al., 1999] C. Bessìere, E.G. Freuder, and J.-C. Régin. Using constraint metaknowl-
edge to reduce arc consistency computation.Artificial Intelligence, 107(1):125–148, 1999.

[CELAR, 1994] CELAR. Radio link frequency assignment problem benchmark,ftp://ftp.
cs.city.ac.uk/pub/constraints/csp-benchmarks/celar , 1994.

[Gaschnig, 1978] J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new
algorithms for satisficing assignment problems. InProceeding of the Second Biennial Confer-
ence, Canadian Society for the Computational Studies of Intelligence, pages 268–277, 1978.

[Gentet al., 1996] I.P. Gent, MacIntyre E., P. Prosser, B.M. Smith, and T. Walsh. An empiri-
cal study of dynamic variable ordering heuristics for the constraint satisfaction problem. In
E.C. Freuder, editor,Principles and Practice of Constraint Programming, pages 179–193.
Springer, 1996.

[Gentet al., 1997] I.P. Gent, E. MacIntyre, P. Prosser, P. Shaw, and T. Walsh. The constrained-
ness of arc consistency. InProceedings of the Third International Conference on Principles
and Practice of Constraint Programming, pages 327–340. Springer, 1997.

[Gentet al., 2001] Ian Gent, Ewan MacIntyre, Patrick Prosser, Barbara Smith, and Toby Walsh.
Random constraint satisfaction: Flaws and structure.Constraints, 6(4):345–372, 2001.

[Mackworth and Freuder, 1985] A.K. Mackworth and E.C. Freuder. The complexity of some
polynomial network consistency algorithms for constraint satisfaction problems.Artificial
Intelligence, 25(1):65–73, 1985.

[Mackworth, 1977] A.K. Mackworth. Consistency in networks of relations.Artificial Intelli-
gence, 8:99–118, 1977.

31

[Mohr and Henderson, 1986] R. Mohr and T. Henderson. Arc and path consistency revisited.
Artificial Intelligence, 28:225–233, 1986.

[Sabin and Freuder, 1994] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in
constraint satisfaction. In A.G. Cohn, editor,Proceedings of the Eleventh European Confer-
ence on Artificial Intelligence, pages 125–129. John Wiley and Sons, 1994.

[van Dongen and Bowen, 2000] M.R.C. van Dongen and J.A. Bowen. Improving arc-
consistency algorithms with double-support checks. InProceedings of the Eleventh Irish
Conference on Artificial Intelligence and Cognitive Science, pages 140–149, 2000.

[van Dongen, 2002a] M.R.C. van Dongen. AC-3d an efficient arc-consistency algorithm with a
low space-complexity. In P. Van Hentenryck, editor,Proceedings of the Eighth International
Conference on Principles and Practice of Constraint Programming, volume 2470 ofLecture
notes in Computer Science, pages 755–760. Springer, 2002.

[van Dongen, 2002b] M.R.C. van Dongen. AC-3d an efficient arc-consistency algorithm with a
low space-complexity. Technical Report TR-01-2002, Cork Constraint Computation Centre,
2002.

[van Dongen, 2003a] M.R.C. van Dongen. Domain-heuristics for arc-consistency algorithms.
In B. O’Sullivan, editor,Recent Advances in Constraints, volume 2627 ofLecture Notes in
Artificial Intelligence, pages 61–75. Springer, 2003. To be published.

[van Dongen, 2003b] M.R.C. van Dongen. Lightweight arc-consistency algorithms. Technical
Report TR-01-2003, Cork Constraint Computation Centre, 2003.

[Wallace and Freuder, 1992] R.J. Wallace and E.C. Freuder. Ordering heuristics for arc consis-
tency algorithms. InAI/GI/VI ’92, pages 163–169, Vancouver, British Columbia, Canada,
1992.

[Zhang and Yap, 2001] Y. Zhang and R.H.C. Yap. Making AC-3 an optimal algorithm. InPro-
ceedings of the Seventeenth International Joint Conference on Artificial Intelligence, pages
316–321, 2001.

32

