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Abstract

Arc-consistency algorithms are the workhorse of many backtrack algorithms. Most research
on arc-consistency algorithms is focusing on the design of algorithms that are optimal when
it comes to worst case scenarios. This report will provide experimental evidence that, despite
common belief to the contrary, the ability to deal efficiently with such worst case scenarios may
not be a prerequisite for solving quickly. It will compare on the one hagd2001, which

has an optimal worst case time-complexity and is considered efficient, and on thé\Gt3gr

which is not optimal when it comes to its worst case time-complexity, but which has a better
space-complexity thaAC-2001 Both algorithms will be compared foMAC search and for

stand alone arc-consisten¢the task of making a single SParc-consistent). For stand alone
arc-consistencC-3; is the better algorithm when it comes to time but there is no clear winner
when it comes to minimising the number of checks. For search the results are more interesting.
MAC-2001is by far the better algorithm when it comes to minimising the number of checks.
However,MAC-3, is considerably faster on average. For difficult random problems, that took
between minutes and 1.5 hour to solWAC-3,; was about 1.5 times faster on average than
MAC-2001 As soon asMAC-2001 starts to become successful in avoiding the duplication of
many checks it begins to invest much more additional solution time. These observations suggest
that being worst case optimal may come at a price of being less efficient on average in search
and that algorithms lik&1AC-3, are promising.
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Chapter 1

Introduction

Arc-consistency algorithms significantly reduce the size of the search space of Constraint Satis-
faction Problems@SFs) at low costs. They are the work horse of many backtrack searchers that
Maintain Arc-Consistency during seardAC) [Sabin and Freuder, 19R4

Currently, there seems to be a shared belief in the constraint satisfaction community that,
to be efficient, arc-consistency algorithms should have an optimal worst case time-complexity
[Bessereet al, 1995; Bessire and Rgin, 2001; Zhang and Yap, 2d01Arc-consistency and
MAC algorithms that are optimal in their worst case time-complexity require a space-complex-
ity of at leastO (ed) to create data structures to remember their support-checksC algo-
rithms need &0 (ed min(n, d)) space-complexity tanaintainthese data structures. As usual,

n is the number of variables in theSP, d is the maximum domain size of the variables and

is the number of constraints. The bookkeeping that is involved with these data structures is a
significant overhead. There is also experimental evidence that arc-consistengaanalgo-

rithms with a lowO (e + nd) space-complexity can be good even if they cannot remember all
their support-checks and—as a consequence—have to repedivilieimongen, 2002b; 2002c;
2002d.

In this report we shall provide evidence to support the claim that good arc-consistency al-
gorithms do not need to have an optimal worst case time-complexity. We shall experimentally
compare twoAC-3 based arc-consistency algorithfidackworth, 1977. The first algorithm is
Bessére and Rgin's AC-2001 [Bessere and Rgin, 200]. AC-2001has an optimaD (ed?)
worst case time-complexity, has@ (ed) space-complexity, and is considered good on aver-
age[Besseére and Rgin, 200]. The second algorithm i&C-3, [van Dongen, 2002b; 2002c;
2002d. AC-3; has a wors® (ed?) worst case time-complexity thakC-2001but it has a bet-
ter O (e + nd) space-complexity. Results from a preliminary comparison with7, another
optimal arc-consistency algorithiBesséreet al., 1993, indicate thatAC-3, is promising[van
Dongen, 2002c; 2002dWe shall compare both algorithms fiiAC search and fostand alone
arc-consistency Here stand alone arc-consistency is the task of making a st®gjearc-con-
sistent or decide that this is not possible. As part of our presentation we shall introduce some
notation to conveniently define ordering heuristics.

Our results for search demonstrate that for as far as support-checks are coive@edo1
was by far the better algorithm. More importantly, howewAC-3, was significantly better on



average for wall time. MC-3, was almost between 1.25 and 5.75 times faster on average than
MAC-2001, whereasv/AC-2001was never significantly faster thamAC-3,. For problems that
took a solution time of the order of magnitude of an haAC-3,; was about 1.5 times faster

on average thamMAC-2001L Our results indicate that if checks are cheap—and they almost
always are—then one should prefer an algorithm M&C-3,. For stand alone arc-consistency
the results were less clear. CA3; was the better algorithm when it came to wall time. For
minimising the number of consistency-checks there was no clear winner.

Finally, we shall present proof thatAC-2001 has aO (ed min(n,d)) space-complexity.

This result does not seem to have been noticed before.

The results presented in this report are important because of the following. Since the introduc-
tion of Mohr and HendersonsC-4 [Mohr and Henderson, 198@nost work in arc-consistency
research has been focusing on the design of better algorithms that do not re-discover (algorithms
that do not repeat checks). Our key insight is that it is only possible to avoid re-discoveries at
the price of a large additional bookkeeping. To forsake the bookkeeping at the expense of hav-
ing to re-discover may improve search. This insight may lead to the design of new classes of
arc-consistency andllAC algorithms that are not only competitive but may also, W@-3,and
MAC-3,, have the advantage of a better space-complexity because they do not have to remember
all their checks. £-3; andMAC-3, are the first known efficient algorithms from these classes.

Finally, it should be noted that sinee& -3, can be considered as a specialisatioA©f3, our
results imply thatAC-3 with proper heuristics is also efficient. This observation goes in against
all current belief in constraint satisfaction.



Chapter 2

Constraint Satisfaction

A binary constraintC,, between variables andy is a subset of the cartesian product of the
domainsD(z) of z andD(y) of y. Avaluev € D(x) issupportedbyy € D(y)if (v,w) € Cyy.
Similarly, w € D(y) is supported by € D(z) if (v,w) € Cyy,. If v € D(x) is supported by
w € D(y) then we shall also say thate D(z) is supported byj.

A Constraint Satisfaction ProblefCSB is a tupleC = (X, D,C'), whereX is a set of
variables,D(-) is a function mapping each € X to its non-empty domain, and is a set of
constraints between variables in subsetstofWe shall only conside€SPs whose constraints
are binary.C is calledarc-consistentf its domains are non-empty and for each, € C'itis
true that everyy € D(z) is supported by and that everyw € D(y) is supported byr. A
support-checkconsistency-check) is a test to find out if two values support each other.

Thetightnesof the constraint,,, betweenr andy is defined ag — | C,,, | /| D(x) x D(y) |,
where- x - denotes cartesian product. Tthensityof a CSPis defined age/(n* —n), forn > 1.

A MAC solver is a backtracker that maintains arc-consistency during s¢Sadsin and
Freuder, 1994 MAC-i is aMAC solver that uses arc-consistency algorith@xi to maintain its
arc-consistency.



Chapter 3

Operators for Selection Heuristics

3.1 Introduction

In this chapter we shall introduce some notation to unambiguously describe and “compose”
relations. Such notation is essential to describe selection heuristics for variables and arcs in
MAC searchers but may also be useful in other domains. The notation will significantly simplify
our description of selection heuristics.

We shall first provide a foundation for combining and constructing new orders from other
relations and then use these foundations to define existing and variable selection and arc selection
heuristics.

3.2 Composition of Selection Heuristics

In this section we shall recall the basic definitions of the notion lafear quasi-orderand that

of a(linear) orderand define a new notation for constructing a new order from an existing linear
guasi-order and an existing order. The idea of combining orders is strongly influenced by idea
by Collart, Kalkbrener, and Mall to combine partial orders on tef@wllartet al., 1997.

LetT be a set. Arelation offi is called aquasi-ordeiif it is reflexive and transitive. Quasi-or-
ders=< may allow for situations where < w Aw < v Av # w. A good example of a quasi-order
is the divisability relation|- onN. For example, we hav&6 A 3|6 A —=2|3 A —3|2. Another good
example of a quasi-order is the relatisnon Z? which is defined agv,w) < (v/,w") if and
only if v +w < v' 4+ w'. Arelation,<, onT is calledlinearif v < w VvV w < v forallv,w € T.

A quasi-order< is called apartial orderif v < w A w =< v impliesv = w for all v andw € T.
An order (also called dinear order) is a partial order that is also a linear quasi-order. A good
example of orders are the relatiodsand> onN.

For many selection heuristics it is desirable that they always select a single unique optimum
from the a given set of objects. Such heuristics are equivalent to orders. Similarly, useful se-
lection heuristics that allow for ties are equivalent to linear quasi-orders. We shall now define
an operator teompose linear quasi-orders;, and an ordergs,, into a new order that may be
viewed as the order that usegs and breaks ties usings.



Let <; be a linear quasi-order and let, be a order or¥’. By <, e <; we will mean the
compositiorof <, and=<;. This composition may be viewed asedinemenof <; by <,. Itis
the unique order off’ that is defined as follows:

v=pe=jw = =XjwAw=10)V (0 wAw =X vAY 25 w).

In words, ifv is smaller thano with respect to<; or vice versa thers; will determine the result
of the composition. Otherwise, i.e.idfandw are equal with respect tg; then=, will be used
to determine the ordering of the composition.

Note that if<; is an order therx, e <; is equal to=;. If <; is not an order ther, e <;
may be viewed as the order that first usgsand “breaks ties” usingl,. Composition associates
to the left, i.e.<5 o <, o <, is equal to(=<3 e =<,)e <;. The symbol ¢” was chosen for order
composition because it is reminiscent of for function composition.

Let < be a linear quasi-order ori, let v be a variable, and lef :: T" — Y be a function.

Then®’, is the unique order off which is defined as follows:

velw <= fv) 2 f(w).

3.3 Operators for Variable and Arc Selection

We are now in a position to define some well known variable selection heuristics and arc selection
heuristics very compactly. We shall first define variable selection heuristics and then define arc
selection heuristics.

To define the variable ordering heuristics, dgtv) be the original degree af, let §.(v) be
the current degree af, let x(v) be given by|D(v)|, and let#(v) be the unique number of
according to some preference. We shall use these functions and the standard<oaters
on N to define orders on the variables. In the remainder of this report we shall assume that
#(v) < #(w) is true if and only ifv is lexicographically smaller tham.

The well known minimum domain size heuristic with a lexicographical tie breaker is given
by ®ﬁ e ®%. The Brelaz heuristitGentet al, 1994 with a lexicographical tie breaker is given
by @% e % e ®%. An ordering on the maximum original degree with a lexicographical tie
breaker is given bygﬁj e ®%. Note that we only need one of the ordefsand > because
a <b <= —a > —b. With this equivalence the Brelaz heuristic with a lexicographical tie
breaker can also be defined@$ e % o @~

As an exercise, the reader is invited to define some other useful variable ordering heuristics.

For arc selection heuristics we need a few more ingredients. Two useful operators are the
projection operators; andm, which are defined as; ((v,w)) = v andms((v,w)) = w. The
following defines a lexicographical ordering heuristic:

®i&o7r2 ° ®:i:07r1.

Here,- o - denotes function compositions, so thab 7;((v,w)) = #(m((v,w))). As a final
example, consider the following order:

DET @@L 0 @I 0 RFT 0 @1 0 @I (3.1)

9



The order defined in Equation (3.1) turns out to be an excellent dynamic arc selection heuristic
for AC-3,.1 It is the same order as the ordgtwhich some people may define as follows:

(

true if k(v) < kK(V');
false elseifk(v') > k(v);
true elseifé.(v) > d.(v);
false elseifd.(v') < d.(v);
true elseif#(v) < (v'),
(v );
ok
);

false else if#(v') > #(v
true elseifr(w) < k(w
false elseifr(w’) > k(w);
true elseifd.(w) > d.(w');
false elseifd.(w') < d.(w);
true  else if#(w) < #(w');
| false otherwise.

(v,w) 2 (V0" <=

/
’

More difficult than writing a definition for this order is to describe it in words. It is hoped that
the reader agrees that the notation in Equation (3.1) is not only more compact but also is easier
to comprehend.

1A better heuristic still remains to be found.
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Chapter 4

Related Literature

In 1977, Mackworth presented an arc-consistency algorithm caliead [Mackworth, 1977.

AcC-3 has a0 (ed®) bound for its worst case time-complexitylackworth and Freuder, 1985
AC-3has a0 (e + nd) space-complexity. &-3 cannot remember all its support-checks. It uses
arc-heuristicsto repeatedly select and remove a tugle, y ), from a data structure called a
gueueand to use the constraint betweemandy to revisethe domain ofr. Here, to revise the
domain ofz using the constraint betweerandy means to remove the values frdi{z) that are

not supported by. These arc-heuristics determine the constraint that will be used for the next
support-check. Besides these arc-heuristics there areatsain-heuristicsThese heuristics, if
given the constraint that will be used for the next support-check, determine the values that will
be used for the next support-check. Depending on the outcome of the revision process new arcs
may be added to the queue. The interested reader is refelfdidodworth, 1977 for a detailed
description ofAC-3.

Wallace and Freuder pointed out that arc-heuristics can influence the efficiency of arc-con-
sistency algorithmfWallace and Freuder, 19RSimilar observations were made by Genal.
[Gentet al., 1997.

Bessére and Rgin presentedC-2001, which is based oAC-3 [Bessere and Rgin, 2001
(see alsdZhang and Yap, 20Q1for a similar algorithm). AC-2001revises one domain at a
time. The main difference betwe&C-3 andAC-2001is thatAC-2001uses a lexicographical
domain-heuristic and that for each variableor eachv € D(z) and each constraint between
and another variablgit remembers the last support forc D(z) with y so as to avoid repeating
checks that were used before to find supportifoe D(x) with y. AC-2001has an optimal
upper bound o (ed?) for its worst case time-complexity and its space-complexit@ icd).
Bessere and Rgin found thatAC-2001 behaves well on average. Together with Freuder they
also observed thaC-3 is a good alternative for stand alone arc-consistency if checks are cheap
andCSFs are under-constraingBessereet al., 1999. However, they also observed th&t-3
was significantly slower thaAC-7 for over-constraine€ SPs andCSFs in the phase transition.
Similar observations were made[iBessére and Rgin, 200] where it was observed thac-3
was good for under-constrain€@Ps but slower tharAC-6 and AC-2001for over-constrained
CSPs andCSPs in the phase-transition. @G3's incapability to make inference allows it to do
well for easyCSPs.

11



It seems to have gone unnoticed so far t&C-2001 has aO (ed min(n, d)) space-com-
plexity. The reason for this space-complexity is thC-2001 has tomaintain AC-2001s
O (ed) data structures during search. These data structures consist of a counter for each con-
straint-value pair to remember the last support for that viBessere and Rgin, 2001. To
maintain these data structur&sAC-2001 has to save the counters of the current and future vari-
ables after each assignment to the current variable and to restore them upon backtracking. The
only ways to save and restore the counters seem to be one of the following three methods:

1. Save all relevant counters once before arc-consistency. Upon backtracking these coun-
ters have to be restored. This require® &ned) space-complexity becau&® (ed) data
structures may have to be savetimes.

2. Save each counter before it is incremented and count the number of incremdmas,
were carried out during the arc-consistency call immediately after the assignment to the
current variable. Upon backtracking, the increments can be undone by restooungters
in the reverse order. This comes at the price of a space-complex@®y(ef?) because
each of theed counters may have to be savétmes.

3. A combination of the previous two.

Combining these results we havéd ed min(n, d)) space-complexity. Christian Beése (pri-
vate communication) agreed that this analysis is, indeed, correct and that he had implemented
MAC-2001using Method 2.

Rick Wallace experimentally found thAC-3 was always always better than Mohr and Hen-
derson’sAC-4, which has an optimal worst case time-complexity but which is almost always
slow on average due to the maintenance of it huge data stru¢Mods and Henderson, 1986;
Wallace, 1998 These findings suggest that it is not always an absolute necessity for an arc-con-
sistency algorithm to have an optimal time-complexity.

Similar observations were made in an experimental comparison beth@en AC-7, and
AC-3,, which is a cross-breed between Mackworth®-3 and Gaschnig'® EE [Mackworth,

1977; Gaschnig, 1978; Besseet al,, 1995; van Dongen, 2002a; 2002d; 20D2&C-7 is opti-

mal. The only difference betweeXC-3 andAC-3; is thatAC-3,; sometimes takes two arcs out

of the queue and simultaneously revise® domains with adouble-supportilomain-heuristic.
AC-3; only simultaneously revises two domains if its arc-heuristic selects thézarc) from

the queue and if, at the time of that selection, the reverséarc) also turns out to be in the
gueue. AC-3;’s double-support heuristic prefers checks between two values each of which are
not yet known to be supportable. The interested reader is referfedriicDongen, 2004dor

a detailed description oAC-3,’s implementation. It should be pointed out thaAi€-3,’s dou-
ble-support heuristic is replaced by a call to Mackworila'gise to revise one domain and one
more call to revise the other domain if the first call did not result in an inconsistency, then the
resulting algorithm, requires more time on average th@n3,;. A big advantage oMAC-3,

is that it has a lowO (e + nd) space-complexity, strictly smaller thaxC-2001s O (ed), and

that MAC-3, does not require additional data structures during search. Note that ifl then
MAC-3,’s space-complexity is the “square root” of thatmAC-2001 To see why this is true,
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first notice that there can bex (n—1)/2 constraints and that as a consequeneeO (n?). Next
notice that ifn ~ d thenO (e + nd) become® (n?) andO (ed min(n, d)) become®© (n?). For
two-variableCSPs the double-support heuristic is optimal. It is about twice as efficient as the
lexicographical heuristic if the domain sizes of the variables are about e@meDongen, 20023;
20024. In our comparison we found that for under-constraig&Ps AC-3, was slightly worse
thanAC-3 in wall time. AC-3 was significantly slower thaAC-3, for over-constrainedc SFs
andCSPhs in the phase transition. This is consistent with BagsiFreuder and&yin’s findings
[Bessereet al, 1999. In checksAC-3, was significantly worse thaAC-7 in the phase transi-
tion region but in wall time both algorithms performed about equally well. For all other problems
AC-3, turned out to be better both in wall time and checks. These are surprising results because
AC-3; repeats support-checks, wherees-7 does not. They support the thesis of this report
that, despite common belief to the contrary, arc-consistency algorithms can be efficient if they
are not worst case optimal. In the following chapter we shall see more evidence to support this
claim.

AC-3;'s best arc-heuristic found so far is the heuristic described in Equation (3.1). This
heuristic is relatively expensive. For example, between 15% and 258Aaf-3,’s time is
spent on arc selection and this does not include the time to see if the reverse arc is also in the
gueue and the time to modify the queue. However, the heuristic is good because it leads to
relatively many selections where two domains can be revised simultaneously. Cheaper heuristics
like the lexicographical heuristic usually do not lead to improvementsifet-3,. For example,
a lexicographical arc-heuristic almost fora¢a.C-3, to degenerate t8AC-3 because most of
the arcs that are selected with this heuristic cannot be used for simultaneous revision. What is
worse is that ifAC-3, uses the expensive heuristic and requitedouble revisions angd, single
revisions therAC-3,; with the cheap heuristic, almost always requirgs< r; double revisions
and more tham, + 2(r, — r/,) single revisions, i.e. the; — r/, fewer double revisions that are
carried out using the cheap heuristic are traded in for moreZhan- 1)) single revisions. This
bad news because a single double revision of two domains is faster on average than two single
revisions of those domains.
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Chapter 5

Experimental Results

5.1 Introduction

In this chapter we shall experimentally comp#&@-2001andAC-3, for MAC search and for
stand alone arc-consistency. To compare the algorithms we used Christiagr&sssiplemen-
tation of MAC-2001 and our own implementation o AC-3,. Both solvers were members of

the real-full-look-ahead family. Besie's implementation was a specialised version for random
problems. This is why we only considered random problems for our comparison. However,
the results from this chapter are in line with and strengthen the observationg Al@as, is
good[van Dongen, 2002d; 200RcOur own implementation was an improvement of the imple-
mentation used for the comparison describefvan Dongen, 2002c; 200RdFor some prob-
lems these improvements resulted in a speed up of 30% to 40%. It should be noticed that, as
a consequence of the improved implementation, the results descrilpeanirDongen, 2002c;
2002d are outdated in the sense that they desavib&€-3, as being slower than it is at the time

of writing this report.

To ensure that both searchers visited the same nodes in the search tree they were equipped
with the same dom/deg variable ordering heuristic. Using the notation introduced in Chapter 3
this heuristic is given byx” e @L, where f(v) = x(v)/d,(v). Bessere’s implementation
of MAC-2001 came with only one arc-heuristic, the lexicographical heuristicAQvVB; was
equipped with the arc-heuristic defined as follows:

®7§0ﬂ'2 ° ®(5£o7r2 ° ®/;o7r2 ° ®:§07r1 ° ®(§o7r1 ° ®f;071’1'

The problems were generated as follows. For each combingafibfi’ ) of average density
C and uniform tightnesg'in { (i/20,5/20) : 1 <4,j <19} 50 randomCSPs were generated
with n = 30 variables and uniform domain size= 30. Next we computed the average number
of checks and the average time required@andT by MAC-2001 andMAC-3, for the tasks
of making the problem arc-consistent before starting search and for deciding the satisfiability of
each problem usinylAC search. All problems were run to completion. Fresal’s model B
[Gentet al, 2001 random problem generator was used to generate the probletps/(
www.lirmm.fr/"bessiere/generator.html ).
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Figure 5.1:n = 30, d = 30, Stand alone arcFigure 5.2:n = 30, d = 30, Stand alone
consistency: Checks; < 0.5, AC-2001.
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The test was carried out in parallel on 50 identical machines. Each machine was associated
with a unique identifier in the range from 1 through 50. For each machine random problems
were generated for each combination of density and tightnessC$Rgenerator on a particular
machine was started with the seed given by the identifier of that machine. All problems fitted
into main memory and no swapping occurred.

In this chapter we shall only present the findings#ox= d = 30. We also carried out the
comparison fon = d = 10 andn = d = 20 (See Appendix A.1 for the results far= d = 20).

The results for these comparisons were in line with the eased = 30. The only difference
was, of course, that less time and fewer checks were required.

5.2 Stand alone Arc-Consistency

The results for stand alone arc-consistency and checks are depicted in Figures 5.1-5.6. Fig-
ures 5.5 and 5.6 depict the difference between the average number of checks. On&@egage
requires fewer checks almost everywhere except if tightness is between 80% and 90% and if
density is below 50%. For tightness between 5% and 70% the ratio between the average number
of checks required byC-2001and byAC-3; is about 2 (Figures A.35 and A.36 depict the ratio
graphically).

The results for checks and stand alone arc-consistency are remarkable FecaitxE does
not repeat support-checks wherees-3,; does. It should be interesting to theoretically inves-
tigate the reason for this counter-intuitive phenomenon. An initial theoretical investigation for
2-variableCSPs has provided interesting resultean Dongen, 2002a; 200RbFor the moment
the general case seems to be too difficult.

The results for time and stand alone arc-consistency are depicted in Figures 5.7-5.12. These
figures depict the average time that was requireda8y2001andAC-3,. Only for very easy
problems isAC-2001as good a#\C-3,. For the remaining problem?sC-3; is between 1.5 and 2
times faster.

The results for stand alone arc-consistency are clearly in favoaCesd,. Only for a small
fraction of the combinations of density and tightnessAlid2001do better on average in checks
than AC-3,. For the remaining vast majority of combinations of density and tightA€sS,
was better on average in checks. On average and modulo the accuracy of the\Gra€Q1
was never faster thafiC-3; but it was significantly slower for the majority of the problems.

There is no such thing as “the” best arc-consistency algorithm. However, the results presented
in this section indicate that for random problems and stand alone arc-consiaters;)is a good
choice and a good substitute f8€-2001

5.3 Maintain Arc-Consistency

Figures 5.13 —-5.18 depict the average solution timelaC-2001 andMAC-3,. These pictures
seem to suggest th&tAC-3, is faster on average in solving rand@sPs thanMAC-2001
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This is confirmed by Figures 5.19, 5.21 and 5.23 which depict the difference between the
average solution time required YAC-2001 and MAC-3,. For certain problemsylAC-2001
requires more than thousand seconds more tha@-3,;. However, these graphs do not reveal
everything. Closer inspection of the data demonstrated that there were only two combinations of
density and tightness for whidflAC-2001 was better on average. FO€, 7 ) = (0.95,0.05)
MAC-2001 required 0.016 seconds as opposedvitdC-3,’s 0.017 seconds. FarC,7T') =
(0.85,0.20) it required 0.105 seconds, where@aacC-3, required 0.109 seconds. These differ-
ences are negligible. For the remaining cas&sC-3, was always at least as goodMaC-2001
but was usually better on average. The ratio between the average solution times retyuh@-by
2001andMAC-3, is depicted in Figures 5.25 and 5.26. For those solution times wha@ 3,
required 0 seconds (within the accuracy of the timer) a ratio of 1 was assumed. For most prob-
lemsMAC-3, turned out to be between 1.25 and 5.75 times faster.

To find the reason whAC-2001 was slower tharMAC-3,; we also have to study Fig-
ures 5.20, 5.22 and 5.24. These figures depict the difference between the number of checks that
were required byMAC-2001 and MAC-3,;. When compared tMAC-3,;, MAC-2001 starts to
lose out in time as sooon as it starts becoming successful in saving many checks. The time that
is traded in for savings in checks is roughly proportional to the number of checks as soon as
there are many. For millions of checks tha&AC-2001 saves more thaMAC-3, it loses seconds
in solution time. Our experimental results suggest the hypothesis that when checks are cheap
MAC-3,’s approach to duplicate work seems better when it comes to solution time.
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Figure 5.25:n = 30, d = 30, Search: TimeFigure 5.26:n = 30, d = 30, Search: Time,
C' < 0.5, MAC-2001/MAC-3,;. 0.5 < C, MAC-2001/MAC-3,.

5.4 Statistical Analysis

In this section we shall analyse the data fAC search in more detail. We will verify our
hypothesis thaMAC-2001 loses time as soon as it starts saving checks. To do this we defined
two stochastic variablesd, thedifference in timéetweenMAC-2001andMAC-3,, andB, the
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difference in checkisetweenvAC-2001andMAC-3,. Our experimental data gave D5= 50 x

19x 19 = 18050 sampleg A;, B; ) of (A4, B ), 1 < i < N. To determine the correlation between
A and B using these samples we used Bearson Product-Moment Correlation-Coefficierit

A and B [Jobson, 19911 This is the most widely used method to measure correlation. This
coefficient,r, is a number between -1 and 1. It is defined by the following four equations:

r = sap/(sBSp)
N

sap = S (A= pa)(Bi = pg) /(N = 1)

=1

N
pr = ZTZ‘/N
i—1

sto= 4| > (Li—pr)?/(N=1), forTe{AB}.

=1

For a perfect positive correlation = 1, for no correlationr ~ 0, and for a perfect negative
correlationr = —1. Our hypothesis is that < 0.

We will check the hypothesis for the four combinations of density and tightness where the
difference in solution time was the most significant and for all random problems. The results are
tabulated in Table 5.1. The coefficients in Rows 2, 3 and 4 indicate that there is a clear negative

density tightness r
C=080 T=025 -—0.081078
C=08 T =025 -—0.644128
C=090 T=025 -0.915199
C=09 T=025 -0.770780
0<C<1l 0<T<1 —-0.699804

Table 5.1: Pearson Product-Moment Correlation-Coefficients for Difference in Solution Time
and Difference in Checks

correlation betweer andB. It indicates that asl goes up (asMAC-2001 starts spending more
time) B goes down AC-2001starts saving checks) and vice versa. Fot7) = (0.80,0.25)

there is a not a significant negative correlation. The “cause” of this insignificant correlation is
that there were 5 out of 50 cases whefewas negative and 2 out of 50 cases whBrevas
positive. Furthermore, the absolute value of one of the negdtiweas such that it was second
largest of the absolute values of &@ll, 1 < ¢ < 50. For the problem sets corresponding to
Rows 2, 3 and 4 MC-2001always required more timed( was always positive) and required
fewer checks B; was always negative). This is why we should expect a negative coefficient for
these problem sets. It is interesting that the coefficient in the last row of Table 5.1 is -0.699804.
This indicates that overall there is a significant negative correlation between the difference in
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solution time and the difference between the number in checks. It confirms our hypothesis that
as soon aMAC-2001 starts spending fewer checks tHdAC-3, it starts to lose out in time.

The last row corresponds to a set of 18050 sample points. This makes the coefficients in
Table 5.1 significant.

The Pearson Product-Moment Correlation-Coefficients were computed with dedicated pro-
grams written inC. To make sure that no errors errors were made these results were verified
with Mathematica . Computations witfMathematica reproduced the result of our own
computations up to 6 decimals.

Figure 5.27 depicts a scatter plot of the difference in checks against the difference in time.
There are only a few combinations for whistAC-2001was faster. The large cluster located at
the top right hand side has a “slope” that corresponds to the negative correlation and a position
that re-confirms that1AC-3, was better in wall time

1.0e10 T T T T T
+
n
&y
0.0e10 F ~N .
"
+ #+ +
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O e
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() -10810 I~ + + ¥ n
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difference in time

Figure 5.27:n = 30, d = 30, Search: Scatter plot, difference in checks against difference in
time.
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Chapter 6

Conclusions and Recommendations

We have compared two arc-consistency algorithms cale@001andAC-3,. AC-2001is opti-

mal in its worst case time-complexity, wherees-3, is not. We have compared both algorithms

for stand alone arc-consistency and RAC search. The results from the comparison demon-
strate that, despite common belief to the contrary, for an arc-consistency algorithm to be useful
during search there is no need for it to have an optimal worst case time-complexity. We have
presented results that suggest quite the opposite; To avoid duplication of ch&tk€isearch

may be harmful. This claim is supported by the observationNt?et -3, was never significantly
slower tharMAC-2001, thatMAC-3, was usually significantly faster and, most importantly, that

as soon adAC-2001started to become successful in avoiding the duplication of many checks it
started to lose much in time. However, more work has to be done to properly support this claim.

Our results indicate tha¥C-3; is a good substitute fokC-2001for stand alone arc-consis-
tency. When it comes to completing its task fast-3, is a clear winner. When it comes to
saving checks there is no clear overall winner. If tightness is about 0.85A0e2001 is the
preferred algorithm for minimising checks. Otherwise-3; is the preferred choice.

Any arc-consistency algorithm that is the basis of a general pun@dése solver should be
goodon average Yet, most research on arc-consistency algorithms is focusing on the design
of algorithms that are optimal iworst casescenarios, insisting thatt any costthese cases
should be dealt with as efficiently as possible. This report has provided evidence that to insist
on being able to deal efficiently with worst case scenarios may not be the best strategy when it
comes to solving quickly. The holy grail of arc-consistency research is to design arc-consistency
algorithms that are optimal in theaveragdgime-complexity. AC-3;'s clever use of arc-heuristics
and domain-heuristics seems to improve this average time-complexity. A more detailed study on
the impact of these heuristics may provide us with useful insights on how to design new and
better arc-consistency algorithms. These insights may also shed light on how to design other
efficient consistency algorithms.
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Appendix A
Graphs

This chapter contains graphs for all the experiments carried out. The data were obtained from
experiments that were set up as described in Chapter 5. Sections are organised by the number of
variablesn and domain size.

A.1 ResultsforN =D =20
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