
Lightweight Arc-Consistency Algorithms1

M.R.C. van Dongen
dongen@cs.ucc.ie

Cork Constraint Computation Centre
CS Department

University College Cork
Western Road

Cork
Ireland

Technical Report TR-01-2003

January 2003

Available fromhttp:
//csweb.ucc.ie/˜dongen/papers/4C/03/4C-01-2003.pdf

1Please save some trees and do not print the appendix of this report.

Abstract

Arc-consistency algorithms are the workhorse of many backtrack algorithms. Most research
on arc-consistency algorithms is focusing on the design of algorithms that are optimal when
it comes to worst case scenarios. This report will provide experimental evidence that, despite
common belief to the contrary, the ability to deal efficiently with such worst case scenarios may
not be a prerequisite for solving quickly. It will compare on the one handAC-2001, which
has an optimal worst case time-complexity and is considered efficient, and on the otherAC-3d,
which is not optimal when it comes to its worst case time-complexity, but which has a better
space-complexity thanAC-2001. Both algorithms will be compared forMAC search and for
stand alone arc-consistency(the task of making a singleCSParc-consistent). For stand alone
arc-consistencyAC-3d is the better algorithm when it comes to time but there is no clear winner
when it comes to minimising the number of checks. For search the results are more interesting.
MAC-2001 is by far the better algorithm when it comes to minimising the number of checks.
However,MAC-3d is considerably faster on average. For difficult random problems, that took
between minutes and 1.5 hour to solve,MAC-3d was about 1.5 times faster on average than
MAC-2001. As soon asMAC-2001 starts to become successful in avoiding the duplication of
many checks it begins to invest much more additional solution time. These observations suggest
that being worst case optimal may come at a price of being less efficient on average in search
and that algorithms likeMAC-3d are promising.

Contents

1 Introduction 5

2 Constraint Satisfaction 7

3 Operators for Selection Heuristics 8
3.1 Introduction . 8
3.2 Composition of Selection Heuristics . 8
3.3 Operators for Variable and Arc Selection . 9

4 Related Literature 11

5 Experimental Results 14
5.1 Introduction . 14
5.2 Stand alone Arc-Consistency . 16
5.3 Maintain Arc-Consistency . 16
5.4 Statistical Analysis . 20

6 Conclusions and Recommendations 23

Bibliography 25

Appendix 26

A Graphs 27
A.1 Results forN = D = 20 . 27
A.2 Results forN = D = 30 . 56

1

List of Figures

5.1 n = 30, d = 30, Stand alone arc-consistency: Checks,C ≤ 0.5, AC-2001. . . . 15
5.2 n = 30, d = 30, Stand alone arc-consistency: Checks,C ≤ 0.5, AC-3d. 15
5.3 n = 30, d = 30, Stand alone arc-consistency: Checks,0.5 < C, AC-2001. 15
5.4 n = 30, d = 30, Stand alone arc-consistency: Checks,0.5 < C, AC-3d. 15
5.5 n = 30, d = 30, Stand alone arc-consistency: Checks,C ≤ 0.5, AC-2001−

AC-3d. 15
5.6 n = 30, d = 30, Stand alone arc-consistency: Checks,0.5 < C, AC-2001−

AC-3d. 15
5.7 n = 30, d = 30, Stand alone arc-consistency: Time,C ≤ 0.5, AC-2001. 17
5.8 n = 30, d = 30, Stand alone arc-consistency: Time,C ≤ 0.5, AC-3d. 17
5.9 n = 30, d = 30, Stand alone arc-consistency: Time,0.5 < C, AC-2001. 17
5.10 n = 30, d = 30, Stand alone arc-consistency: Time,0.5 < C, AC-3d. 17
5.11 n = 30, d = 30, Stand alone arc-consistency: Time,C ≤ 0.5, AC-2001− AC-3d. 17
5.12 n = 30, d = 30, Stand alone arc-consistency: Time,0.5 < C, AC-2001− AC-3d. 17
5.13 n = 30, d = 30, Search: Time,C ≤ 0.3, MAC-2001. 18
5.14 n = 30, d = 30, Search: Time,C ≤ 0.3, MAC-3d. 18
5.15 n = 30, d = 30, Search: Time,0.3 < C < 0.7, MAC-2001. 18
5.16 n = 30, d = 30, Search: Time,0.3 < C < 0.7, MAC-3d. 18
5.17 n = 30, d = 30, Search: Time,0.7 ≤ C, MAC-2001. 18
5.18 n = 30, d = 30, Search: Time,0.7 ≤ C, MAC-3d. 18
5.19 n = 30, d = 30, Search: Time,C ≤ 0.3, MAC-2001−MAC-3d. 19
5.20 n = 30, d = 30, Search: Checks,C ≤ 0.3, MAC-2001−MAC-3d. 19
5.21 n = 30, d = 30, Search: Time,0.3 < C < 0.7, MAC-2001−MAC-3d. 19
5.22 n = 30, d = 30, Search: Checks,0.3 < C < 0.7, MAC-2001−MAC-3d. 19
5.23 n = 30, d = 30, Search: Time,0.7 ≤ C, MAC-2001−MAC-3d. 19
5.24 n = 30, d = 30, Search: Checks,0.7 ≤ C, MAC-2001−MAC-3d. 19
5.25 n = 30, d = 30, Search: Time,C ≤ 0.5, MAC-2001/MAC-3d. 20
5.26 n = 30, d = 30, Search: Time,0.5 < C, MAC-2001/MAC-3d. 20
5.27 n = 30, d = 30, Search: Scatter plot, difference in checks against difference in

time. 22

A.1 n = 20, d = 20, Stand alone arc-consistency: Checks,C ≤ 0.5, AC-2001. . . . 28
A.2 n = 20, d = 20, Stand alone arc-consistency: Checks,C ≤ 0.5, AC-3d. 29
A.3 n = 20, d = 20, Stand alone arc-consistency: Checks,C > 0.5, AC-2001. 30

2

A.4 n = 20, d = 20, Stand alone arc-consistency: Checks,C > 0.5, AC-3d. 31
A.5 n = 20, d = 20, Stand alone arc-consistency: Checks,C ≤ 0.5, AC-2001−

AC-3d. 32
A.6 n = 20, d = 20, Stand alone arc-consistency: Checks,C > 0.5, AC-2001−

AC-3d. 33
A.7 n = 20, d = 20, Stand alone arc-consistency: Checks,C ≤ 0.5, AC-2001/AC-3d.

34
A.8 n = 20, d = 20, Stand alone arc-consistency: Checks,C > 0.5, AC-2001/AC-3d.

35
A.9 n = 20, d = 20, Stand alone arc-consistency: Time,C ≤ 0.5, AC-2001. 36
A.10 n = 20, d = 20, Stand alone arc-consistency: Time,C ≤ 0.5, AC-3d. 37
A.11 n = 20, d = 20, Stand alone arc-consistency: Time,C > 0.5, AC-2001. 38
A.12 n = 20, d = 20, Stand alone arc-consistency: Time,C > 0.5, AC-3d. 39
A.13 n = 20, d = 20, Stand alone arc-consistency: Time,C ≤ 0.5, AC-2001− AC-3d. 40
A.14 n = 20, d = 20, Stand alone arc-consistency: Time,C > 0.5, AC-2001− AC-3d. 41
A.15 n = 20, d = 20, Search: Checks,C ≤ 0.5, AC-2001. 42
A.16 n = 20, d = 20, Search: Checks,C ≤ 0.5, AC-3d. 43
A.17 n = 20, d = 20, Search: Checks,C > 0.5, AC-2001. 44
A.18 n = 20, d = 20, Search: Checks,C > 0.5, AC-3d. 45
A.19 n = 20, d = 20, Search: Checks,C ≤ 0.5, AC-2001− AC-3d. 46
A.20 n = 20, d = 20, Search: Checks,C > 0.5, AC-2001− AC-3d. 47
A.21 n = 20, d = 20, Search: Checks,C ≤ 0.5, AC-2001/AC-3d. 48
A.22 n = 20, d = 20, Search: Checks,C > 0.5, AC-2001/AC-3d. 49
A.23 n = 20, d = 20, Search: Time,C ≤ 0.5, AC-2001. 50
A.24 n = 20, d = 20, Search: Time,C ≤ 0.5, AC-3d. 51
A.25 n = 20, d = 20, Search: Time,C > 0.5, AC-2001. 52
A.26 n = 20, d = 20, Search: Time,C > 0.5, AC-3d. 53
A.27 n = 20, d = 20, Search: Time,C ≤ 0.5, AC-2001− AC-3d. 54
A.28 n = 20, d = 20, Search: Time,C > 0.5, AC-2001− AC-3d. 55
A.29 n = 30, d = 30, Stand alone arc-consistency: Checks,C ≤ 0.5, AC-2001. . . . 56
A.30 n = 30, d = 30, Stand alone arc-consistency: Checks,C ≤ 0.5, AC-3d. 57
A.31 n = 30, d = 30, Stand alone arc-consistency: Checks,C > 0.5, AC-2001. 58
A.32 n = 30, d = 30, Stand alone arc-consistency: Checks,C > 0.5, AC-3d. 59
A.33 n = 30, d = 30, Stand alone arc-consistency: Checks,C ≤ 0.5, AC-2001−

AC-3d. 60
A.34 n = 30, d = 30, Stand alone arc-consistency: Checks,C > 0.5, AC-2001−

AC-3d. 61
A.35 n = 30, d = 30, Stand alone arc-consistency: Checks,C ≤ 0.5, AC-2001/AC-3d.

62
A.36 n = 30, d = 30, Stand alone arc-consistency: Checks,C > 0.5, AC-2001/AC-3d.

63
A.37 n = 30, d = 30, Stand alone arc-consistency: Time,C ≤ 0.5, AC-2001. 64
A.38 n = 30, d = 30, Stand alone arc-consistency: Time,C ≤ 0.5, AC-3d. 65

3

A.39 n = 30, d = 30, Stand alone arc-consistency: Time,C > 0.5, AC-2001. 66
A.40 n = 30, d = 30, Stand alone arc-consistency: Time,C > 0.5, AC-3d. 67
A.41 n = 30, d = 30, Stand alone arc-consistency: Time,C ≤ 0.5, AC-2001− AC-3d. 68
A.42 n = 30, d = 30, Stand alone arc-consistency: Time,C > 0.5, AC-2001− AC-3d. 69
A.43 n = 30, d = 30, Search: Checks,C ≤ 0.5, AC-2001. 70
A.44 n = 30, d = 30, Search: Checks,C ≤ 0.5, AC-3d. 71
A.45 n = 30, d = 30, Search: Checks,C > 0.5, AC-2001. 72
A.46 n = 30, d = 30, Search: Checks,C > 0.5, AC-3d. 73
A.47 n = 30, d = 30, Search: Checks,C ≤ 0.5, AC-2001− AC-3d. 74
A.48 n = 30, d = 30, Search: Checks,C > 0.5, AC-2001− AC-3d. 75
A.49 n = 30, d = 30, Search: Checks,C ≤ 0.5, AC-2001/AC-3d. 76
A.50 n = 30, d = 30, Search: Checks,C > 0.5, AC-2001/AC-3d. 77
A.51 n = 30, d = 30, Search: Time,C ≤ 0.5, AC-2001. 78
A.52 n = 30, d = 30, Search: Time,C ≤ 0.5, AC-3d. 79
A.53 n = 30, d = 30, Search: Time,C > 0.5, AC-2001. 80
A.54 n = 30, d = 30, Search: Time,C > 0.5, AC-3d. 81
A.55 n = 30, d = 30, Search: Time,C ≤ 0.5, AC-2001− AC-3d. 82
A.56 n = 30, d = 30, Search: Time,C > 0.5, AC-2001− AC-3d. 83

4

Chapter 1

Introduction

Arc-consistency algorithms significantly reduce the size of the search space of Constraint Satis-
faction Problems (CSPs) at low costs. They are the work horse of many backtrack searchers that
Maintain Arc-Consistency during search (MAC) [Sabin and Freuder, 1994].

Currently, there seems to be a shared belief in the constraint satisfaction community that,
to be efficient, arc-consistency algorithms should have an optimal worst case time-complexity
[Bessìereet al., 1995; Bessìere and Ŕegin, 2001; Zhang and Yap, 2001]. Arc-consistency and
MAC algorithms that are optimal in their worst case time-complexity require a space-complex-
ity of at leastO (ed) to create data structures to remember their support-checks. MAC algo-
rithms need aO (edmin(n, d)) space-complexity tomaintain these data structures. As usual,
n is the number of variables in theCSP, d is the maximum domain size of the variables ande
is the number of constraints. The bookkeeping that is involved with these data structures is a
significant overhead. There is also experimental evidence that arc-consistency andMAC algo-
rithms with a lowO (e+ nd) space-complexity can be good even if they cannot remember all
their support-checks and—as a consequence—have to repeat them[van Dongen, 2002b; 2002c;
2002d].

In this report we shall provide evidence to support the claim that good arc-consistency al-
gorithms do not need to have an optimal worst case time-complexity. We shall experimentally
compare twoAC-3 based arc-consistency algorithms[Mackworth, 1977]. The first algorithm is
Bessìere and Ŕegin’s AC-2001 [Bessìere and Ŕegin, 2001]. AC-2001has an optimalO (ed2)
worst case time-complexity, has aO (ed) space-complexity, and is considered good on aver-
age[Bessìere and Ŕegin, 2001]. The second algorithm isAC-3d [van Dongen, 2002b; 2002c;
2002d]. AC-3d has a worseO (ed3) worst case time-complexity thanAC-2001but it has a bet-
ter O (e+ nd) space-complexity. Results from a preliminary comparison withAC-7, another
optimal arc-consistency algorithm[Bessìereet al., 1995], indicate thatAC-3d is promising[van
Dongen, 2002c; 2002d]. We shall compare both algorithms forMAC search and forstand alone
arc-consistency. Here stand alone arc-consistency is the task of making a singleCSParc-con-
sistent or decide that this is not possible. As part of our presentation we shall introduce some
notation to conveniently define ordering heuristics.

Our results for search demonstrate that for as far as support-checks are concernedMAC-2001
was by far the better algorithm. More importantly, however,MAC-3d was significantly better on

5

average for wall time. MAC-3d was almost between 1.25 and 5.75 times faster on average than
MAC-2001, whereasMAC-2001was never significantly faster thanMAC-3d. For problems that
took a solution time of the order of magnitude of an hour,MAC-3d was about 1.5 times faster
on average thanMAC-2001. Our results indicate that if checks are cheap—and they almost
always are—then one should prefer an algorithm likeMAC-3d. For stand alone arc-consistency
the results were less clear. AC-3d was the better algorithm when it came to wall time. For
minimising the number of consistency-checks there was no clear winner.

Finally, we shall present proof thatMAC-2001 has aO (edmin(n, d)) space-complexity.
This result does not seem to have been noticed before.

The results presented in this report are important because of the following. Since the introduc-
tion of Mohr and Henderson’sAC-4 [Mohr and Henderson, 1986], most work in arc-consistency
research has been focusing on the design of better algorithms that do not re-discover (algorithms
that do not repeat checks). Our key insight is that it is only possible to avoid re-discoveries at
the price of a large additional bookkeeping. To forsake the bookkeeping at the expense of hav-
ing to re-discover may improve search. This insight may lead to the design of new classes of
arc-consistency andMAC algorithms that are not only competitive but may also, likeAC-3dand
MAC-3d, have the advantage of a better space-complexity because they do not have to remember
all their checks. AC-3d andMAC-3d are the first known efficient algorithms from these classes.

Finally, it should be noted that sinceAC-3d can be considered as a specialisation ofAC-3, our
results imply thatAC-3 with proper heuristics is also efficient. This observation goes in against
all current belief in constraint satisfaction.

6

Chapter 2

Constraint Satisfaction

A binary constraintCxy between variablesx andy is a subset of the cartesian product of the
domainsD(x) of x andD(y) of y. A valuev ∈ D(x) is supportedby y ∈ D(y) if (v, w) ∈ Cxy.
Similarly, w ∈ D(y) is supported byv ∈ D(x) if (v, w) ∈ Cxy. If v ∈ D(x) is supported by
w ∈ D(y) then we shall also say thatv ∈ D(x) is supported byy.

A Constraint Satisfaction Problem(CSP) is a tupleC = (X,D,C), whereX is a set of
variables,D(·) is a function mapping eachx ∈ X to its non-empty domain, andC is a set of
constraints between variables in subsets ofX. We shall only considerCSPs whose constraints
are binary.C is calledarc-consistentif its domains are non-empty and for eachCxy ∈ C it is
true that everyv ∈ D(x) is supported byy and that everyw ∈ D(y) is supported byx. A
support-check(consistency-check) is a test to find out if two values support each other.

Thetightnessof the constraintCxy betweenx andy is defined as1−|Cxy |/|D(x)×D(y) |,
where· × · denotes cartesian product. Thedensityof a CSPis defined as2e/(n2−n), for n > 1.

A MAC solver is a backtracker that maintains arc-consistency during search[Sabin and
Freuder, 1994]. MAC-i is aMAC solver that uses arc-consistency algorithmAC-i to maintain its
arc-consistency.

7

Chapter 3

Operators for Selection Heuristics

3.1 Introduction

In this chapter we shall introduce some notation to unambiguously describe and “compose”
relations. Such notation is essential to describe selection heuristics for variables and arcs in
MAC searchers but may also be useful in other domains. The notation will significantly simplify
our description of selection heuristics.

We shall first provide a foundation for combining and constructing new orders from other
relations and then use these foundations to define existing and variable selection and arc selection
heuristics.

3.2 Composition of Selection Heuristics

In this section we shall recall the basic definitions of the notion of alinear quasi-orderand that
of a (linear) orderand define a new notation for constructing a new order from an existing linear
quasi-order and an existing order. The idea of combining orders is strongly influenced by idea
by Collart, Kalkbrener, and Mall to combine partial orders on terms[Collartet al., 1997].

LetT be a set. A relation onT is called aquasi-orderif it is reflexive and transitive. Quasi-or-
ders�may allow for situations wherev � w∧w � v∧v 6= w. A good example of a quasi-order
is the divisability relation·|· onN. For example, we have2|6∧ 3|6∧¬2|3∧¬3|2. Another good
example of a quasi-order is the relation� onZ2 which is defined as(v, w) � (v′, w′) if and
only if v + w ≤ v′ + w′. A relation,≺, onT is calledlinear if v ≺ w ∨ w ≺ v for all v, w ∈ T .
A quasi-order� is called apartial order if v � w ∧ w � v impliesv = w for all v andw ∈ T .
An order (also called alinear order) is a partial order that is also a linear quasi-order. A good
example of orders are the relations≤ and≥ onN.

For many selection heuristics it is desirable that they always select a single unique optimum
from the a given set of objects. Such heuristics are equivalent to orders. Similarly, useful se-
lection heuristics that allow for ties are equivalent to linear quasi-orders. We shall now define
an operator tocomposea linear quasi-order,�1, and an order,�2, into a new order that may be
viewed as the order that uses�1 and breaks ties using�2.

8

Let �1 be a linear quasi-order and let�2 be a order onT . By �2 • �1 we will mean the
compositionof �2 and�1. This composition may be viewed as arefinementof �1 by�2. It is
the unique order onT that is defined as follows:

v �2 • �1 w ⇐⇒ (v �1 w ∧ ¬w �1 v) ∨ (v �1 w ∧ w �1 v ∧ v �2 w).

In words, ifv is smaller thanw with respect to�1 or vice versa then�1 will determine the result
of the composition. Otherwise, i.e. ifv andw are equal with respect to�1 then�2 will be used
to determine the ordering of the composition.

Note that if�1 is an order then�2 • �1 is equal to�1. If �1 is not an order then�2 • �1

may be viewed as the order that first uses�1 and “breaks ties” using�2. Composition associates
to the left, i.e.�3 • �2 • �1 is equal to(�3 • �2)• �1. The symbol “•” was chosen for order
composition because it is reminiscent of “◦” for function composition.

Let � be a linear quasi-order onY , let v be a variable, and letf :: T 7→ Y be a function.
Then⊗f� is the unique order onT which is defined as follows:

v ⊗f� w ⇐⇒ f(v) � f(w).

3.3 Operators for Variable and Arc Selection

We are now in a position to define some well known variable selection heuristics and arc selection
heuristics very compactly. We shall first define variable selection heuristics and then define arc
selection heuristics.

To define the variable ordering heuristics, letδo(v) be the original degree ofv, let δc(v) be
the current degree ofv, let κ(v) be given by|D(v)|, and let#(v) be the unique number ofv
according to some preference. We shall use these functions and the standard orders≤ and≥
on N to define orders on the variables. In the remainder of this report we shall assume that
#(v) < #(w) is true if and only ifv is lexicographically smaller thanw.

The well known minimum domain size heuristic with a lexicographical tie breaker is given
by⊗#

≤ • ⊗κ≤. The Brelaz heuristic[Gentet al., 1996] with a lexicographical tie breaker is given
by ⊗#

≤ • ⊗
δc
≥ • ⊗κ≤. An ordering on the maximum original degree with a lexicographical tie

breaker is given by⊗#
≤ • ⊗

δo
≥ . Note that we only need one of the orders≤ and≥ because

a ≤ b ⇐⇒ −a ≥ −b. With this equivalence the Brelaz heuristic with a lexicographical tie
breaker can also be defined as⊗#

≤ • ⊗
−δc
≤ • ⊗κ≤.

As an exercise, the reader is invited to define some other useful variable ordering heuristics.
For arc selection heuristics we need a few more ingredients. Two useful operators are the

projection operatorsπ1 andπ2 which are defined asπ1((v, w)) = v andπ2((v, w)) = w. The
following defines a lexicographical ordering heuristic:

⊗#◦π2

≤ • ⊗#◦π1

≤ .

Here,· ◦ · denotes function compositions, so that# ◦ πi((v, w)) = #(πi((v, w))). As a final
example, consider the following order:

⊗#◦π2

≤ • ⊗δc◦π2
≥ • ⊗κ◦π2

≤ • ⊗#◦π1

≤ • ⊗δc◦π1
≥ • ⊗κ◦π1

≤ . (3.1)

9

The order defined in Equation (3.1) turns out to be an excellent dynamic arc selection heuristic
for AC-3d.1 It is the same order as the order�′ which some people may define as follows:

(v, w) �′ (v′, w′) ⇐⇒



true if κ(v) < κ(v′);

false else ifκ(v′) > κ(v);

true else ifδc(v) > δc(v
′);

false else ifδc(v′) < δc(v);

true else if#(v) < #(v′);

false else if#(v′) > #(v);

true else ifκ(w) < κ(w′);

false else ifκ(w′) > κ(w);

true else ifδc(w) > δc(w
′);

false else ifδc(w′) < δc(w);

true else if#(w) ≤ #(w′);

false otherwise.

More difficult than writing a definition for this order is to describe it in words. It is hoped that
the reader agrees that the notation in Equation (3.1) is not only more compact but also is easier
to comprehend.

1A better heuristic still remains to be found.

10

Chapter 4

Related Literature

In 1977, Mackworth presented an arc-consistency algorithm calledAC-3 [Mackworth, 1977].
AC-3 has aO (ed3) bound for its worst case time-complexity[Mackworth and Freuder, 1985].
AC-3 has aO (e+ nd) space-complexity. AC-3 cannot remember all its support-checks. It uses
arc-heuristicsto repeatedly select and remove a tuple,(x, y), from a data structure called a
queueand to use the constraint betweenx andy to revisethe domain ofx. Here, to revise the
domain ofx using the constraint betweenx andy means to remove the values fromD(x) that are
not supported byy. These arc-heuristics determine the constraint that will be used for the next
support-check. Besides these arc-heuristics there are alsodomain-heuristics. These heuristics, if
given the constraint that will be used for the next support-check, determine the values that will
be used for the next support-check. Depending on the outcome of the revision process new arcs
may be added to the queue. The interested reader is referred to[Mackworth, 1977] for a detailed
description ofAC-3.

Wallace and Freuder pointed out that arc-heuristics can influence the efficiency of arc-con-
sistency algorithms[Wallace and Freuder, 1992]. Similar observations were made by Gentet al.
[Gentet al., 1997].

Bessìere and Ŕegin presentedAC-2001, which is based onAC-3 [Bessìere and Ŕegin, 2001]
(see also[Zhang and Yap, 2001] for a similar algorithm). AC-2001 revises one domain at a
time. The main difference betweenAC-3 andAC-2001 is thatAC-2001uses a lexicographical
domain-heuristic and that for each variablex, for eachv ∈ D(x) and each constraint betweenx
and another variabley it remembers the last support forv ∈ D(x) with y so as to avoid repeating
checks that were used before to find support forv ∈ D(x) with y. AC-2001has an optimal
upper bound ofO (ed2) for its worst case time-complexity and its space-complexity isO (ed).
Bessìere and Ŕegin found thatAC-2001 behaves well on average. Together with Freuder they
also observed thatAC-3 is a good alternative for stand alone arc-consistency if checks are cheap
andCSPs are under-constrained[Bessìereet al., 1999]. However, they also observed thatAC-3
was significantly slower thanAC-7 for over-constrainedCSPs andCSPs in the phase transition.
Similar observations were made in[Bessìere and Ŕegin, 2001] where it was observed thatAC-3
was good for under-constrainedCSPs but slower thanAC-6 andAC-2001 for over-constrained
CSPs andCSPs in the phase-transition. AC-3’s incapability to make inference allows it to do
well for easyCSPs.

11

It seems to have gone unnoticed so far thatMAC-2001 has aO (edmin(n, d)) space-com-
plexity. The reason for this space-complexity is thatMAC-2001 has tomaintain AC-2001’s
O (ed) data structures during search. These data structures consist of a counter for each con-
straint-value pair to remember the last support for that value[Bessìere and Ŕegin, 2001]. To
maintain these data structures,MAC-2001has to save the counters of the current and future vari-
ables after each assignment to the current variable and to restore them upon backtracking. The
only ways to save and restore the counters seem to be one of the following three methods:

1. Save all relevant counters once before arc-consistency. Upon backtracking these coun-
ters have to be restored. This requires aO (ned) space-complexity becauseO (ed) data
structures may have to be savedn times.

2. Save each counter before it is incremented and count the number of increments,i, that
were carried out during the arc-consistency call immediately after the assignment to the
current variable. Upon backtracking, the increments can be undone by restoringi counters
in the reverse order. This comes at the price of a space-complexity ofO (ed2) because
each of the2ed counters may have to be savedd times.

3. A combination of the previous two.

Combining these results we have aO (edmin(n, d)) space-complexity. Christian Bessière (pri-
vate communication) agreed that this analysis is, indeed, correct and that he had implemented
MAC-2001using Method 2.

Rick Wallace experimentally found thatAC-3 was always always better than Mohr and Hen-
derson’sAC-4, which has an optimal worst case time-complexity but which is almost always
slow on average due to the maintenance of it huge data structures[Mohr and Henderson, 1986;
Wallace, 1993]. These findings suggest that it is not always an absolute necessity for an arc-con-
sistency algorithm to have an optimal time-complexity.

Similar observations were made in an experimental comparison betweenAC-3, AC-7, and
AC-3d, which is a cross-breed between Mackworth’sAC-3 and Gaschnig’sDEE [Mackworth,
1977; Gaschnig, 1978; Bessièreet al., 1995; van Dongen, 2002a; 2002d; 2002c]. AC-7 is opti-
mal. The only difference betweenAC-3 andAC-3d is thatAC-3d sometimes takes two arcs out
of the queue and simultaneously revisestwo domains with adouble-supportdomain-heuristic.
AC-3d only simultaneously revises two domains if its arc-heuristic selects the arc(x, y) from
the queue and if, at the time of that selection, the reverse arc(y, x) also turns out to be in the
queue. AC-3d’s double-support heuristic prefers checks between two values each of which are
not yet known to be supportable. The interested reader is referred to[van Dongen, 2002d] for
a detailed description ofAC-3d’s implementation. It should be pointed out that ifAC-3d’s dou-
ble-support heuristic is replaced by a call to Mackworth’srevise to revise one domain and one
more call to revise the other domain if the first call did not result in an inconsistency, then the
resulting algorithm, requires more time on average thanAC-3d. A big advantage ofMAC-3d
is that it has a lowO (e+ nd) space-complexity, strictly smaller thanAC-2001’s O (ed), and
that MAC-3d does not require additional data structures during search. Note that ifn ≈ d then
MAC-3d’s space-complexity is the “square root” of that ofMAC-2001. To see why this is true,

12

first notice that there can ben×(n−1)/2 constraints and that as a consequencee ∈ O (n2). Next
notice that ifn ≈ d thenO (e+ nd) becomesO (n2) andO (edmin(n, d)) becomesO (n4). For
two-variableCSPs the double-support heuristic is optimal. It is about twice as efficient as the
lexicographical heuristic if the domain sizes of the variables are about equal[van Dongen, 2002a;
2002b]. In our comparison we found that for under-constrainedCSPs AC-3d was slightly worse
thanAC-3 in wall time. AC-3 was significantly slower thanAC-3d for over-constrainedCSPs
andCSPs in the phase transition. This is consistent with Bessière, Freuder and Ŕegin’s findings
[Bessìereet al., 1999]. In checksAC-3d was significantly worse thanAC-7 in the phase transi-
tion region but in wall time both algorithms performed about equally well. For all other problems
AC-3d turned out to be better both in wall time and checks. These are surprising results because
AC-3d repeats support-checks, whereasAC-7 does not. They support the thesis of this report
that, despite common belief to the contrary, arc-consistency algorithms can be efficient if they
are not worst case optimal. In the following chapter we shall see more evidence to support this
claim.

AC-3d’s best arc-heuristic found so far is the heuristic described in Equation (3.1). This
heuristic is relatively expensive. For example, between 15% and 25% ofMAC-3d’s time is
spent on arc selection and this does not include the time to see if the reverse arc is also in the
queue and the time to modify the queue. However, the heuristic is good because it leads to
relatively many selections where two domains can be revised simultaneously. Cheaper heuristics
like the lexicographical heuristic usually do not lead to improvements forMAC-3d. For example,
a lexicographical arc-heuristic almost forcesMAC-3d to degenerate toMAC-3 because most of
the arcs that are selected with this heuristic cannot be used for simultaneous revision. What is
worse is that ifAC-3d uses the expensive heuristic and requiresrd double revisions andrs single
revisions thenAC-3d with the cheap heuristic, almost always requiresr′d < rd double revisions
and more thanrs + 2(rd − r′d) single revisions, i.e. therd − r′d fewer double revisions that are
carried out using the cheap heuristic are traded in for more than2(rd− r′d) single revisions. This
bad news because a single double revision of two domains is faster on average than two single
revisions of those domains.

13

Chapter 5

Experimental Results

5.1 Introduction

In this chapter we shall experimentally compareAC-2001 andAC-3d for MAC search and for
stand alone arc-consistency. To compare the algorithms we used Christian Bessière’s implemen-
tation of MAC-2001 and our own implementation ofMAC-3d. Both solvers were members of
the real-full-look-ahead family. Bessière’s implementation was a specialised version for random
problems. This is why we only considered random problems for our comparison. However,
the results from this chapter are in line with and strengthen the observations thatMAC-3d is
good[van Dongen, 2002d; 2002c]. Our own implementation was an improvement of the imple-
mentation used for the comparison described in[van Dongen, 2002c; 2002d]. For some prob-
lems these improvements resulted in a speed up of 30% to 40%. It should be noticed that, as
a consequence of the improved implementation, the results described in[van Dongen, 2002c;
2002d] are outdated in the sense that they describeMAC-3d as being slower than it is at the time
of writing this report.

To ensure that both searchers visited the same nodes in the search tree they were equipped
with the same dom/deg variable ordering heuristic. Using the notation introduced in Chapter 3
this heuristic is given by⊗#

≤ • ⊗
f
≤, wheref(v) = κ(v)/δo(v). Bessìere’s implementation

of MAC-2001 came with only one arc-heuristic, the lexicographical heuristic. MAC-3d was
equipped with the arc-heuristic defined as follows:

⊗#◦π2

≤ • ⊗δc◦π2
≥ • ⊗κ◦π2

≤ • ⊗#◦π1

≤ • ⊗δc◦π1
≥ • ⊗κ◦π1

≤ .

The problems were generated as follows. For each combination(C, T) of average density
C and uniform tightnessT in { (i/20, j/20) : 1 ≤ i, j ≤ 19 } 50 randomCSPs were generated
with n = 30 variables and uniform domain sized = 30. Next we computed the average number
of checks and the average time required forC andT by MAC-2001 andMAC-3d for the tasks
of making the problem arc-consistent before starting search and for deciding the satisfiability of
each problem usingMAC search. All problems were run to completion. Frostet al.’s model B
[Gentet al., 2001] random problem generator was used to generate the problems (http://
www.lirmm.fr/˜bessiere/generator.html).

14

0.0e+00

2.0e+04

4.0e+04

6.0e+04

8.0e+04

1.0e+05

1.2e+05

1.4e+05

1.6e+05

1.8e+05

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.05
density = 0.10
density = 0.15
density = 0.20
density = 0.25
density = 0.30
density = 0.35
density = 0.40
density = 0.45
density = 0.50

Figure 5.1:n = 30, d = 30, Stand alone arc-
consistency: Checks,C ≤ 0.5, AC-2001.

0.0e+00

2.0e+04

4.0e+04

6.0e+04

8.0e+04

1.0e+05

1.2e+05

1.4e+05

1.6e+05

1.8e+05

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.05
density = 0.10
density = 0.15
density = 0.20
density = 0.25
density = 0.30
density = 0.35
density = 0.40
density = 0.45
density = 0.50

Figure 5.2:n = 30, d = 30, Stand alone arc-
consistency: Checks,C ≤ 0.5, AC-3d.

0.0e+00

2.0e+04

4.0e+04

6.0e+04

8.0e+04

1.0e+05

1.2e+05

1.4e+05

1.6e+05

1.8e+05

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.55
density = 0.60
density = 0.65
density = 0.70
density = 0.75
density = 0.80
density = 0.85
density = 0.90
density = 0.95

Figure 5.3:n = 30, d = 30, Stand alone arc-
consistency: Checks,0.5 < C, AC-2001.

0.0e+00

2.0e+04

4.0e+04

6.0e+04

8.0e+04

1.0e+05

1.2e+05

1.4e+05

1.6e+05

1.8e+05

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.55
density = 0.60
density = 0.65
density = 0.70
density = 0.75
density = 0.80
density = 0.85
density = 0.90
density = 0.95

Figure 5.4:n = 30, d = 30, Stand alone arc-
consistency: Checks,0.5 < C, AC-3d.

-8.0e+04

-6.0e+04

-4.0e+04

-2.0e+04

0.0e+00

2.0e+04

4.0e+04

6.0e+04

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.05
density = 0.10
density = 0.15
density = 0.20
density = 0.25
density = 0.30
density = 0.35
density = 0.40
density = 0.45
density = 0.50

Figure 5.5:n = 30, d = 30, Stand alone arc-
consistency: Checks,C ≤ 0.5, AC-2001−
AC-3d.

-8.0e+04

-6.0e+04

-4.0e+04

-2.0e+04

0.0e+00

2.0e+04

4.0e+04

6.0e+04

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.55
density = 0.60
density = 0.65
density = 0.70
density = 0.75
density = 0.80
density = 0.85
density = 0.90
density = 0.95

Figure 5.6:n = 30, d = 30, Stand alone arc-
consistency: Checks,0.5 < C, AC-2001−
AC-3d.

15

The test was carried out in parallel on 50 identical machines. Each machine was associated
with a unique identifier in the range from 1 through 50. For each machine random problems
were generated for each combination of density and tightness. TheCSPgenerator on a particular
machine was started with the seed given by the identifier of that machine. All problems fitted
into main memory and no swapping occurred.

In this chapter we shall only present the findings forn = d = 30. We also carried out the
comparison forn = d = 10 andn = d = 20 (See Appendix A.1 for the results forn = d = 20).
The results for these comparisons were in line with the casen = d = 30. The only difference
was, of course, that less time and fewer checks were required.

5.2 Stand alone Arc-Consistency

The results for stand alone arc-consistency and checks are depicted in Figures 5.1–5.6. Fig-
ures 5.5 and 5.6 depict the difference between the average number of checks. On averageAC-3d
requires fewer checks almost everywhere except if tightness is between 80% and 90% and if
density is below 50%. For tightness between 5% and 70% the ratio between the average number
of checks required byAC-2001and byAC-3d is about 2 (Figures A.35 and A.36 depict the ratio
graphically).

The results for checks and stand alone arc-consistency are remarkable becauseAC-2001does
not repeat support-checks whereasAC-3d does. It should be interesting to theoretically inves-
tigate the reason for this counter-intuitive phenomenon. An initial theoretical investigation for
2-variableCSPs has provided interesting results[van Dongen, 2002a; 2002b]. For the moment
the general case seems to be too difficult.

The results for time and stand alone arc-consistency are depicted in Figures 5.7–5.12. These
figures depict the average time that was required byAC-2001 andAC-3d. Only for very easy
problems isAC-2001as good asAC-3d. For the remaining problemsAC-3d is between 1.5 and 2
times faster.

The results for stand alone arc-consistency are clearly in favour ofAC-3d. Only for a small
fraction of the combinations of density and tightness didAC-2001do better on average in checks
than AC-3d. For the remaining vast majority of combinations of density and tightnessAC-3d
was better on average in checks. On average and modulo the accuracy of the timer,AC-2001
was never faster thanAC-3d but it was significantly slower for the majority of the problems.

There is no such thing as “the” best arc-consistency algorithm. However, the results presented
in this section indicate that for random problems and stand alone arc-consistencyAC-3d is a good
choice and a good substitute forAC-2001.

5.3 Maintain Arc-Consistency

Figures 5.13 –5.18 depict the average solution time ofMAC-2001 andMAC-3d. These pictures
seem to suggest thatMAC-3d is faster on average in solving randomCSPs thanMAC-2001.

16

0.0e+00

2.0e-03

4.0e-03

6.0e-03

8.0e-03

1.0e-02

1.2e-02

1.4e-02

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.05
density = 0.10
density = 0.15
density = 0.20
density = 0.25
density = 0.30
density = 0.35
density = 0.40
density = 0.45
density = 0.50

Figure 5.7:n = 30, d = 30, Stand alone arc-
consistency: Time,C ≤ 0.5, AC-2001.

0.0e+00

2.0e-03

4.0e-03

6.0e-03

8.0e-03

1.0e-02

1.2e-02

1.4e-02

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.05
density = 0.10
density = 0.15
density = 0.20
density = 0.25
density = 0.30
density = 0.35
density = 0.40
density = 0.45
density = 0.50

Figure 5.8:n = 30, d = 30, Stand alone arc-
consistency: Time,C ≤ 0.5, AC-3d.

0.0e+00

2.0e-03

4.0e-03

6.0e-03

8.0e-03

1.0e-02

1.2e-02

1.4e-02

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.55
density = 0.60
density = 0.65
density = 0.70
density = 0.75
density = 0.80
density = 0.85
density = 0.90
density = 0.95

Figure 5.9:n = 30, d = 30, Stand alone arc-
consistency: Time,0.5 < C, AC-2001.

0.0e+00

2.0e-03

4.0e-03

6.0e-03

8.0e-03

1.0e-02

1.2e-02

1.4e-02

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.55
density = 0.60
density = 0.65
density = 0.70
density = 0.75
density = 0.80
density = 0.85
density = 0.90
density = 0.95

Figure 5.10:n = 30, d = 30, Stand alone arc-
consistency: Time,0.5 < C, AC-3d.

0.0e+00

1.0e-03

2.0e-03

3.0e-03

4.0e-03

5.0e-03

6.0e-03

7.0e-03

8.0e-03

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.05
density = 0.10
density = 0.15
density = 0.20
density = 0.25
density = 0.30
density = 0.35
density = 0.40
density = 0.45
density = 0.50

Figure 5.11:n = 30, d = 30, Stand alone arc-
consistency: Time,C ≤ 0.5, AC-2001−AC-3d.

0.0e+00

1.0e-03

2.0e-03

3.0e-03

4.0e-03

5.0e-03

6.0e-03

7.0e-03

8.0e-03

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.55
density = 0.60
density = 0.65
density = 0.70
density = 0.75
density = 0.80
density = 0.85
density = 0.90
density = 0.95

Figure 5.12:n = 30, d = 30, Stand alone arc-
consistency: Time,0.5 < C, AC-2001−AC-3d.

17

0.0e+00

5.0e-01

1.0e+00

1.5e+00

2.0e+00

2.5e+00

3.0e+00

3.5e+00

4.0e+00

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.05
density = 0.10
density = 0.15
density = 0.20
density = 0.25
density = 0.30

Figure 5.13:n = 30, d = 30, Search: Time,
C ≤ 0.3, MAC-2001.

0.0e+00

5.0e-01

1.0e+00

1.5e+00

2.0e+00

2.5e+00

3.0e+00

3.5e+00

4.0e+00

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.05
density = 0.10
density = 0.15
density = 0.20
density = 0.25
density = 0.30

Figure 5.14:n = 30, d = 30, Search: Time,
C ≤ 0.3, MAC-3d.

0.0e+00

2.0e+02

4.0e+02

6.0e+02

8.0e+02

1.0e+03

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.35
density = 0.40
density = 0.45
density = 0.50
density = 0.55
density = 0.60
density = 0.65

Figure 5.15:n = 30, d = 30, Search: Time,
0.3 < C < 0.7, MAC-2001.

0.0e+00

2.0e+02

4.0e+02

6.0e+02

8.0e+02

1.0e+03

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.35
density = 0.40
density = 0.45
density = 0.50
density = 0.55
density = 0.60
density = 0.65

Figure 5.16:n = 30, d = 30, Search: Time,
0.3 < C < 0.7, MAC-3d.

0.0e+00

1.0e+03

2.0e+03

3.0e+03

4.0e+03

5.0e+03

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.70
density = 0.75
density = 0.80
density = 0.85
density = 0.90
density = 0.95

Figure 5.17:n = 30, d = 30, Search: Time,
0.7 ≤ C, MAC-2001.

0.0e+00

1.0e+03

2.0e+03

3.0e+03

4.0e+03

5.0e+03

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.70
density = 0.75
density = 0.80
density = 0.85
density = 0.90
density = 0.95

Figure 5.18:n = 30, d = 30, Search: Time,
0.7 ≤ C, MAC-3d.

18

0.0e+00

5.0e-01

1.0e+00

1.5e+00

2.0e+00

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.05
density = 0.10
density = 0.15
density = 0.20
density = 0.25
density = 0.30

Figure 5.19:n = 30, d = 30, Search: Time,
C ≤ 0.3, MAC-2001−MAC-3d.

-6.0e+06

-5.0e+06

-4.0e+06

-3.0e+06

-2.0e+06

-1.0e+06

0.0e+00

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.05
density = 0.10
density = 0.15
density = 0.20
density = 0.25
density = 0.30

Figure 5.20:n = 30, d = 30, Search: Checks,
C ≤ 0.3, MAC-2001−MAC-3d.

0.0e+00

5.0e+01

1.0e+02

1.5e+02

2.0e+02

2.5e+02

3.0e+02

3.5e+02

4.0e+02

4.5e+02

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.35
density = 0.40
density = 0.45
density = 0.50
density = 0.55
density = 0.60
density = 0.65

Figure 5.21:n = 30, d = 30, Search: Time,
0.3 < C < 0.7, MAC-2001−MAC-3d.

-1.2e+09

-1.0e+09

-8.0e+08

-6.0e+08

-4.0e+08

-2.0e+08

0.0e+00

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.35
density = 0.40
density = 0.45
density = 0.50
density = 0.55
density = 0.60
density = 0.65

Figure 5.22:n = 30, d = 30, Search: Checks,
0.3 < C < 0.7, MAC-2001−MAC-3d.

0.0e+00

2.0e+02

4.0e+02

6.0e+02

8.0e+02

1.0e+03

1.2e+03

1.4e+03

1.6e+03

1.8e+03

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.70
density = 0.75
density = 0.80
density = 0.85
density = 0.90
density = 0.95

Figure 5.23:n = 30, d = 30, Search: Time,
0.7 ≤ C, MAC-2001−MAC-3d.

-6.0e+09

-5.0e+09

-4.0e+09

-3.0e+09

-2.0e+09

-1.0e+09

0.0e+00

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.70
density = 0.75
density = 0.80
density = 0.85
density = 0.90
density = 0.95

Figure 5.24:n = 30, d = 30, Search: Checks,
0.7 ≤ C, MAC-2001−MAC-3d.

19

This is confirmed by Figures 5.19, 5.21 and 5.23 which depict the difference between the
average solution time required byMAC-2001 andMAC-3d. For certain problems,MAC-2001
requires more than thousand seconds more thanMAC-3d. However, these graphs do not reveal
everything. Closer inspection of the data demonstrated that there were only two combinations of
density and tightness for whichMAC-2001 was better on average. For(C, T) = (0.95, 0.05)
MAC-2001 required 0.016 seconds as opposed toMAC-3d’s 0.017 seconds. For(C, T) =
(0.85, 0.20) it required 0.105 seconds, whereasMAC-3d required 0.109 seconds. These differ-
ences are negligible. For the remaining cases,MAC-3d was always at least as good asMAC-2001
but was usually better on average. The ratio between the average solution times require byMAC-
2001andMAC-3d is depicted in Figures 5.25 and 5.26. For those solution times whereMAC-3d
required 0 seconds (within the accuracy of the timer) a ratio of 1 was assumed. For most prob-
lemsMAC-3d turned out to be between 1.25 and 5.75 times faster.

To find the reason whyMAC-2001 was slower thanMAC-3d we also have to study Fig-
ures 5.20, 5.22 and 5.24. These figures depict the difference between the number of checks that
were required byMAC-2001 andMAC-3d. When compared toMAC-3d, MAC-2001 starts to
lose out in time as sooon as it starts becoming successful in saving many checks. The time that
is traded in for savings in checks is roughly proportional to the number of checks as soon as
there are many. For millions of checks thatMAC-2001saves more thanMAC-3d it loses seconds
in solution time. Our experimental results suggest the hypothesis that when checks are cheap
MAC-3d’s approach to duplicate work seems better when it comes to solution time.

0.0e+00

1.0e+00

2.0e+00

3.0e+00

4.0e+00

5.0e+00

6.0e+00

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.05
density = 0.10
density = 0.15
density = 0.20
density = 0.25
density = 0.30
density = 0.35
density = 0.40
density = 0.45
density = 0.50

Figure 5.25:n = 30, d = 30, Search: Time,
C ≤ 0.5, MAC-2001/MAC-3d.

0.0e+00

1.0e+00

2.0e+00

3.0e+00

4.0e+00

5.0e+00

6.0e+00

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tightness

density = 0.55
density = 0.60
density = 0.65
density = 0.70
density = 0.75
density = 0.80
density = 0.85
density = 0.90
density = 0.95

Figure 5.26:n = 30, d = 30, Search: Time,
0.5 < C, MAC-2001/MAC-3d.

5.4 Statistical Analysis

In this section we shall analyse the data forMAC search in more detail. We will verify our
hypothesis thatMAC-2001 loses time as soon as it starts saving checks. To do this we defined
two stochastic variables:A, thedifference in timebetweenMAC-2001andMAC-3d, andB, the

20

difference in checksbetweenMAC-2001andMAC-3d. Our experimental data gave usN = 50×
19×19 = 18050 samples(Ai, Bi) of (A,B), 1 ≤ i ≤ N . To determine the correlation between
A andB using these samples we used thePearson Product-Moment Correlation-Coefficientof
A andB [Jobson, 1991]. This is the most widely used method to measure correlation. This
coefficient,r, is a number between -1 and 1. It is defined by the following four equations:

r = sAB/(sBsB)

sAB =
N∑
i=1

(Ai − µA)(Bi − µB)/(N − 1)

µT =
N∑
i=1

Ti/N

sT =

√√√√ N∑
i=1

(Ti − µT)2/(N − 1), for T ∈ {A,B }.

For a perfect positive correlationr = 1, for no correlationr ≈ 0, and for a perfect negative
correlationr = −1. Our hypothesis is thatr < 0.

We will check the hypothesis for the four combinations of density and tightness where the
difference in solution time was the most significant and for all random problems. The results are
tabulated in Table 5.1. The coefficients in Rows 2, 3 and 4 indicate that there is a clear negative

density tightness r
C = 0.80 T = 0.25 −0.081078
C = 0.85 T = 0.25 −0.644128
C = 0.90 T = 0.25 −0.915199
C = 0.95 T = 0.25 −0.770780

0 < C < 1 0 < T < 1 −0.699804

Table 5.1: Pearson Product-Moment Correlation-Coefficients for Difference in Solution Time
and Difference in Checks

correlation betweenA andB. It indicates that asA goes up (asMAC-2001starts spending more
time)B goes down (AC-2001starts saving checks) and vice versa. For(C, T) = (0.80, 0.25)
there is a not a significant negative correlation. The “cause” of this insignificant correlation is
that there were 5 out of 50 cases whereAi was negative and 2 out of 50 cases whereBi was
positive. Furthermore, the absolute value of one of the negativeAi was such that it was second
largest of the absolute values of allBi, 1 ≤ i ≤ 50. For the problem sets corresponding to
Rows 2, 3 and 4 MAC-2001always required more time (Ai was always positive) and required
fewer checks (Bi was always negative). This is why we should expect a negative coefficient for
these problem sets. It is interesting that the coefficient in the last row of Table 5.1 is -0.699804.
This indicates that overall there is a significant negative correlation between the difference in

21

solution time and the difference between the number in checks. It confirms our hypothesis that
as soon asMAC-2001starts spending fewer checks thanMAC-3d it starts to lose out in time.

The last row corresponds to a set of 18050 sample points. This makes the coefficients in
Table 5.1 significant.

The Pearson Product-Moment Correlation-Coefficients were computed with dedicated pro-
grams written inC. To make sure that no errors errors were made these results were verified
with Mathematica . Computations withMathematica reproduced the result of our own
computations up to 6 decimals.

Figure 5.27 depicts a scatter plot of the difference in checks against the difference in time.
There are only a few combinations for whichMAC-2001was faster. The large cluster located at
the top right hand side has a “slope” that corresponds to the negative correlation and a position
that re-confirms thatMAC-3d was better in wall time

-3.0e10

-2.0e10

-1.0e10

0.0e10

1.0e10

-4.0e3 -2.0e3 0.0e3 2.0e3 4.0e3

di
ffe

re
nc

e
in

 c
he

ck
s

difference in time

Figure 5.27:n = 30, d = 30, Search: Scatter plot, difference in checks against difference in
time.

22

Chapter 6

Conclusions and Recommendations

We have compared two arc-consistency algorithms calledAC-2001andAC-3d. AC-2001is opti-
mal in its worst case time-complexity, whereasAC-3d is not. We have compared both algorithms
for stand alone arc-consistency and forMAC search. The results from the comparison demon-
strate that, despite common belief to the contrary, for an arc-consistency algorithm to be useful
during search there is no need for it to have an optimal worst case time-complexity. We have
presented results that suggest quite the opposite; To avoid duplication of checks inMAC search
may be harmful. This claim is supported by the observation thatMAC-3d was never significantly
slower thanMAC-2001, thatMAC-3d was usually significantly faster and, most importantly, that
as soon asMAC-2001started to become successful in avoiding the duplication of many checks it
started to lose much in time. However, more work has to be done to properly support this claim.

Our results indicate thatAC-3d is a good substitute forAC-2001 for stand alone arc-consis-
tency. When it comes to completing its task fastAC-3d is a clear winner. When it comes to
saving checks there is no clear overall winner. If tightness is about 0.85 thenAC-2001 is the
preferred algorithm for minimising checks. OtherwiseAC-3d is the preferred choice.

Any arc-consistency algorithm that is the basis of a general purposeMAC solver should be
goodon average. Yet, most research on arc-consistency algorithms is focusing on the design
of algorithms that are optimal inworst casescenarios, insisting thatat any costthese cases
should be dealt with as efficiently as possible. This report has provided evidence that to insist
on being able to deal efficiently with worst case scenarios may not be the best strategy when it
comes to solving quickly. The holy grail of arc-consistency research is to design arc-consistency
algorithms that are optimal in theiraveragetime-complexity. AC-3d’s clever use of arc-heuristics
and domain-heuristics seems to improve this average time-complexity. A more detailed study on
the impact of these heuristics may provide us with useful insights on how to design new and
better arc-consistency algorithms. These insights may also shed light on how to design other
efficient consistency algorithms.

23

Acknowledgements

I should like to thank Christian Bessière for the use of his solver, for help with its installment, and
for early discussions. Also I wish to thank Christian van den Bosch for setting up and carrying
out the experiments. Many thanks should also go to Rick Wallace for his suggestion to use the
Pearson Product-Moment Correlation-Coefficient and for useful discussions. Finally, I should
like to express my gratitude to Gene Freuder for his support of this work. This work has received
support from Science Foundation Ireland under Grant 00/PI.1/C075.

24

Bibliography

[Bessìere and Ŕegin, 2001] C. Bessìere and J.-C. Ŕegin. Refining the basic constraint propaga-
tion algorithm. InProceedings of the Seventeenth International Joint Conference on Artificial
Intelligence (IJCAI’2001), pages 309–315, 2001.

[Bessìereet al., 1995] C. Bessìere, E.C. Freuder, and J.-C. Régin. Using inference to reduce arc
consistency computation. In C.S. Mellish, editor,Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI’95), volume 1, pages 592–598, Montréal,
Québec, Canada, 1995. Morgan Kaufmann Publishers, Inc., San Mateo, California, USA.

[Bessìereet al., 1999] C. Bessìere, E.G. Freuder, and J.-C. Régin. Using constraint metaknowl-
edge to reduce arc consistency computation.Artificial Intelligence, 107(1):125–148, 1999.

[Collartet al., 1997] S. Collart, M. Kalkbrener, and D. Mall. Converting bases with the Gröbner
walk. Journal of Symbolic Computation, 24(3 and 4):465–470, 1997.

[Gaschnig, 1978] J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new
algorithms for satisficing assignment problems. InProceeding of the Second Biennial Confer-
ence, Canadian Society for the Computational Studies of Intelligence, pages 268–277, 1978.

[Gentet al., 1996] I.P. Gent, MacIntyre E., P. Prosser, B.M. Smith, and T. Walsh. An empiri-
cal study of dynamic variable ordering heuristics for the constraint satisfaction problem. In
E.C. Freuder, editor,Principles and Practice of Constraint Programming, pages 179–193.
Springer, 1996.

[Gentet al., 1997] I.P. Gent, E. MacIntyre, P. Prosser, P. Shaw, and T. Walsh. The constrained-
ness of arc consistency. InProceedings of the Third International Conference on Principles
and Practice of Constraint Programming (CP’1997), pages 327–340. Springer, 1997.

[Gentet al., 2001] Ian Gent, Ewan MacIntyre, Patrick Prosser, Barbara Smith, and Toby Walsh.
Random constraint satisfaction: Flaws and structure.Constraints, 6(4):345–372, 2001.

[Jobson, 1991] J.D. Jobson.Applied Multivariate Data Analysis, volume I: Regression and Ex-
perimental Design. Springer, 1991.

[Mackworth and Freuder, 1985] A.K. Mackworth and E.C. Freuder. The complexity of some
polynomial network consistency algorithms for constraint satisfaction problems.Artificial
Intelligence, 25(1):65–73, 1985.

25

[Mackworth, 1977] A.K. Mackworth. Consistency in networks of relations.Artificial Intelli-
gence, 8:99–118, 1977.

[Mohr and Henderson, 1986] R. Mohr and T. Henderson. Arc and path consistency revisited.
Artificial Intelligence, 28:225–233, 1986.

[Sabin and Freuder, 1994] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in
constraint satisfaction. In A.G. Cohn, editor,Proceedings of the Eleventh European Confer-
ence on Artificial Intelligence (ECAI’94), pages 125–129. John Wiley & Sons, 1994.

[van Dongen, 2002a] M.R.C. van Dongen.Constraints, Varieties, and Algorithms. PhD thesis,
Department of Computer Science, University College Cork, Ireland, 2002.

[van Dongen, 2002b] M.R.C. van Dongen. Domain-heuristics for arc-consistency algorithms.
In K.R. Apt, F. Fages, E.G. Freuder, B. O’Sullivan, F. Rossi, and T. Walsh, editors,
ERCIM/Colognet Workshop, Cork, pages 72–83, 2002.

[van Dongen, 2002c] M.R.C. van Dongen. AC-3d an efficient arc-consistency algorithm with a
low space-complexity. In P. Van Hentenryck, editor,Proceedings of the Eighth International
Conference on Principles and Practice of Constraint Programming (CP’2002), pages 755–
760. Springer, 2002.

[van Dongen, 2002d] M.R.C. van Dongen. AC-3d an efficient arc-consistency algorithm with
a low space-complexity. Technical Report TR-01-2002, Cork Constraint Computation Cen-
tre/CS Department UCC, 2002.

[Wallace and Freuder, 1992] R.J. Wallace and E.C. Freuder. Ordering heuristics for arc consis-
tency algorithms. InAI/GI/VI ’92, pages 163–169, Vancouver, British Columbia, Canada,
1992.

[Wallace, 1993] R.J. Wallace. Why AC-3 is almost always better than AC-4 for establishing arc
consistency in CSPs. In R. Bajcsy, editor,Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence (IJCAI’93), pages 239–245, 1993.

[Zhang and Yap, 2001] Y. Zhang and R.H.C. Yap. Making AC-3 an optimal algorithm. In
Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence (IJ-
CAI’2001), pages 316–321, 2001.

26

Appendix A

Graphs

This chapter contains graphs for all the experiments carried out. The data were obtained from
experiments that were set up as described in Chapter 5. Sections are organised by the number of
variablesn and domain sized.

A.1 Results forN = D = 20

27

0.
0e

+
00

5.
0e

+
03

1.
0e

+
04

1.
5e

+
04

2.
0e

+
04

2.
5e

+
04

3.
0e

+
04

3.
5e

+
04

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.1

:n
=

20
,d

=
20

,S
ta

nd
al

on
e

ar
c-

co
ns

is
te

nc
y:

C
he

ck
s,

C
≤

0.
5,

A
C

-2
00

1.

28

0.
0e

+
00

5.
0e

+
03

1.
0e

+
04

1.
5e

+
04

2.
0e

+
04

2.
5e

+
04

3.
0e

+
04

3.
5e

+
04

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.2

:n
=

20
,d

=
20

,S
ta

nd
al

on
e

ar
c-

co
ns

is
te

nc
y:

C
he

ck
s,

C
≤

0.
5,

A
C

-3
d
.

29

0.
0e

+
00

5.
0e

+
03

1.
0e

+
04

1.
5e

+
04

2.
0e

+
04

2.
5e

+
04

3.
0e

+
04

3.
5e

+
04

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.3

:n
=

20
,d

=
20

,S
ta

nd
al

on
e

ar
c-

co
ns

is
te

nc
y:

C
he

ck
s,

C
>

0.
5,

A
C

-2
00

1.

30

0.
0e

+
00

5.
0e

+
03

1.
0e

+
04

1.
5e

+
04

2.
0e

+
04

2.
5e

+
04

3.
0e

+
04

3.
5e

+
04

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.4

:n
=

20
,d

=
20

,S
ta

nd
al

on
e

ar
c-

co
ns

is
te

nc
y:

C
he

ck
s,

C
>

0.
5,

A
C

-3
d
.

31

-1
.0

e+
04

-5
.0

e+
03

0.
0e

+
00

5.
0e

+
03

1.
0e

+
04

1.
5e

+
04

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.5

:n
=

20
,d

=
20

,S
ta

nd
al

on
e

ar
c-

co
ns

is
te

nc
y:

C
he

ck
s,

C
≤

0.
5,

A
C

-2
00

1−
A

C
-3
d
.

32

-1
.0

e+
04

-5
.0

e+
03

0.
0e

+
00

5.
0e

+
03

1.
0e

+
04

1.
5e

+
04

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.6

:n
=

20
,d

=
20

,S
ta

nd
al

on
e

ar
c-

co
ns

is
te

nc
y:

C
he

ck
s,

C
>

0.
5,

A
C

-2
00

1−
A

C
-3
d
.

33

5.
0e

-0
1

1.
0e

+
00

1.
5e

+
00

2.
0e

+
00

2.
5e

+
00

3.
0e

+
00

3.
5e

+
00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.7

:n
=

20
,d

=
20

,S
ta

nd
al

on
e

ar
c-

co
ns

is
te

nc
y:

C
he

ck
s,

C
≤

0.
5,

A
C

-2
00

1/
A

C
-3
d
.

34

5.
0e

-0
1

1.
0e

+
00

1.
5e

+
00

2.
0e

+
00

2.
5e

+
00

3.
0e

+
00

3.
5e

+
00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.8

:n
=

20
,d

=
20

,S
ta

nd
al

on
e

ar
c-

co
ns

is
te

nc
y:

C
he

ck
s,

C
>

0.
5,

A
C

-2
00

1/
A

C
-3
d
.

35

0.
0e

+
00

5.
0e

-0
4

1.
0e

-0
3

1.
5e

-0
3

2.
0e

-0
3

2.
5e

-0
3

3.
0e

-0
3

3.
5e

-0
3

4.
0e

-0
3

4.
5e

-0
3

5.
0e

-0
3

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.9

:n
=

20
,d

=
20

,S
ta

nd
al

on
e

ar
c-

co
ns

is
te

nc
y:

T
im

e,C
≤

0.
5,

A
C

-2
00

1.

36

0.
0e

+
00

5.
0e

-0
4

1.
0e

-0
3

1.
5e

-0
3

2.
0e

-0
3

2.
5e

-0
3

3.
0e

-0
3

3.
5e

-0
3

4.
0e

-0
3

4.
5e

-0
3

5.
0e

-0
3

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.1

0:
n

=
20

,d
=

20
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
T

im
e,C
≤

0.
5,

A
C

-3
d
.

37

0.
0e

+
00

5.
0e

-0
4

1.
0e

-0
3

1.
5e

-0
3

2.
0e

-0
3

2.
5e

-0
3

3.
0e

-0
3

3.
5e

-0
3

4.
0e

-0
3

4.
5e

-0
3

5.
0e

-0
3

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.1

1:
n

=
20

,d
=

20
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
T

im
e,C
>

0.
5,

A
C

-2
00

1.

38

0.
0e

+
00

5.
0e

-0
4

1.
0e

-0
3

1.
5e

-0
3

2.
0e

-0
3

2.
5e

-0
3

3.
0e

-0
3

3.
5e

-0
3

4.
0e

-0
3

4.
5e

-0
3

5.
0e

-0
3

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.1

2:
n

=
20

,d
=

20
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
T

im
e,C
>

0.
5,

A
C

-3
d
.

39

0.
0e

+
00

5.
0e

-0
4

1.
0e

-0
3

1.
5e

-0
3

2.
0e

-0
3

2.
5e

-0
3

3.
0e

-0
3

3.
5e

-0
3

4.
0e

-0
3

4.
5e

-0
3

5.
0e

-0
3

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.1

3:
n

=
20

,d
=

20
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
T

im
e,C
≤

0.
5,

A
C

-2
00

1−
A

C
-3
d
.

40

0.
0e

+
00

5.
0e

-0
4

1.
0e

-0
3

1.
5e

-0
3

2.
0e

-0
3

2.
5e

-0
3

3.
0e

-0
3

3.
5e

-0
3

4.
0e

-0
3

4.
5e

-0
3

5.
0e

-0
3

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.1

4:
n

=
20

,d
=

20
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
T

im
e,C
>

0.
5,

A
C

-2
00

1−
A

C
-3
d
.

41

0.
0e

+
00

5.
0e

+
04

1.
0e

+
05

1.
5e

+
05

2.
0e

+
05

2.
5e

+
05

3.
0e

+
05

3.
5e

+
05

4.
0e

+
05

4.
5e

+
05

5.
0e

+
05

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.1

5:
n

=
20

,d
=

20
,S

ea
rc

h:
C

he
ck

s,C
≤

0.
5,

A
C

-2
00

1.

42

0.
0e

+
00

5.
0e

+
04

1.
0e

+
05

1.
5e

+
05

2.
0e

+
05

2.
5e

+
05

3.
0e

+
05

3.
5e

+
05

4.
0e

+
05

4.
5e

+
05

5.
0e

+
05

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.1

6:
n

=
20

,d
=

20
,S

ea
rc

h:
C

he
ck

s,C
≤

0.
5,

A
C

-3
d
.

43

0.
0e

+
00

2.
0e

+
06

4.
0e

+
06

6.
0e

+
06

8.
0e

+
06

1.
0e

+
07

1.
2e

+
07

1.
4e

+
07

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.1

7:
n

=
20

,d
=

20
,S

ea
rc

h:
C

he
ck

s,C
>

0.
5,

A
C

-2
00

1.

44

0.
0e

+
00

2.
0e

+
06

4.
0e

+
06

6.
0e

+
06

8.
0e

+
06

1.
0e

+
07

1.
2e

+
07

1.
4e

+
07

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.1

8:
n

=
20

,d
=

20
,S

ea
rc

h:
C

he
ck

s,C
>

0.
5,

A
C

-3
d
.

45

-3
.5

e+
06

-3
.0

e+
06

-2
.5

e+
06

-2
.0

e+
06

-1
.5

e+
06

-1
.0

e+
06

-5
.0

e+
05

0.
0e

+
00

5.
0e

+
05

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.1

9:
n

=
20

,d
=

20
,S

ea
rc

h:
C

he
ck

s,C
≤

0.
5,

A
C

-2
00

1−
A

C
-3
d
.

46

-3
.5

e+
06

-3
.0

e+
06

-2
.5

e+
06

-2
.0

e+
06

-1
.5

e+
06

-1
.0

e+
06

-5
.0

e+
05

0.
0e

+
00

5.
0e

+
05

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.2

0:
n

=
20

,d
=

20
,S

ea
rc

h:
C

he
ck

s,C
>

0.
5,

A
C

-2
00

1−
A

C
-3
d
.

47

0.
0e

+
00

5.
0e

-0
1

1.
0e

+
00

1.
5e

+
00

2.
0e

+
00

2.
5e

+
00

3.
0e

+
00

3.
5e

+
00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.2

1:
n

=
20

,d
=

20
,S

ea
rc

h:
C

he
ck

s,C
≤

0.
5,

A
C

-2
00

1/
A

C
-3
d
.

48

0.
0e

+
00

5.
0e

-0
1

1.
0e

+
00

1.
5e

+
00

2.
0e

+
00

2.
5e

+
00

3.
0e

+
00

3.
5e

+
00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.2

2:
n

=
20

,d
=

20
,S

ea
rc

h:
C

he
ck

s,C
>

0.
5,

A
C

-2
00

1/
A

C
-3
d
.

49

0.
0e

+
00

2.
0e

-0
2

4.
0e

-0
2

6.
0e

-0
2

8.
0e

-0
2

1.
0e

-0
1

1.
2e

-0
1

1.
4e

-0
1

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.2

3:
n

=
20

,d
=

20
,S

ea
rc

h:
T

im
e,C
≤

0.
5,

A
C

-2
00

1.

50

0.
0e

+
00

2.
0e

-0
2

4.
0e

-0
2

6.
0e

-0
2

8.
0e

-0
2

1.
0e

-0
1

1.
2e

-0
1

1.
4e

-0
1

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.2

4:
n

=
20

,d
=

20
,S

ea
rc

h:
T

im
e,C
≤

0.
5,

A
C

-3
d
.

51

0.
0e

+
00

5.
0e

-0
1

1.
0e

+
00

1.
5e

+
00

2.
0e

+
00

2.
5e

+
00

3.
0e

+
00

3.
5e

+
00

4.
0e

+
00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.2

5:
n

=
20

,d
=

20
,S

ea
rc

h:
T

im
e,C

>
0.

5,
A

C
-2

00
1.

52

0.
0e

+
00

5.
0e

-0
1

1.
0e

+
00

1.
5e

+
00

2.
0e

+
00

2.
5e

+
00

3.
0e

+
00

3.
5e

+
00

4.
0e

+
00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.2

6:
n

=
20

,d
=

20
,S

ea
rc

h:
T

im
e,C

>
0.

5,
A

C
-3
d
.

53

-1
.0

e-
02

0.
0e

+
00

1.
0e

-0
2

2.
0e

-0
2

3.
0e

-0
2

4.
0e

-0
2

5.
0e

-0
2

6.
0e

-0
2

7.
0e

-0
2

8.
0e

-0
2

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.2

7:
n

=
20

,d
=

20
,S

ea
rc

h:
T

im
e,C
≤

0.
5,

A
C

-2
00

1−
A

C
-3
d
.

54

0.
0e

+
00

5.
0e

-0
1

1.
0e

+
00

1.
5e

+
00

2.
0e

+
00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.2

8:
n

=
20

,d
=

20
,S

ea
rc

h:
T

im
e,C

>
0.

5,
A

C
-2

00
1−

A
C

-3
d
.

55

A.2 Results forN = D = 30

0.
0e

+
00

2.
0e

+
04

4.
0e

+
04

6.
0e

+
04

8.
0e

+
04

1.
0e

+
05

1.
2e

+
05

1.
4e

+
05

1.
6e

+
05

1.
8e

+
05

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.2

9:
n

=
30

,d
=

30
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
C

he
ck

s,
C
≤

0.
5,

A
C

-2
00

1.

56

0.
0e

+
00

2.
0e

+
04

4.
0e

+
04

6.
0e

+
04

8.
0e

+
04

1.
0e

+
05

1.
2e

+
05

1.
4e

+
05

1.
6e

+
05

1.
8e

+
05

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.3

0:
n

=
30

,d
=

30
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
C

he
ck

s,
C
≤

0.
5,

A
C

-3
d
.

57

0.
0e

+
00

2.
0e

+
04

4.
0e

+
04

6.
0e

+
04

8.
0e

+
04

1.
0e

+
05

1.
2e

+
05

1.
4e

+
05

1.
6e

+
05

1.
8e

+
05

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.3

1:
n

=
30

,d
=

30
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
C

he
ck

s,
C
>

0.
5,

A
C

-2
00

1.

58

0.
0e

+
00

2.
0e

+
04

4.
0e

+
04

6.
0e

+
04

8.
0e

+
04

1.
0e

+
05

1.
2e

+
05

1.
4e

+
05

1.
6e

+
05

1.
8e

+
05

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.3

2:
n

=
30

,d
=

30
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
C

he
ck

s,
C
>

0.
5,

A
C

-3
d
.

59

-8
.0

e+
04

-6
.0

e+
04

-4
.0

e+
04

-2
.0

e+
04

0.
0e

+
00

2.
0e

+
04

4.
0e

+
04

6.
0e

+
04

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.3

3:
n

=
30

,d
=

30
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
C

he
ck

s,
C
≤

0.
5,

A
C

-2
00

1−
A

C
-3
d
.

60

-8
.0

e+
04

-6
.0

e+
04

-4
.0

e+
04

-2
.0

e+
04

0.
0e

+
00

2.
0e

+
04

4.
0e

+
04

6.
0e

+
04

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.3

4:
n

=
30

,d
=

30
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
C

he
ck

s,
C
>

0.
5,

A
C

-2
00

1−
A

C
-3
d
.

61

5.
0e

-0
1

1.
0e

+
00

1.
5e

+
00

2.
0e

+
00

2.
5e

+
00

3.
0e

+
00

3.
5e

+
00

4.
0e

+
00

4.
5e

+
00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.3

5:
n

=
30

,d
=

30
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
C

he
ck

s,
C
≤

0.
5,

A
C

-2
00

1/
A

C
-3
d
.

62

5.
0e

-0
1

1.
0e

+
00

1.
5e

+
00

2.
0e

+
00

2.
5e

+
00

3.
0e

+
00

3.
5e

+
00

4.
0e

+
00

4.
5e

+
00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.3

6:
n

=
30

,d
=

30
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
C

he
ck

s,
C
>

0.
5,

A
C

-2
00

1/
A

C
-3
d
.

63

0.
0e

+
00

2.
0e

-0
3

4.
0e

-0
3

6.
0e

-0
3

8.
0e

-0
3

1.
0e

-0
2

1.
2e

-0
2

1.
4e

-0
2

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.3

7:
n

=
30

,d
=

30
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
T

im
e,C
≤

0.
5,

A
C

-2
00

1.

64

0.
0e

+
00

2.
0e

-0
3

4.
0e

-0
3

6.
0e

-0
3

8.
0e

-0
3

1.
0e

-0
2

1.
2e

-0
2

1.
4e

-0
2

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.3

8:
n

=
30

,d
=

30
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
T

im
e,C
≤

0.
5,

A
C

-3
d
.

65

0.
0e

+
00

2.
0e

-0
3

4.
0e

-0
3

6.
0e

-0
3

8.
0e

-0
3

1.
0e

-0
2

1.
2e

-0
2

1.
4e

-0
2

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.3

9:
n

=
30

,d
=

30
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
T

im
e,C
>

0.
5,

A
C

-2
00

1.

66

0.
0e

+
00

2.
0e

-0
3

4.
0e

-0
3

6.
0e

-0
3

8.
0e

-0
3

1.
0e

-0
2

1.
2e

-0
2

1.
4e

-0
2

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.4

0:
n

=
30

,d
=

30
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
T

im
e,C
>

0.
5,

A
C

-3
d
.

67

0.
0e

+
00

1.
0e

-0
3

2.
0e

-0
3

3.
0e

-0
3

4.
0e

-0
3

5.
0e

-0
3

6.
0e

-0
3

7.
0e

-0
3

8.
0e

-0
3

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.4

1:
n

=
30

,d
=

30
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
T

im
e,C
≤

0.
5,

A
C

-2
00

1−
A

C
-3
d
.

68

0.
0e

+
00

1.
0e

-0
3

2.
0e

-0
3

3.
0e

-0
3

4.
0e

-0
3

5.
0e

-0
3

6.
0e

-0
3

7.
0e

-0
3

8.
0e

-0
3

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.4

2:
n

=
30

,d
=

30
,S

ta
nd

al
on

e
ar

c-
co

ns
is

te
nc

y:
T

im
e,C
>

0.
5,

A
C

-2
00

1−
A

C
-3
d
.

69

0.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

2.
0e

+
08

2.
5e

+
08

3.
0e

+
08

3.
5e

+
08

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.4

3:
n

=
30

,d
=

30
,S

ea
rc

h:
C

he
ck

s,C
≤

0.
5,

A
C

-2
00

1.

70

0.
0e

+
00

5.
0e

+
07

1.
0e

+
08

1.
5e

+
08

2.
0e

+
08

2.
5e

+
08

3.
0e

+
08

3.
5e

+
08

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.4

4:
n

=
30

,d
=

30
,S

ea
rc

h:
C

he
ck

s,C
≤

0.
5,

A
C

-3
d
.

71

0.
0e

+
00

5.
0e

+
09

1.
0e

+
10

1.
5e

+
10

2.
0e

+
10

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.4

5:
n

=
30

,d
=

30
,S

ea
rc

h:
C

he
ck

s,C
>

0.
5,

A
C

-2
00

1.

72

0.
0e

+
00

5.
0e

+
09

1.
0e

+
10

1.
5e

+
10

2.
0e

+
10

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.4

6:
n

=
30

,d
=

30
,S

ea
rc

h:
C

he
ck

s,C
>

0.
5,

A
C

-3
d
.

73

-1
.0

e+
08

-8
.0

e+
07

-6
.0

e+
07

-4
.0

e+
07

-2
.0

e+
07

0.
0e

+
00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.4

7:
n

=
30

,d
=

30
,S

ea
rc

h:
C

he
ck

s,C
≤

0.
5,

A
C

-2
00

1−
A

C
-3
d
.

74

-7
.0

e+
09

-6
.0

e+
09

-5
.0

e+
09

-4
.0

e+
09

-3
.0

e+
09

-2
.0

e+
09

-1
.0

e+
09

0.
0e

+
00

1.
0e

+
09

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.4

8:
n

=
30

,d
=

30
,S

ea
rc

h:
C

he
ck

s,C
>

0.
5,

A
C

-2
00

1−
A

C
-3
d
.

75

0.
0e

+
00

5.
0e

-0
1

1.
0e

+
00

1.
5e

+
00

2.
0e

+
00

2.
5e

+
00

3.
0e

+
00

3.
5e

+
00

4.
0e

+
00

4.
5e

+
00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.4

9:
n

=
30

,d
=

30
,S

ea
rc

h:
C

he
ck

s,C
≤

0.
5,

A
C

-2
00

1/
A

C
-3
d
.

76

0.
0e

+
00

5.
0e

-0
1

1.
0e

+
00

1.
5e

+
00

2.
0e

+
00

2.
5e

+
00

3.
0e

+
00

3.
5e

+
00

4.
0e

+
00

4.
5e

+
00

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.5

0:
n

=
30

,d
=

30
,S

ea
rc

h:
C

he
ck

s,C
>

0.
5,

A
C

-2
00

1/
A

C
-3
d
.

77

0.
0e

+
00

1.
0e

+
01

2.
0e

+
01

3.
0e

+
01

4.
0e

+
01

5.
0e

+
01

6.
0e

+
01

7.
0e

+
01

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.5

1:
n

=
30

,d
=

30
,S

ea
rc

h:
T

im
e,C
≤

0.
5,

A
C

-2
00

1.

78

0.
0e

+
00

1.
0e

+
01

2.
0e

+
01

3.
0e

+
01

4.
0e

+
01

5.
0e

+
01

6.
0e

+
01

7.
0e

+
01

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.5

2:
n

=
30

,d
=

30
,S

ea
rc

h:
T

im
e,C
≤

0.
5,

A
C

-3
d
.

79

0.
0e

+
00

1.
0e

+
03

2.
0e

+
03

3.
0e

+
03

4.
0e

+
03

5.
0e

+
03

6.
0e

+
03

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.5

3:
n

=
30

,d
=

30
,S

ea
rc

h:
T

im
e,C

>
0.

5,
A

C
-2

00
1.

80

0.
0e

+
00

1.
0e

+
03

2.
0e

+
03

3.
0e

+
03

4.
0e

+
03

5.
0e

+
03

6.
0e

+
03

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.5

4:
n

=
30

,d
=

30
,S

ea
rc

h:
T

im
e,C

>
0.

5,
A

C
-3
d
.

81

0.
0e

+
00

5.
0e

+
00

1.
0e

+
01

1.
5e

+
01

2.
0e

+
01

2.
5e

+
01

3.
0e

+
01

3.
5e

+
01

4.
0e

+
01

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.0

5
de

ns
ity

 =
 0

.1
0

de
ns

ity
 =

 0
.1

5
de

ns
ity

 =
 0

.2
0

de
ns

ity
 =

 0
.2

5
de

ns
ity

 =
 0

.3
0

de
ns

ity
 =

 0
.3

5
de

ns
ity

 =
 0

.4
0

de
ns

ity
 =

 0
.4

5
de

ns
ity

 =
 0

.5
0

F
ig

ur
e

A
.5

5:
n

=
30

,d
=

30
,S

ea
rc

h:
T

im
e,C
≤

0.
5,

A
C

-2
00

1−
A

C
-3
d
.

82

0.
0e

+
00

2.
0e

+
02

4.
0e

+
02

6.
0e

+
02

8.
0e

+
02

1.
0e

+
03

1.
2e

+
03

1.
4e

+
03

1.
6e

+
03

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9

tig
ht

ne
ss

de
ns

ity
 =

 0
.5

5
de

ns
ity

 =
 0

.6
0

de
ns

ity
 =

 0
.6

5
de

ns
ity

 =
 0

.7
0

de
ns

ity
 =

 0
.7

5
de

ns
ity

 =
 0

.8
0

de
ns

ity
 =

 0
.8

5
de

ns
ity

 =
 0

.9
0

de
ns

ity
 =

 0
.9

5

F
ig

ur
e

A
.5

6:
n

=
30

,d
=

30
,S

ea
rc

h:
T

im
e,C

>
0.

5,
A

C
-2

00
1−

A
C

-3
d
.

83

