

- Dataset complexity measures
- Classification experiment
- Case base maintenance experiment
- ➢ Going forward

Overview

Dataset complexity measures

- Classification experiment
- Case base maintenance experiment
- ➢ Going forward

Dataset Complexity Measures

- Measures of classification difficulty
 - *apparent* difficulty, since we measure a dataset which samples the problem space
- Little impact on CBR
 - Fornells et al., ICCBR 2009
 - Cummins & Bridge, ICCBR 2009
- (Little impact on ML in general!)

Dataset Complexity Measures

- Survey of 12 geometrical measures
 - Ho & Basu, 2002
- DCoL: open source C++ library of 13 measures
 - Orriols-Puig et al., 2009
- We have found 4 candidate measures in the CBR literature

Overlap of attribute values

	F ₁	Maximum Fisher's Discriminant Ratio
	F ₂ '	Volume of Overlap Region
	F ₃ '	Maximum Attribute Efficiency
	F ₄ '	Collective Attribute Efficiency

Separability of classes

N ₁ '	Fraction of Instances on a Boundary					
N ₂	Ratio of Average Intra/Inter Class Distance					
N ₃	Error Rate of a 1NN classifier					
L_1	Minimized Sum of Error Distance of a Linear Classifier					
L ₂	Training Error of a Linear Classifier					
C ₁	Complexity Profile					
C ₂	Similarity-Weighted Complexity Profile					
N ₅	Separability Emphasis Measure					

Manifold Topology & Density

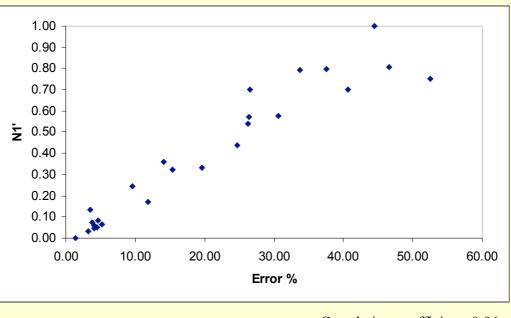
L ₃	Nonlinearity of a Linear Classifier				
N ₄	Nonlinearity of a 1NN Classifier				
T ₁	Fraction of Maximum Covering Spheres				
T ₂	Number of Instances per Attribute				
T ₃	Dataset Competence				

Dataset Complexity Measures

• Desiderata

- Predictive
- Independent of what is being analyzed
- Widely applicable across datasets
- Cheap-to-compute
- Incremental
- Transparent/explainable

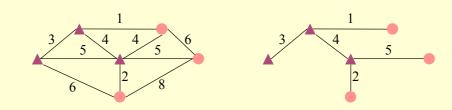
Dataset complexity measures
 Classification experiment
 Case base maintenance experiment
 Going forward


Classification experiment

- 25 datasets
 - 14 Boolean classification; 11 multi-class
 - 21 numeric-valued attributes only (12 Boolean classification; 9 multi-class)
- 4 Weka classifiers trained on 60% of dataset
 - Neural Net with 1 hidden layer
 - SVM with SMO
 - J48
 - IBk with k = 3
- Error measured on 20% of dataset
- Repeated 10 times

An example of the results

Dataset	NN	SVM	J48	IBk	Mean	N ₁ '
Iris	2.67	4.00	5.00	2.67	3.58	0.13
Lung Cancer	58.00	50.00	46.00	56.00	52.50	0.75


An example of the results

Correlation coefficient: 0.96

N₁' Fraction of instances on a boundary

Build a minimum spanning tree

- Compute fraction of instances directly connected to instances of a different class
- Shuffle dataset, repeat, & average

Other competitive measures

- N₃ Error Rate of a 1NN Classifier
 leave-one-out error rate of 1NN on the dataset
- N₂ Ratio of Average Intra/Inter Class Distance
 - sum distances to nearest neighbour of same class
 - divide by sum of distances to nearest neighbour of different class

L₂ Training Error of a Linear Classifier

- build, e.g., SVM on dataset
- compute error on original dataset
- problems with multi-class; problems with symbolic values

C₁ Complexity Profile

• Computed for each instance, with parameter K [Massie et al. 2006]

For K = 3

• For a dataset measure, compute average complexity

Other measures from CBR

- C₂ Similarity-Weighted Complexity Profile
 use similarity values when computing P_k
- N₅ Separability Emphasis Measure [Fornells et al. '09]
 N₅ = N₁' × N₂
- T₃ Dataset Competence

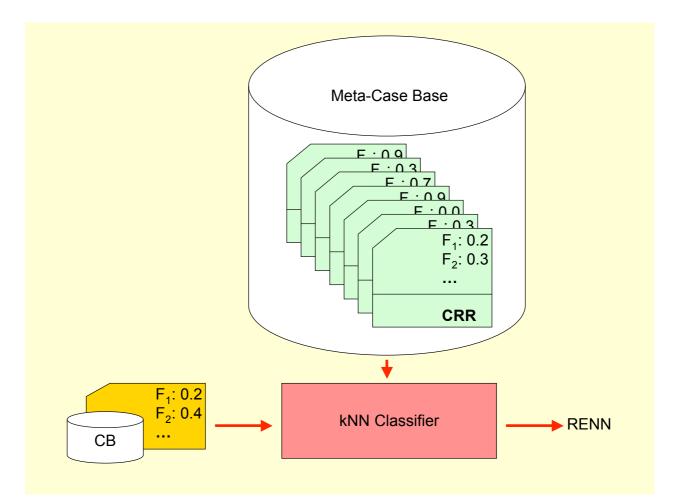
[Smyth & McKenna '98]

- competence groups based on overlapping coverage sets
- group coverage based on size and similarity
- dataset competence as sum of group coverages

Their predictivity

- C₁ Complexity Profile
 - Correlation coefficient: 0.98
- C₂ Similarity-Weighted Complexity Profile
 - Correlation coefficient: 0.97
- N₅ Separability Emphasis Measure
 - Between N_1' and N_2
- T₃ Dataset Competence
 - Correlation coefficient: near zero

Summary of experiment

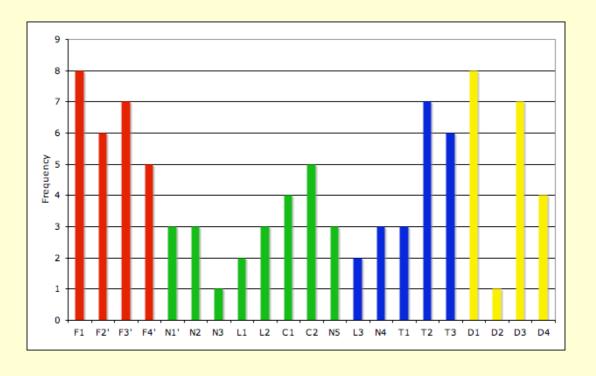

- Very predictive
 - C₁ Complexity Profile
 - N₃ Error Rate of 1NN Classifier
 - N₁' Fraction of Instances on a Boundary
- Predictive but problems with applicability
 - L₂ Training Error of a Linear Classifier
- Moderately predictive
 - N₂ Ratio of Average Intra/Inter Class Distance
- All are measures of separability of classes

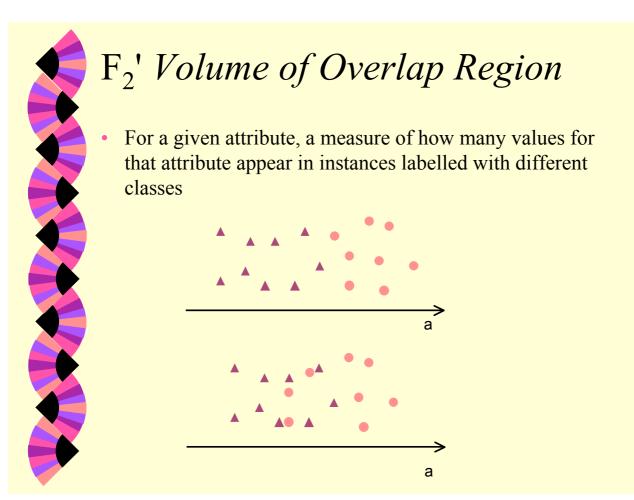
Dataset complexity measures
 Classification experiment
 Case base maintenance experiment
 Going forward

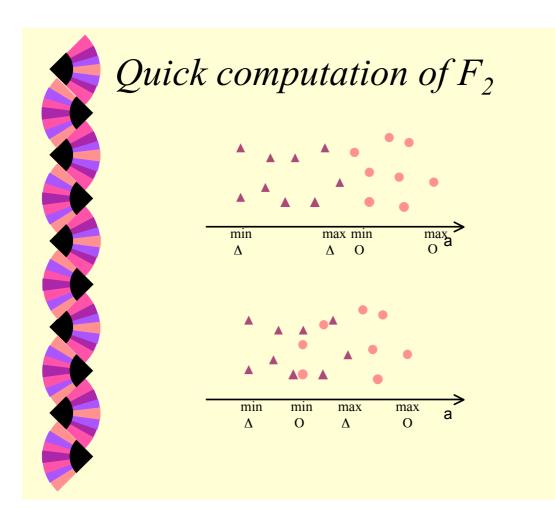
Meta-CBR for Maintenance

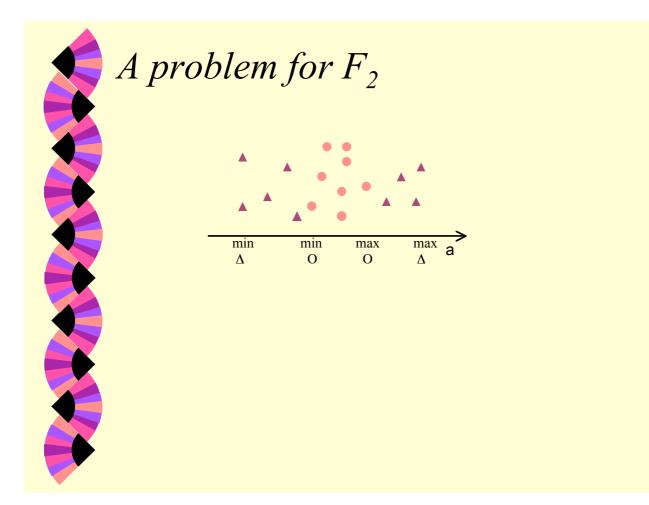
- Case base maintenance algorithms seek to:
 - delete noisy cases
 - delete redundant cases
- Different case bases require different maintenance algorithms
- The same case base may require different maintenance algorithms at different times in its life cycle
- We have been building classifiers to select maintenance algorithms

Case Base Maintenance Experiment


- Training (building the meta-case base)
 - From 60% of each dataset, create a case base
 - Create a meta-case to describe this case base
 - attributes are complexity measures
 - problem solution
 - run a small set of maintenance algorithms on each case base
 - record % deleted
 - record accuracy on the next 20% of each dataset
 - maintenance algorithm with highest harmonic mean of % deleted and accuracy becomes this meta-case's solution
- But, we use *feature selection* to choose a subset of the complexity measures
 - wrapper method, best-first search


Case Base Maintenance Experiment


- Testing
 - Target problem is a case base built from remaining 20% of each dataset
 - attributes again are complexity measures
 - Ask the classifier to predict a maintenance algorithm
 - Run the algorithm, record % deleted, accuracy and their harmonic mean
- Compare meta-CBR with perfect classifier and ones that choose same algorithm each time


Classifier	Cases deleted (%)	Accuracy (%)	Harmonic mean
Choose-best	72.37	71.86	69.56
Meta-CBR	66.32	70.76	63.98
Choose ICF	64.54	69.63	62.29
Choose CBE	57.11	72.64	60.41

Which measures get selected?

F₂' Our version

- o'(a) = count how many values are in the overlap
- r'(a) = count the number of values of a

$$F2' = \prod_{i=1}^{n} \frac{o'(a_i)}{r'(a_i)}$$

Summary of experiment

- Feature selection
 - chose between 2 and 18 attributes, average 9.2
 - chose range of measures, across Ho & Basu's categories
 - always at least one measure of overlap of attribute values, e.g. F₂'
 - but measures of class separability only about 50% of the time
- But this is just one experiment

Dataset complexity measures
 Classification experiment
 Case base maintenance experiment
 Going forward

Going forward

- Use of complexity measures in CBR (and ML)
- More research into complexity measures:
 - experiments with more datasets, different datasets, more classifiers,...
 - new measures, e.g. Information Gain
 - applicability of measures
 - missing values
 - loss functions
 - dimensionality reduction, e.g. PCA
 - the CBR similarity assumption and measures of case alignment [Lamontagne 2006, Hüllermeier 2007, Raghunandan et al. 2008]