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An Interpretable Music Similarity Measure Based on Path Interestingness
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Facts: entities and relations

SOURCE ENTITY RELATION TARGET ENTITY

Robert Gordon University founded by Robert Gordon

Robert Gordon University

location AberdeenRobert Gordon University

named after Robert Gordon

born in AberdeenRobert Gordon



Knowledge graph

Robert 
Gordon 

University

Aberdeen

Robert 
Gordon

founded by

location

named after

born in



Concepts

Robert 
Gordon 

University

academic 
institutionuniversity

instance of subclass of

faculty

students

has

has



Scope

Enterprise-specific

Domain-specific

Encyclopedic
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Domain-specific



Encyclopedic

• a multilingual encyclopedic 
dictionary
• covers 520 languages
• obtained from the automatic 

integration of
• Wikipedia
• WikiData
• WordNet
• GeoNames
• …



Entity Linking/Word Sense Disambiguation



Link prediction



Node similarity
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Question-answering
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Segues between songs



Dave: a method to generate segues

• Find paths in a knowledge graph 
that connect the songs
• Score the paths for 

interestingness
• Convert the most interesting 

path into natural language



Dave’s theory of interestingness

• Infrequency adds to 
interestingness

• infrequent path type
• infrequent entities/concepts

• Conciseness adds to 
interestingness



We are so fragile

I am dust

Gary Numan

Tubeway Army

Gary Numan was a member 
of Tubeway Army



Whine and grine

Princess Olivia

Al Stewart

Prince Buster

From prince to princess…



Dave user trial (n = 158)

• Dave’s factual segues are as good as manually-created, curated ones

• Dave’s humorous segues are worse than manually-created, curated 
ones



Tours: playlists augmented with segues



Sam: a method to generate tours



Sam user study (n = 16)
“I really like it! It is nice to see how all songs are linked together. It is really cool!”
“I’d certainly use this … if it was implemented in a music streaming app.”
“A lot of times you listen to music as a background, whereas I think [for a tour you need] designated hours in your day, like I’m going to sit 
down and listen to this.”

Tours functionality would 
be welcome for active 

listening

“If I was getting the same information … that would be becoming boring after a while, I … want diversity in information.”Segue diversity is 
important

“One of the segues was that U2 and Fionn Regan are Irish and … I know that because I’m Irish! … That is just tedious and boring.”
“[In good tours] you’d have  information that you didn’t know and you were just learning. Something interesting, like one of those moments 
`Oh my God! I didn’t know that these two bands were connected’.”

Personalisation is needed 
to avoid familiar segues



Spotify’s My DJ



Node similarity: PathSim & IPSim

Flying 
Lotus

Thunder- 
cat

Brain-
feeder

electronic 
music

solo
artist

published withpublished with

mademade

is a is a Precision@5 MREX LastFM(a) LastFM(b) Facebook

Random 2.6% 0.2% 0.1% 0.1%

Count 6.2% 3.3% 1.4% 1.6%

LDSD 9.6% 9.5% 2.2% 1.9%

IPSim 13.0% 10.3% 1.7% 2.3%
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Knowledge graph browser

• Browsers support knowledge 
discovery

• But high connectivity brings 
choice overload

• We propose to incorporate 
recommendation techniques



User profiles

• We extend the graph to include 
user profile facts
• As the user browses, they can 

give a ‘thumbs-up’
• inserts a new fact

• From a RecSys point-of-view, 
these are

• explicit, unary ratings

Derek

Finding 
Nemo

Pixar

Steve 
Jobs

likes

likes

likes



Recommendation as classification

• Candidates for recommendation 
are entities in the 
neighbourhood of the current 
entity

• We must predict which 
candidates the user will like – 
this is classification



One-class classification 

• Let 
• 𝑒 be a candidate
• 𝑒′ be the nearest-neighbour of 𝑒 

that is in the user profile
• 𝑒′′ be the nearest-neighbour of 𝑒′ 

that is in the user profile

• Predict 𝑢 likes 𝑒 if 𝑠𝑖𝑚 𝑒, 𝑒! >
𝑠𝑖𝑚(𝑒!, 𝑒!!)
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Collective classification

Traditional classification
• Entities are classified in isolation
• However, accuracy can 

sometimes be improved by 
taking into account the related 
entities

• e.g. faculty web pages often link 
to postgraduate student pages

Collective classification
• Classify sets of entities together
• When classifying an entity, the 

classifier can also use the 
predicted class of related entities



Iterative classification algorithm: LDRec

• Repeatedly:
• Classify the candidates using the one-class classifier
• For each candidate that the classifier predicts the user will like

• Temporarily insert a new fact into the user profile

   until classification stabilizes 



LDRec offline evaluation

• Knowledge graph:
• DBPedia

• User profiles:
• Facebook data from the 2015 

Linked Open Data-enabled 
Recommender Systems Challenge

• Method:
• Koren’s one-plus-random on 100 

randomly-chosen users

Precision@N N=1 N=3 N=5 N=10

LDRec-non-
iterative 11 17 25 34

LDRec-
iterative 14 31 43 57



• Knowledge graph:
• DBPedia

• User profiles:
• Each user creates a profile of 20 

movies, books, musicians

• Method: repeat three times
• Users choose a seed
• They receive three 

recommendations
• They answer questions

LDRec-non-
iterative LDRec-iterative

total recs given 
thumbs-up 133 234

total recs chosen 
as next seed 52 70

LDRec user trial (n = 100)



Node similarity: LDSD

• 𝑠𝑖𝑚(𝑥, 𝑦) is an aggregate of

• number of times 𝑥 and 𝑦 both link 
to the same third entity 𝑧

• number of times a third entity 𝑧′ 
links to both 𝑥 and 𝑦

𝑥 𝑦

𝑧

𝑧′
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Vector-space model for documents
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Vector-space model for documents

No one is born 
hating another 
person because 
of the color of 
his skin or his
background or
his religion. 

For love comes
naturally to the
human heart
than its
opposite.

People must
learn to hate,
and if they can
learn to hate,
they can be
taught to love.

0 0.6 0.4 0.3 0.4

0 0 0 0.3 0
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born



Vector-space model 
for knowledge graphs



Node similarity

• Local similarity w.r.t. relation r
• cosine

• Global similarity
• weighted sum



Another vector-space model
for knowledge graphs

𝑥 *+&,"-,/,!0% 1!20&

relative frequency of 
paths of a given type

cosine similarity



Recommender systems

• Accurate hybrid recommenders based on a unified representation of 
user data, item data and user-item data

• Justifications of recommendation based on connectivity 

I recommend Cloud Atlas since you often like movies starring 
Tom Hanks, such as The Da Vinci Code and Saving Private 
Ryan. Moreover, I recommend it because you sometimes like 
Dystopian Movies, such as The Matrix, and American Epic
Films, such as Saving Private Ryan.
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Graph convolutions
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Graph embeddings
• Let

• 𝑥, 𝑟, 𝑦 be a fact
• 𝑥0, 𝑟0, 𝑦′ be a non-fact

• We want
  𝑓 𝑣" , 𝑣# , 𝑣$ > 𝑓(𝑣"! , 𝑣#! , 𝑣$!)

• Different embedding methods 
(TransE, TransR, TransD,…) differ in 
their definitions of 𝑓.

𝑥 𝑦𝑟

𝑣3 𝑣4𝑣,



Node similarity

cosine

(or learn the embeddings but regularized 
by a conventional similarity measure such 
as PathSim)



Link prediction



Predicting playlist listening contexts



Neural network playlist classifier

Extract 
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Combine
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(average)
Softmax Listening

context
Playlist
songs



Matrix factorization
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Graph embeddings

Extract 
song

embeddings
from TransD

Combine
embeddings

(average)
Softmax Listening

context
Playlist
songs



Knowledge graphs for playlists
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Classification accuracy
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Classification accuracy

Audio 29.1%

Matrix Factorization 29.9%

KG without metadata 37.5%

KG with metadata 38.8%

Hybrid audio + KG 39.5%

Training 60% - Validation 20% - Testing 20%
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Knowledge graphs for CBR

• The value of ontologies in CBR is well-recognized
• The value of representing cases as graphs is also well-recognised

• Even graph embeddings have been tried



Knowledge graphs for CBR

• However, the value of knowledge graphs in CBR is under-explored

• Reasons why they may be worth exploring:

• Knowledge graphs are now readily available and there are tools for 
constructing new graphs

• They allow cases to be situated within a wider body of background knowledge

• As we have seen, they offer many ways to compute similarity 
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