

- Motivation
- Reinforcement Learning
- Case-Based Classifier Systems
- Preliminary Results
- Concluding Remarks

Motivation

- Reinforcement Learning
- Case-Based Classifier Systems
- Preliminary Results
- Concluding Remarks

Reasoning and Acting over Time

- Single-step problems, solved repeatedly - e.g. spam classification
- Multi-step (episodic) problems
 - e.g. dialogue management
- Continuous problem-solving

 e.g. factory process control

- ...an up-front training set...
- ...of correctly labelled examples
 (supervised learning)...
- ...for a classification task...
- ...in a stationary environment.

✓ Motivation

➢ Reinforcement Learning

- Case-Based Classifier Systems
- Preliminary Results
- Concluding Remarks

State value function, V

State, s	V(<i>s</i>)
s ₀	
S ₁	10
S ₂	15
S ₃	6

 π can exploit V greedily, i.e. in *s*, choose action *a* for which the following is largest:

$$r(s,a) + \sum_{s' \in S} p(s,a,s') \cdot V(s')$$

V(s) predicts the future total reward we can obtain by entering state s

Choosing a_1 : 2 + 0.7 × 10 + 0.3 × 15 = 13.5 Choosing a_2 : 5 + 0.5 × 15 + 0.5 × 6 = 15.5

Action value function, Q

State, s	Action, a	Q(s, a)
S ₀	a ₁	13.5
S ₀	a ₂	15.5
S ₁	a ₁	
S ₁	a ₂	

Q(s, a) predicts the future total reward we can obtain by executing a in s

 π can exploit Q greedily, i.e. in *s*, choose action *a* for which Q(*s*, *a*) is largest

Q Learning

	_
For each (s, a) , initialise $Q(s, a)$ arbitrarily	
Observe current state, s	
Do until reach goal state	
Select action a by exploiting Q e-greedily, i.e. with probability e , choose a randomly; else choose the a for which Q(s , a) is largest	
Execute <i>a</i> , entering state <i>s'</i> and receiving immediate reward <i>r</i>	
Update the table entry for Q(s, a)	
S ¬ S'	Watkins 1989

✓ Motivation
 ✓ Reinforcement Learning
 ✓ Case-Based Classifier Systems
 ➢ Preliminary Results

Concluding Remarks

Spam Classification

- Emails from my mailbox, stripped of attachments
 - 498 of them, approx. 75% spam
 - highly personal definition of spam
 - highly noisy
 - processed in chronological order
- Textual similarity based on a *text* compression ratio
- *k* = 1; **e** = 0
- No GA

Users Who Don't Always Answer Schmitt 2002: an entropy-like policy (simVar) but also customer-adaptive (a Bayesian net predicts reaction to future questions based on reactions to previous ones) Suppose users feel there is a 'natural' question order if the actual question order matches the natural order, users will always answer if actual question order doesn't match the natural order, with non-zero probability users may not answer A trade-off learning the natural order to maximise chance of getting an answer to maximise chance of reducing size of retrieval set, if given an answer

✓ Motivation
 ✓ Reinforcement Learning
 ✓ Case-Based Classifier Systems
 ✓ Preliminary Results
 ➤ Concluding Remarks

References continued

- Kuhn, R. & De Mori, R.: A Cache-Based Natural Language Model for Speech Reproduction, *I EEE Trans. on Pattern Analysis and Machine I ntelligence*, vol.12(6), pp.570-583, 1990 McCallum, R.A.: I nstance-Based Utile Distinctions for Reinforcement Learning with Hidden State, 12th
- ICML, pp.387-395, 1995
- Miyashita, K. & Sycara, K.: CABI NS: A Framework of Knowledge Acquisition and Lterative Revision for Schedule Improvement and Reactive Repair, Artificial Intelligence Journal, vol.76(1-2), pp.377-426, 1995
- Ram, A. & Santamaría, J.C.: Continuous Case-Based Reasoning. Artificial Intelligence, vol.90(1-2), pp.25-77, 1997
- Santamaría, J.C., Sutton, R.S. & Ram, A.: Experiments with ReinforcementLearning in Problems with Continuous State and Action Spaces, Adaptive Behavior, vol.6(2), pp.163-218, 1998
- Schmitt, S.: simVar: A Similarity-Influenced Question Selection Criterion for e-Sales Dialogs, Artificial Intelligence Review, vol.18(3-4), pp.195-221, 2002
- Smart, W.D. & Kaelbling, L.P.: Practical Reinforcement Learning in Continuous Spaces, 17th 1CML, pp.903-910, 2000
- Watkins, C.J.C.H.: Learning from Delayed Rewards, Ph.D. thesis, University of Cambridge, 1989
- Wilke, W. & Bergmann, R.: Considering Decision Cost During Learning of Feature Weights, 3rd EWCBR, pp.460-472, 1996
- Wilson, D.R. & Martinez, T.R.: Reduction Techniques for Enstance-Based Learning Algorithms, *Machine Learning*, vol.38, pp.257-286, 2000
- Wilson, S..W.: ZCS: A Zeroth Level Classifier System, Evolutionary Computation, vol.2(1), pp.1-18, 1994
- Wilson, S.W.: Classifier Fitness Based on Accuracy, *Evolutionary Computation*, vol.3(2), pp.149-175, 1995 Wiratunga, N., Craw, S. & Massie, S.: I ndex Driven Selective Sampling for CBR, 5th I CCBR, pp.637-651,
- 2003
- Zeng, D. & Sycara, K.: Using Case-Based Reasoning as a Reinforcement Learning Framework for Optimization with Changing Criteria, 7th International Conference on Tools with Artificial Intelligence, pp.56-62, 1995