Comparing Approaches to Preference Dominance
for Conversational Recommenders

Walid Trabelsi*, Nic Wilson*, Derek Bridge" and Francesco Ricci*

*Cork Constraint Computation Centre
University College Cork, Ireland
Email: {w.trabelsi,n.wilson} @4c.ucc.ie
TDepartment of Computer Science
University College Cork, Ireland,
Email: d.bridge@cs.ucc.ie
Faculty of Computer Science
Free University of Bozen-Bolzano, Italy
Email: fricci@unibz.it

Abstract—A conversational recommender system iteratively
shows a small set of options for its user to choose between. In
order to select these options, the system may analyze the queries
tried by the user to derive whether one option is dominated by
others with respect to the user’s preferences. This paper describes
a framework for preference dominance. Two instances of the
framework are developed for query suggestion in a conversational
recommender system. The first instance of the framework is
based on a basic quantitative preferences formalism, where
products are compared using sums of weights of features. The
second is a qualitative preference formalism, using a language
that generalizes CP-nets, where models are a kind of generalized
lexicographic order. A key feature of both methods is that
deductions of preference dominance can be made efficiently, since
this procedure needs to be applied for many pairs of products. We
show that, by allowing the recommender to focus on undominated
options, which are ones that the user is likely to be contemplating,
both approaches can dramatically reduce the amount of advice
the recommender needs to give to a user compared to what would
be given by systems without this kind of reasoning.

I. INTRODUCTION

In an era of overwhelming choice, recommender systems are
a new source of assistance, helping their users to decide which
goods, services or information to purchase or consume. [1],
[2]. These systems infer user preferences from data gathered
either explicitly, e.g., in the form of product ratings, or
implicitly by observing user behaviour.

No matter how good recommender systems become, they
are unlikely ever to be sufficiently prescient that their first set
of recommendations always satisfies the user. Conversational
recommender systems allow for this, and recognise that their
users may be willing and able to reveal more of their con-
straints and preferences, over a short dialogue. This is also an
opportunity for the recommender system to guide the user by
asking questions, giving advice, displaying candidate products,
and giving explanations [3], [2], [4], [5].

Conversational recommender systems typically involve iter-
atively showing the user a small set of options (e.g., products)
for them to choose between. To select an appropriate set to
display at each stage, from a much larger collection of options,

the recommender needs information regarding which options
are likely to be preferred to others by the user, based on
previous responses the user has given in the dialogue; if one
assumes that the user has some kind of preference relation
over products, this amounts to determining if certain products
are dominated according to this preference relation.

In 2007, Bridge & Ricci introduced a new kind of conver-
sational recommendation, which they call Information Recom-
mendation [6]. In Information Recommendation, summarized
in Section II, the recommender infers constraints on the user’s
preference relation from her previous contributions to the
dialogue. The recommender must reason with the constraints
to determine whether certain products dominate others and to
suggest actions the user might take that are compatible with
these preferences.

Information Recommendation hence requires a framework
for this kind of reasoning, where a set of models of the user is
assumed, each with an associated preference ordering, along
with a satisfaction relation between models and statements
of constraints on preferences expressed in an appropriate
language. Within this framework, given a set of constraints, we
infer that one product is preferred to another if this preference
holds for all models satisfying the constraints. We describe
this framework in more detail in Section III.

Two instances of this framework are developed and pre-
sented in this paper. The first, described in Section IV, is based
on a simple quantitative preferences formalism, involving a
sum of weights, with an associated language of linear in-
equalities. This is a very commonly used model for preference
representation, specifically, in Multi-Attribute Utility Theory
(MAUT) [7]. It is widely used in recommender systems, e.g.
[8]. And it is the approach to preference dominance taken in
Bridge & Ricci’s original Information Recommendation paper.

The second instance of the framework (Section V) is a
qualitative preference formalism, where models are a kind of
generalised lexicographic order, and constraints are expressed
as comparative preference statements in a language gener-
alising CP-nets [9]. This has not been used in Information

Recommendation or any other recommender system before.

Section VI explains how the two instances of the framework
can be used within Information Recommendation. Finally,
Section VII describes how the implementations of the ap-
proaches have been experimentally tested.

The contributions of this paper include the following. It
shows how a comparative preferences approach can be used in
a conversational recommender. Approaches of this kind have
not been used in recommender systems before. Using them is
significant because of their expressiveness. This manifests in
two ways. The first, as we show in Section VI, is that there
are nuances about user preferences that the recommender can
capture in the constraints when using comparative preferences
that cannot be captured when using the sum of weights
approach. The second, as we discuss in Section VIII, is that
the comparative preferences approach allows a recommender
to express a wider range of constraints than those envisaged
by the original Information Recommendation work, including,
e.g., statements about conditional preferences. Furthermore,
through our experiments, we reveal the viability of the com-
parative preferences approach. It is sufficiently efficient in a
practical (rather than theoretical) sense and it allows inferences
to be drawn that are strong enough on the one hand to give
useful advice but not so strong on the other hand to incorrectly
eliminate options that the user prefers. Indeed, its inferences
are stronger than those drawn in the sum of weights approach,
resulting in giving the user shorter advice but still without
compromising success in directing the user to the best product,
and we find that these experimental results are robust in the
sense that they pertain irrespective of how the users true
preference are represented.

II. INFORMATION RECOMMENDATION

Information Recommendation is concerned with helping a
user to find a product to purchase or consume. Throughout
this paper, we use hotels as the example product. The user
repeatedly edits and resubmits a query until she finds a product
that she wants. For example, she might submit a query that
asks for a hotel that has a swimming pool and a restaurant.
If she is advised that hotels that satisfy her query do exist,
she might be encouraged to edit her query and see whether
there are hotels that additionally allow pets. Perhaps if there
are not, she might edit her original query to one that sacrifices
the swimming pool in favour of allowing pets. This is a hit-
and-miss process that can be improved by the intervention of a
recommender system. The recommender system: observes the
user’s actions (her queries); infers constraints on the user’s
preferred products; uses these inferences to deduce which
queries a user is likely to try next; and advises the user to
avoid those that cannot be satisfied. Below we describe this
recommender system in more detail.

A. The products

In this paper, we assume a collection of Boolean-valued
features V = {Fy,...,F,}. The features are intended to relate
to a set of products that the user is interested in choosing

between; for example, in choosing a hotel room, one feature
might be whether the hotel has a swimming pool.

Define a configuration o to be a mapping from {I,...,n}
to {1,0}. Configuration o can also be thought of as a set of
features, i.e., all features F; such that (i) = 1. For convenience
we will write a configuration such as (1,0,1) as fi > f5.

In Information Recommendation, configurations can be
thought of as queries over the set of features. Hence, we will
often denote them by g. If a user issues query g and if f; € g,
this means that the user is interested in products that have
the ith feature. In accordance with most Web-based product
search systems, f; ¢ g means only that the user has not (yet)
declared any interest in feature Fj; it does not mean that the
user wants products that lack the ith feature. So, for example,
if g is fif>f5, the user wants a product that has features f
and f3 and has said nothing yet about f>.

A subset of the configurations correspond to products that
are available to the user. A query is satisfiable if and only if
there exists a product which has all the features in the query;
otherwise, it is unsatisfiable. Users cannot be expected to know
in advance which queries are satisfiable and which are not,
although they may have incomplete knowledge of this.

B. The dialogue

In the kind of system envisaged in [6], the user submits an
initial query, typically one that is quite under-specified: ‘to test
the water’. In our experiments (Section VII) we use an empty
initial query. Let this query be known as the current query, q.

The recommender system does not know the user’s pref-
erences and does not ask about them. It may only infer
them from the sequence of queries that the user submits. As
the dialogue proceeds, the recommender system will infer
constraints on the user’s preferences and express them as
statements in a language L. We will denote the current set of
statements by ®. Initially & may contain a set of ‘background’
assumptions. In particular, for example, we will want to
express the idea that including a feature in a query is at least as
good as not including it. Statements will be added to & as the
dialogue proceeds. For example, if the user’s query requests
a certain feature, we may plausibly infer that this feature is
more important than the ones not included in the query.

The interaction between the user and the recommender
system proceeds as follows:

1) The recommender system analyzes g, with particular
regard to differences between current query g and the
queries the user might alternatively have submitted. The
system induces some additional constraint on the user’s
preferences and adds corresponding statements to .

2) The recommender system generates a set of candidate
next possible queries and prunes this set to those that are
satisfiable and undominated (see below). It advises the
user to confine her next query to this set.

3) The user chooses and submits her next query. This
becomes the new current query ¢. In the experiments
reported in Section VII, we arrange that the user always

chooses one of the queries that the system advises (al-
though this might not be so in practice.)

Steps 1-3 are repeated until the user is satisfied with g
or the set of undominated, satisfiable candidates is empty, in
which case as far as the recommender system is concerned g
cannot be bettered. At this point, the user can request to see
the products that satisfy g.

The goal of the recommender system is to give the advice
that has the greatest value. We consider this to be that which
minimizes the total quantity of advice given and the dialogue
length, while guiding the user to the best product.

During step 2 above, the recommender system computes the
following three sets of queries:

o Candidates: Candidate queries are ones which are close,
in a particular sense, to the current query. Each is a low-
cost edit to the current query. For example, if f; & ¢, the
set of candidates will include the query that results from
adding just feature f; to gq.

o Satisfiables: The recommender system never includes
unsatisfiable queries in its advice: they make interaction
length longer without leading the user to the best product.
Hence, the system eliminates from Candidates those
queries which are unsatisfiable; the remaining queries are
called the Satisfiables.

o Undominated: Then, the system eliminates from Satisfi-
ables each query which is dominated by (i.e., worse than)
some other member of Satisfiables; the remaining set of
queries is called Undominated. The dominance relation
is based on what is induced in step 1 above.

In effect, the system’s advice to the user is to confine her
next query to a set which the system knows are satisfiable and
believes the user is likely to try next (since, according to what
the system has inferred about the user’s preferences, they are
ones that are not dominated by other satisfiable queries).

We will now explain how to obtain the three sets of queries.

Generating the candidates: Real user behaviour in query
editing tends to proceed with modifications of limited ‘reach’.
Hence, following [6], we define Candidates as the set of
queries which we obtain by applying three editing operations,
Add, Switch and Trade, to the current query. These operations
are defined as follows. Given current query ¢ and f; € ¢, then
Add(q, f;) adds just feature f; to g, giving the new query
qU{f;}, which we sometimes write as ¢'. Switch(q, fi, f})
where f; € q,f; € q,i # j discards feature f; in favour of
feature f;, giving the new query ¢\ {fi} U{f;}. Finally,
Trade(qvﬁvfjvfk) where fi€ qvf] gqafk ¢qvl¢]al7éka]7ék
discards feature f; and introduces features f; and f;.

Checking satisfiability: As defined earlier, a query is satis-
fiable if and only if there exists a product which has all the
features present in the query. If products are stored explicitly
in a database, satisfiability of a candidate query can be checked
by a scan of the database.

Checking for dominance: The final pruning of the satisfiable
candidate queries is performed using one of the two instances
of the framework for dominance of preferences that we will ex-
plain in Sections III, IV and V. In either case, g € Satisfiables

is pruned if it is strictly dominated, i.e., dominated according
to relation =g, by ¢’ € Satisfiables.

III. A FRAMEWORK FOR DOMINANCE OF PREFERENCES

We assume a set Q of possible configurations (as defined
in section II). We would like to generate some kind of
(partially ordered) preference relation > on €, based on
previous information we have received regarding the user’s
preferences. This section describes a framework for generating
such a relation. We define two instances of the framework in
Sections IV and V.

In order to make non-trivial inferences regarding the user’s
relative preferences over configurations, we will have to make
some assumptions. We assume:

e A set of models M, each of which is intended to
represent a possible user (or way the user could be).
Associated with each M € M is a total pre-order =y
on configurations, i.e., a reflexive, transitive and complete
relation (so for all configurations o and B, we have either
o =p P or B =y o or both).

« A formal language L whose statements express con-
straints on the user’s preferences.

o A relation = between M and L. For M € M and
¢ € L, we interpret M |= ¢ to mean that ¢ holds for the
preferences of M.

Given a particular set & C L of statements, we consider
the orderings on configurations which hold for every model
satisfying statements ®. Formally, we define relation >¢ on
configurations as follows: o =¢ P if and only if o =y B
for all M satisfying (every member of) &. It follows that
=@ 1s a pre-order (a reflexive and transitive relation) on
configurations. Now, o, =¢ 3 means that every user who agrees
with @ considers that configuration o is at least as desirable
as configuration B (assuming this particular model of users).
It is possible that we also have B =¢ o, in which case every
user considers that o and B are equally desirable. We define
the relation >¢ to be the strict part of 5=, so that o =¢ P if
and only if o =¢ B and P % o. Relation »¢ is irreflexive
and transitive. We say that Given ®, a strictly dominates B, if
o - B, i.e., if all users (represented by models in M) agreeing
with @ regard o as at least as preferable as 3, and at least one
such user regards o as strictly preferable to B.

IV. SUM OF WEIGHTS MODEL OF THE USER

In this section we consider our first kind of model of the
user’s preferences, where it is assumed that a user assigns a
weight to each feature, and configurations are compared on
the sum of weights of the associated set of features.

A. Models

The set of models is the set of all vectors of weights w =
(wi,...,wy), where w; is a non-negative real number. w; is the
weight assigned to feature F;. Given a weights vector w, the
overall value w(a) of a configuration o is the sum of weights
of the features included in a, i.e., w(0t) = ¥;.q(j)=1 wi- This is
used to define the ordering on configurations. We define the

preference relation =, for model w by o 3=, B if and only
if w(o) > w(B), ie., iff ¥;wi(o(i) —B(i)) > 0. Thus 3=, is a
total pre-order on configurations.

B. Constraint language

The language consists of statements of the form a > f3,
where o and B are configurations.

C. Dominance relation

Weight vector w is defined to satisfy o > B if o 5=, B. Let
® be a set of statements. The definitions in Section III lead to
the following definition of =4, the induced preference relation
given constraint statements &:

For configurations o and B, o =¢ B if and only if o 3=, B
for all weight vectors w satisfying ®. Dominance relation >¢
is then the strict part of »>¢. When we want to make explicit
comparisons with the second instance of the framework (Sec-
tion V), we will use the notation =%’ for *=¢.

Example 1: Let @ be the pair of statements: fif>f3 >
fifafs, and fifofs > fifofs. Let o be the configuration
fifafs, and let B be the configuration fi f>f;. Weights vector
w satisfies the constraint fif>fs > fifofs if and only if
w(fifafs) > w(fifafs), ie., wi +w3 > wy +ws, which holds
if and only wy; > wy. By similar reasoning, w satisfies ® if
and only if w; > wy and w; > ws. Also, w satisfies o0 > B if
and only if w; > wy +ws3. Thus @ does not entail o > B, so
we do not have o =g’ B, since, for example, weights vector
w with wiy =4, wy =2 and w3 = 3 satisfies ® but does not
satisfy o > P. [

Example 2: Suppose now that there are four features,
and let ¥ be the pair of statements fif>f3f4 > fifofsfs and
fifafafs > fifofsfa. With the sum of weights semantics this
implies fif>ffs > fifofsfs, since the first statement implies
w1 > wo, and the second statement implies wy > w3, implying
wi > ws, which implies that the third statement is satisfied.
We therefore have fif>f3fs =% fifofsfs u

D. Computation of preference

We wish to determine if o =4 P, for given configurations
o and B. Let Pos be the set of constraints w; > 0, for i =
1,...,n, representing the non-negativity of the weights (and
corresponding to the assumption that including a feature is
always at least as good as not including it). The definition
implies that o =¢ B if and only if the linear constraints ®U Pos
(over real-valued variables w;) entail the constraint };(ou(i) —
B(i))wi > 0.

For implementation of this using a Linear Programming
solver, it can be convenient to express it as a linear op-
timisation problem. Define A,; to be the minimum value
of Y (ou(i) — B(i))w; subject to constraints ® U Pos. It can
be easily shown that o =¢ B if and only ® U Pos entails
Y(a(i) — B(i))w; > 0 if and only if Ay, > 0.

V. COMPARATIVE PREFERENCES MODEL OF THE USER
A. Models

In our second approach, models are a kind of generalised
lexicographic order, called cp-trees [10], which are similar to

FALZ AL ML LA 2 ML A2 M=

Fig. 1. A cp-tree o, along with its associated ordering on outcomes >=¢.

search trees used for solving constraint satisfaction problems.
Figure 1 gives an example of a cp-tree. Each node is labeled
with a variable. The root is labeled by the most important
variable, F; in this example. Each node is associated also with
a preference ordering of the values of the variable. This local
ordering in the case of the nodes in the example is f; > f;,
where f; means F; is included (F; = 1) and f; means that F; is
not included (F; = 0). This ordering captures the requirement
that including a feature is never worse than not including it.

Two configurations o and [are compared first on this most
important variable. If they do not agree on this variable then
the comparison is settled: in the example, if o contains feature
F, and P does not, then a is better than . This happens, for
example, if o0 is f1 fof3 and B is fifof5. Otherwise, o and B
agree on the most important variable. The user may then have
a next most important variable (labeling a child node); this can
depend on the value assigned to the most important variable
(signified by the value on the edge from parent to child). For
this reason, this model allows conditional preferences. If there
is no such next important variable, then o and [are considered
equally preferable according to this cp-tree. Thus the cp-tree
© generates a total pre-order = on outcomes.

Note that each node in the cp-tree in Figure 1 is associated
with a single variable. In fact, we can allow a more general
representation, where at most 7y variables (where, in this paper,
Y= 1, 2 or 3) are associated with a node, along with a total pre-
order over the assignments to that set of at most 7y variables.
For example, if a node is associated with the pair of variables
Y = {F,F;} then the local ordering is over assignments to Y,
and might be e.g., o3 > fofs = fofs > fofs. Let M () be the
set of cp-trees over Q, where the set of variables associated
to a node involves at most Y variables. A 1-cp-tree over Q is
defined to be an element of M (1), i.e., a cp-tree with a single
variable being associated with each node. The local ordering
associated with a node associated with feature F;, must then
be f; > f;, since including a feature is always at least as good
as not including it. For full definitions of cp-trees, see [10].

B. Constraint language

The language will include statements that compactly express
comparative (and sometimes conditional) preferences among

configurations. There is a substantial and fast growing lit-
erature on this topic in the Al and Philosophy of Science
communities, see e.g., [11], [9], [12], [10].

The language includes comparative preference statements
¢ of the form p > ¢q || T, where P, Q and T are subsets of
the features V, and p is an assignment to P (i.e., a function
from P to {0,1}), and ¢ is an assignment to Q. Informally, the
statement p > ¢q || T represents the following: p is preferred to
q if T is held constant. More formally, the preference relation
= satisfies the statement p > ¢ || T if and only if o 3= 3 for
all configurations o and B such that (i) o extends p (i.e., o
restricted to the subset of the features in P equals p), (i) B
extends ¢, and (iii) o and B agree on T: o(T) = B(T).

A very important kind of statement is one expressing the
constraint that one configuration, «, is preferred over another,
B. This can be written as a > B || 0; we also write such a
preference statement as o > .

Since including a feature is at least as good as not including
it, we always include, in the set @, the statement f; > f; || V'\
{F;} for each feature F;. Hence our language is strongly related
to Conditional Importance Networks [13].

C. Dominance relation

We define the set of models of users to be the M (y) for
some Y= 1,2, or 3. Each cp-tree ¢ generates a total pre-
order > on configurations. Let ¢ be a cp-tree and let @ be a
statement in the constraint language. ¢ satisfies ¢ if and only
if =4 satisfies @. In the same way as in Section IV, we define,
for a given set of statements ®, =¢ (or more precisely, &flf’y),
in the following way: o >=¢ [holds if and only if o = B holds
for all cp-trees o in M () satisfying @.

Example 1 continued: With the cp-tree semantics, when
y= 1, the pair of statements ® (| /.3 > fifofs, and fifofz >
fifofs) implies the preference statement ff>f3 > fifof3, S0
we have fiHf3 >g’1_ fifs f3; The reason is that, for any 1-cp-
tree ¢ satisfying f1f>f3 > f1f2f3, the most important feature
must be either F; or F3. (If F, were the most important
feature, then we would not have fif>fs =¢ fi/of3, because
the local ordering is f> > f>, since the presence of a feature is
never worse than its absence.) Similarly, if 1-cp-tree ¢ satisfies
fifofs > fifofs. then the most important feature must be either
Fi; or F,. Hence for any l-cp-tree satisfying ®, Fj is the
most important variable. The root node then decides pair of
configurations fi f>f; and fi f>f3. Since the local ordering of
this node must be f; > fi, we have fif>f3 =¢ fifof3. Hence
we have fi f>f3 >;g]‘ fifofs. The qualitative and lexicographic
nature of the cp-trees semantics ensures this inference, in
contrast with the numerical sum of weights method, which
did not. [|

Example 2 continued: In contrast with the sum of weights
semantics, ¥ does not imply f1 f> /5.1 > fif>f3f+. To show this
we can construct a 1-cp-tree ¢ with Fy as the most important
(root node) variable, and where, given f1, F3 is more important
than F; which is more important than 3, and given f4, F is
more important than F3 which is more important than Fj. ¢
then satisfies W, but not fi /314 > fifofsfa.

A key issue here is that cp-trees can represent conditional
preferences: the preferences can be different given fi from
those given f4. In contrast, the sum of weights semantics
assumes preferential independence, so preferences are not
conditional at all, which is why the inference holds for the
sum of weights semantics. |

The pair of examples shows that the two preference dom-
inance techniques are incomparable: kg" can sometimes
include preferences not included in *=§’, and vice versa.

D. Computation of preference

Given set of statements & and configurations o and B, we
can determine in polynomial time whether or not a >=¢ B
holds, using the algorithm given in [10], as shown by Theorem
1 in [10].

VI. INDUCING CONSTRAINTS ON PREFERENCES IN
INFORMATION RECOMMENDATION

Now that we have explained the two instances of the
framework for dominance of preference, it remains for us
to return to Information Recommendation to explain what
the system induces in step 1 above (Section II), when it
observes the user’s queries. We explain this below for each
of the two preference models. Due to space limits, we confine
our treatment only to what can be inferred when the system
observes the user adding a feature f; to a query g, Add(q, f;).
However, our system induces preference statements for Switch
and Trade as well as for Add.

A. Inducing constraints in the sum of weights model

If the user has added feature f; to query g, giving rise to new
query ¢/, then statements ¢' > ¢/ are induced for all f; & g, i #
j unless Add(q, f;) = ¢’ is unsatisfiable. This assumes that the
new query is preferred to other satisfiable queries that could
have been generated by adding other features. This implies
that the weight vector satisfies the linear inequality w; > w;.
However, we do not infer qi > q/ in all cases. In particular, we
do not infer it if Add(q, f;) is unsatisfiable. Users may have
(incomplete) knowledge of which queries are unsatisfiable: if
she knows a query is unsatisfiable, then she will not submit
it. We ‘play it safe’: when ¢/ is unsatisfiable, in case the user
knows this, we do not assume that the query that she does
submit has higher weight than this unsatisfiable query.

B. Inducing constraints in the comparative preferences model

Again consider the situation where the user has chosen to
add feature f; rather than feature f;. For this model, there are
alternative statements one might induce from this decision by
the user. We consider two, each being a kind of counterpart
for the constraint w; > w; induced for the sum of weights
approach. It is an advantage of the comparative preferences
model that it can express nuances that the sum of weights
model cannot.

« Basic: Let g be the current query, let ¢’ be the current
query g with the feature f; added, and let ¢/ be g with
the feature f; added. A basic, somewhat conservative,

approach is to just model the preference of feature i over
feature j by the preference statement: ¢’ > g/ 10, i.e., ¢ >
¢/, which just expresses a preference for ¢’ over ¢/.

« Importance: Alternatively, and less conservatively, we
can induce f; > fi||V \ {F;,F;}, which says that the
presence or not of the feature F; is more important than
the choice of F;. Thus, whatever the state of the feature
F; in the query the user will prefer F; to be present in the
query so that this feature is included in the best product.

Note too that in either case we ensure that the recommender
system ‘plays it safe’ when inducing preference statements, in
the same way that we explained for the Sum of Weights Model,
by not inducing preferences over unsatisfiable queries.

VII. EXPERIMENTS

In this section, we report experiments with simulated users
that demonstrate the feasibility of using both the Sum of
Weights Model and the Comparative Preferences Model within
the Information Recommendation system. It is a common
practice to use simulated interactions to initially test alternative
algorithms for conversational systems [14], [15]. Simulations
can pinpoint the main deficiencies of the algorithms and can
be used to compare a large number of alternative approaches,
as in our case. Experiments with real users cannot be used to
extensively test alternative dialogue control algorithms, even
if it is clear that the ultimate evaluation of the effectiveness
of a conversational system has to be made online.

We use two separate product databases, that we scraped
from the Web, each describing hotels by their amenities
expressed as Boolean features such as airport shuttle, pets
permitted, restaurant on-site, etc. The Marriott-NY database
records 9 features about 81 hotels; many offer the same
amenities, and so there are 36 distinct products in the database.
The Trentino-10 database records 10 features for 4056 hotels,
of which 133 are distinct.

The simulated users in our experiments behave in the
following somewhat idealized way: within a dialogue, they
do not try queries that they have tried earlier in the dialogue;
they are aware of their own preferences and never choose a
next query that would be inferior to the current one; and they
take heed of all advice given, i.e., if the recommender system
tells them to confine their next query to a certain set, then they
do so; indeed they choose the best possible query from this
set. (In the terminology of [6], these are optimizing users.)

For a simulated user to make choices about which among
the queries in the recommender’s advice is the best one for
it to submit next, the simulated user must be assigned a
set of true preferences. These are generated randomly. We
arrange that they are known to the simulated user and used
by that user for query selection, but they are not known to
the recommender system, which knows only what it induces
about user preferences and adds to & when observing user
query behaviour.

In the same way that the recommender system can represent
induced constraints on users’ preferences in either the Sum of
Weights Model or the Comparative Preferences Model, equally

the simulated users’ true preferences can be represented in
either model. If the true preferences are represented in the Sum
of Weights Model, then recommenders that induce constraints
on preferences in the Sum of Weights Model may have an
advantage over recommenders that are using the Comparative
Preferences Model, and vice versa. We control for this problem
by showing results below that pair both ways of representing
true preferences with recommenders that use both ways of
representing induced preferences.

In the experiments, one recommender system uses the Sum
of Weights Model; six use the Comparative Preferences Model,
differing first on which of the two alternative preference
statements they infer (Basic or Importance), and on their value
for y (1, 2 or 3). For each pairing of a user with a recommender
system, we ran 500 simulated dialogues. In total then, we are
reporting results for 2 databases x 2 ways of representing
true preferences x 7 recommenders x 500 dialogues, which
is 14000 runs of the system.

We stress that a recommender that does not remove from its
advice those queries that are dominated would suggest to the
user a large number of next possible queries, i.e., all those that
are satisfiable. This has been a common approach in earlier
conversational systems and it is current practice in many
conventional Web applications which allow the user to specify
a preferred value for a feature (e.g., using a checkbox) and
then show the number of products that satisfy that condition.
The whole advantage of Information Recommendation rests
on being able to prune the dominated queries, showing only
the undominated ones, on the basis that these best match the
user’s preferences. Hence, in the experiments we compare the
pruning rates achieved by using the Sum of Weights Model
with those achieved by the six recommender systems that
use the Comparative Preferences Model. The pruning rate is
defined as follows:

|Satisfiables \ Undominated)|

100
|Satisfiables| %

pruning rate =

It shows the extent to which an approach eliminates what
it takes to be inferior satisfiable candidate queries from its
advice. Other things being equal, the shorter the advice the
better, as this reduces the choice the user has to make.

A. Representing true preferences in the sum of weights model

In our first set of experiments, we set the user’s true pref-
erences by randomly generating weight vectors over product
features. The pruning rates in this case are shown in Table I.

The table shows that, in nearly all settings, the Compar-
ative Preferences approach is pruning non-optimal queries a
little more than the Sum of Weights approach. For example,
the Comparative Preferences Model using Basic preference
statements and with Y= 1 eliminates 87.5% of satisfiable
candidates in dialogues about the Marriott-NY database, where
the Sum of Weights approach prunes 87.38%. The table also
shows that, on the whole, with the Comparative Preference
Model, the amount of pruning increases as the preference
statements induced become less conservative (from Basic to

TABLE I
THE PRUNING RATES (TRUE PREFERENCES REPRESENTED IN SUM OF
WEIGHTS MODEL)

[y=l [v=2 [=3
Marriott-NY
Comp. Prefs. Basic 87.50 | 14.48 | 12.65
Comp. Prefs. Importance | 87.50 | 87.49 | 87.42
Sum of Weights 87.38
Trentino-10
Comp. Prefs. Basic 87.49 | 16.51 | 13.98
Comp. Prefs. Importance | 87.42 | 87.57 | 86.72
Sum of Weights 85.72

Importance). For example, in the Trentino-10 part of Table I,
with y = 2, pruning goes from 16.51% Basic to 87.57%
Importance. (The very slight exception to this for the Trentino-
Y= 1 case is probably due to random variation in tie breaking.)

Furthermore, we see that the parameter 7y, (the maximum
number of variables that are associated with a node in a cp-
tree), affects the degree of pruning. Specifically, as Y increases,
the number of queries pruned tends to decrease. For example,
in the Marriott-NY part of Table I, with preference statements
Importance, pruning goes from 87.50% (y=1) to 87.49% (y=
2) to 87.42% (y= 3). This is a reflection of the monotonicity
with respect to y observed above (however, pruning is to do
with strict dominance, which is not necessarily monotonic with
respect to v, but very often will be, because of the monotonicity
of dominance.) The effect is especially marked in the Basic
model where the pruning rate falls from nearly 90% to around
16.5% or less. When v is increased from 1 to 2, many queries
of the Trade form become undominated in the Basic model,
because of the more expressive preference relations which can
be represented by cp-trees with Y= 2 (allowing more than one
feature to be assigned at a node). With the stronger Importance
preference form, these Trade queries are still dominated.

What is also of concern from a practical point of view is
the average length of the advice that the system gives, i.e., the
number of options the user has to choose from; this is inversely
related to the pruning rate. Except in the cases where pruning
is very low (Basic with Y= 2 or 3), advice from the Sum
of Weights recommenders is very slightly longer than it is in
the case of the Comparative Preferences recommenders, being
around 10 for both datasets. Dialogue lengths are very similar
in the case of all recommenders: around 6 steps on average
for Marriott-NY, and around 6.8 steps for Trentino-10.

Of course, it is not enough to know that one approach prunes
more than another, or gives shorter advice. If it were doing
so to the detriment of other factors, in particular the ability
of the user to reach the best product, then the extra pruning
would be of little value. We have measured the extent to
which the final queries that the user reaches in a dialogue (and
hence the final product that she might choose) agree across the
different recommenders. Space limits preclude the inclusion of
detailed results but we find that the Comparative Preferences
approaches agree with the Sum of Weights approach between
91 and 99% of the time, and the more an approach prunes,

TABLE I
THE PRUNING RATES (TRUE PREFERENCES REPRESENTED IN
COMPARATIVE PREFERENCES MODEL)

[vy=1 [v=2 [=3
Marriott-NY
Comp. Prefs. Basic 85.77 | 14.28 | 14.28
Comp. Prefs. Importance | 85.78 | 85.77 | 85.75
Sum of Weights 85.73
Trentino-10
Comp. Prefs. Basic 86.81 | 15.03 | 14.94
Comp. Prefs. Importance | 86.81 | 86.79 | 85.93
Sum of Weights 85.15

the less this agreement is. For example, for Trentino-10, Basic
Y= 1 agrees with Sum of Weights 92.6% of the time; this rises
to 96.2% for Y= 2; and it falls to 92% for Importance y= 1.

Since true preferences are represented in the Sum of
Weights Model, we can also measure the amount by which
the utility of the product that the user ultimately chooses falls
short of the utility of the best product that she could have
reached, normalized by the difference between the products
of highest and lowest utility. Unsurprisingly, these follow a
similar pattern to the percentage agreements reported in the
previous paragraph. The values are very close to zero, ranging
from 0 to 0.008.

When y= 1, the time taken by the different implementations
of the pruning is roughly similar—for example, around 0.2
seconds for a dialogue with the basic comparative preferences
pruning for the Trentino dataset—with the sum of weights
linear programming algorithm taking a little longer than the
two others. The computation time increases exponentially with
Y, for example, the Basic-Trentino-y = 3 dialogue takes on
average around 7.5 seconds.

Overall, for this experimental setup it seems that it is better
to use the more restrictive set of models corresponding to
Y= 1, at least for the Basic form, because it generates much
greater pruning, leading to manageable sets of options for
the user, and is computationally cheaper. However, there may
be situations (e.g. other datasets) where the more cautious
reasoning corresponding to y=2 or 3 might pay off in terms
of the final quality of solutions.

B. Representing true preferences in the comparative prefer-
ences model

In our second set of experiments, the user’s true preferences
are set by randomly generating cp-trees over product features.
The pruning rate results in this case are shown in Table II.

The results in Table II pattern in a very similar way to the
ones in Table 1. For example, again, in nearly all settings,
the Comparative Preferences approach is pruning non-optimal
queries a little more than the Sum of Weights approach;
also, with the Comparative Preference Model, the amount
of pruning increases as the preference statements induced
become less conservative (from Basic to Importance); and, as
Y increases, the number of queries pruned tends to decrease.

With users’ true preferences represented as cp-trees, the
pruning rate (Table II) is roughly the same as when they are

represented by weight vectors (Table I), a little less for the
Y= 1 case. The consequences of this for these experiments
is slightly longer advice (around 13 queries on average for
both datasets and in all settings except Basic with y=72 or
3, where pruning is very low) and shorter dialogues (around
3.7 steps for Marriott-NY and around 3.9 steps for Trentino-
10). Furthermore, in every dialogue, the product that the
user ultimately chose was the optimal product for her true
preferences (whereas we saw very small shortfalls in utility
in the experiment described in the previous section). The
dialogue involves features being added incrementally to the
empty initial query—with the most important (according to
the true cp-tree) first—until the optimal product is reached.

We were interested to see whether mis-matches between
the ways in which true preferences and induced preferences
are represented would have any effect. One might expect if
induced preferences are represented in the same model as the
true preferences, then they can more accurately capture the
true preferences, resulting in greater pruning. But we are not
seeing this in our experiments. We are seeing that, for all but a
few settings, irrespective of the way in which true preferences
are represented, using the Comparative Preferences approach
for induced preferences results in slightly greater pruning. This
is a useful result: it gives us confidence that the advantage that
the Comparative Preferences approach enjoys is not an artefact
of the way we are running the experiments.

VIII. CONCLUSIONS

There has been a lot of excellent theoretical work produced
on comparative preference formalisms in recent years, for
example, the award winning papers [9], [16]; however, devel-
opment towards applications has been lagging somewhat. A
major contribution of this paper is to show how a comparative
preferences approach can be adapted for a conversational rec-
ommender system. For this kind of application it is important
that the preference language allows the expression of direct
comparisons between configurations (that one configuration is
preferred to another); and also that the inference technique is
both efficient and strong enough in its inferences (or else the
pruning of possibilities is too weak). The language, inference
method and algorithm described in [10] fit these requirements.
We have shown that it is possible to implement this inference
method so that it is efficient in a practical (rather than theoret-
ical) sense, as part of a form of conversational recommender
system. We have tested our method on datasets involving
real hotel data, and shown that it leads to strong pruning of
possibilities, but without eliminating the best options, even
when ‘best’ is defined based on a different semantics (based
on a sum of weights of included features).

An attractive feature of the comparative preferences ap-
proach is its expressiveness. In the current work, it has allowed
us to choose between differently nuanced induced preferences.
In future work, it would also allow general conditional pref-
erence statements to be expressed by the user, such as If
the hotel is not in the city centre, then I'd like there to be
an on-site restaurant. Such statements can further strengthen

the pruning capability, and could potentially be re-used for
different searches.

In future work too, we will extend these approaches for
other kinds of recommender systems, including for non-
boolean features, and for configurable products, where the set
of possibilities is expressed implicitly as the solutions of a
Constraint Satisfaction Problem. We will also consider other
inference procedures. For instance, the weighted sum model
can be easily extended to a sum of functions of more than one
variable (a GAI representation [17]).

REFERENCES

[1]1 G. Adomavicius and A. Tuzhilin, “Toward the next generation of
recommender systems: A survey of the state-of-the-art and possible
extensions,” IEEE Transactions on Knowledge and Data Engineering,
vol. 17, no. 6, pp. 734-749, 2005.

[2] D. Bridge, M. Goker, L. McGinty, and B. Smyth, “Case-based recom-
mender systems,” The Knowledge Engineering review, vol. 20, no. 3,
pp. 315-320, 2006.

[3] D. McSherry, “Retrieval failure and recovery in recommender systems,”
Artificial Intelligence Review, vol. 24, no. 3-4, pp. 319-338, 2005.

[4] F. Ricci, D. Cavada, N. Mirzadeh, and A. Venturini, “Case-based
travel recommendations,” in Destination Recommendation Systems: Be-
havioural Foundations and Applications, D. R. Fesenmaier et al., Eds.
CABI, 2006, pp. 67-93.

[5] P. Pu, P. Viappiani, and B. Faltings, “Increasing user decision accuracy
using suggestions,” in Procs. of the SIGCHI conference on Human
Factors in computing systems. ACM Press, 2006, pp. 121-130.

[6] D. Bridge and F. Ricci, “Supporting product selection with query
editing recommendations,” in RecSys '07: Proceedings of the 2007 ACM
conference on Recommender systems. New York, NY, USA: ACM,
2007, pp. 65-72.

[7]1 J. Figueira, S. Greco, and M. Ehrgott, Multiple Criteria Decision
Analysis - State of the Art Surveys. Springer International Series in
Operations Research and Management Science Volume 76, 2005.

[8] C. A. Thompson, M. Goker, and P. Langley, “A personalized system
for conversational recommendations,” Journal of Artificial Intelligence
Research, vol. 21, pp. 393—428, 2004.

[9] C. Boutilier, R. I. Brafman, C. Domshlak, H. Hoos, and D. Poole, “CP-

nets: A tool for reasoning with conditional ceteris paribus preference

statements,” Journal of Artificial Intelligence Research, vol. 21, pp. 135—

191, 2004.

N. Wilson, “An efficient deduction mechanism for expressive compar-

ative preference languages,” in Proceedings of the Nineteenth Interna-

tional Joint Conference on Artificial Intelligence (IJCAI-09), 2009, pp.

961-966.

S. O. Hansson, “Preference logic,” in Handbook of Philosophical Logic,

D. Gabbay and F. Guenthner, Eds. Kluwer, 2001, pp. 319-393.

R. Brafman, C. Domshlak, and E. Shimony, “On graphical modeling of

preference and importance,” Journal of Artificial Intelligence Research,

vol. 25, pp. 389-424, 2006.

S. Bouveret, U. Endriss, and J. Lang, “Conditional importance networks:

A graphical language for representing ordinal, monotonic preferences

over sets of goods,” in Proc. of IJCAI, 2009, pp. 67-72.

L. McGinty and B. Smyth, “Adaptive selection: An analysis of critiquing

and preference-based feedback in conversational recommender systems,”

International Journal of Electronic Commerce, vol. 11, no. 2, pp. 35-57,

2006.

Q. N. Nguyen and F. Ricci, “Replaying live-user interactions in the oft-

line evaluation of critique-based mobile recommendations,” in RecSys

’07: Proceedings of the 2007 ACM conference on Recommender systems.

New York, NY, USA: ACM Press, 2007, pp. 81-88.

F. Koriche and B. Zanuttini, “Learning conditional preference networks

with queries,” in Proc. IJCAI 2009, 2009, pp. 1930-1935.

F. Bacchus and A. Grove, “Graphical models for preference and utility,”

in Proc. UAI-95, 1995, pp. 3-10.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

